
PC Hardware and Booting

Chester Rebeiro
IIT Madras

2

CPUs

Processor
i386

3

Everything has an address

Processor
i386

0x0 : 0x200000 0x60:0x6f

0x1f0:0x1f7

0x3c0:0x3cf

Address Types

•  Memory Addresses
•  IO Addresses
•  Memory Mapped IO Addresses

4

5

Address Types :
(Memory Addresses)

•  Range : 0 to (RAM size or 232-1)
•  Where main memory is mapped

–  Used to store data for code, heap, stack, OS, etc.

•  Accessed by load/store instructions

Memory Address Map

6

Low and Extended Memory
(Legacy Issues)

•  Why study it?
–  Backward compatibility

•  8088 has 20 address lines; can address 220 bytes (1MB)
•  Memory Ranges

–  0 to 640KB used by IBM PC MSDOS
•  Other DOS versions have a different memory limit

–  640 KB to 1MB used by video buffers, expansion ROMS, BIOS
ROMs

–  1 MB onwards called extended memory
•  Modern processors have more usable memory

–  OSes like Linux and x86 simply ignore the first 1MB and load
kernel in extended memory

7

Address Types : (IO Ports)
•  Range : 0 to 216-1
•  Used to access devices
•  Uses a different bus compared

to RAM memory access
–  Completely isolated from memory

•  Accessed by in/out instructions

ref : http://bochs.sourceforge.net/techspec/PORTS.LST

inb $0x64, %al
outb %al, $0x64

8

Memory Mapped I/O
•  Why?

–  More space

•  Devices and RAM share
the same address space

•  Instructions used to
access RAM can also be
used to access devices.
–  Eg load/store

Memory Map

9

Who decides the address
ranges?

•  Standards / Legacy
–  Such as the IBM PC standard
–  Fixed for all PCs.
–  Ensures BIOS and OS to be portable across

platforms
•  Plug and Play devices

–  Address range set by BIOS or OS
–  A device address range may vary every time the

system is restarted

10

PC Organization
Processor

1
Processor

2
Processor

3
Processor

4

front side bus

North Bridge DRAM

South Bridge Ethernet
Controller VGA PCI-PCI

Bridge
USB

Controller

DMI bus
PCI Bus 0

More
PCI

devices

USB
device

USB
bridge

USB
device

USB
device

Legacy
Devices PS2

(keyboard, mouse,
PC speaker)

PCI Bus 1

Memory bus

11

The x86 Evolution (8088)
•  8088

–  16 bit microprocessor
–  20 bit external address bus

•  Can address 1MB of memory
–  Registers are 16 bit

General Purpose Registers
 AX, BX, CD, DX,

Pointer Registers
 BP, SI, DI, SP
Instruction Pointer : IP
Segment Registers
 CS, SS, DS, ES

–  Accessing memory
 (segment_base << 4) + offset
 eg: (CS << 4) + IP

General Purpose Registers

GPRs can be accessed as
8 bit or 16 bit registers
Eg.
 mov $0x1, %ah ; 8 bit move
 mov $0x1, %ax ; 16 bit move

12

The x86 Evolution (80386)
•  80386 (1995)

–  32 bit microprocessor
–  32 bit external address bus

•  Can address 4GB of memory
–  Registers are 32 bit

General Purpose Registers
 EAX, EBX, ECD, EDX,

Pointer Registers
 EBP, ESI, EDI, ESP
Instruction Pointer : IP
Segment Registers
 CS, SS, DS, ES

–  Lot more features
•  Protected operating mode
•  Virtual addresses

General Purpose Registers

GPRs can be accessed as
8, 16, 32 bit registers
e.g.
 mov $0x1, %ah ; 8 bit move
 mov $0x1, %ax ; 16 bit move
 mov $0x1, %eax ; 32 bit move

13

The x86 Evolution (k8)

•  AMD k8 (2003)
– RAX instead of EAX
– X86-64, x64, amd64, intel64: all same thing

•  Backward compatibility
– All systems backward compatible with 8088

Powering Up

14

Power on Reset

reset

15

Powering up : Reset
Power on Reset

Every register initialized
to 0 except

CS=0xf000, IP=0xfff0

Physical address = (CS << 4) + IP
 = 0xffff0
•  first instruction fetched from location 0xffff0.
•  Processor in real mode (backward compatible to

8088)
•  Limited to 1MB addresses
•  No protection; no privilege levels
•  Direct access to all memory
•  No multi-tasking

•  First instruction is right on top of accessible
memory

•  Should jump to another location

Inaccessible
memory

BIOS

0

0x100000

0xFFFF0

0xF0000

first instructions
(Jump to rom bios)

RAM

16

Powering up : BIOS

•  Present in a small chip connected to the
processor

–  Flash/EPROM/E2PROM
•  Does the following

–  Power on self test
–  Initialize video card and other devices
–  Display BIOS screen
–  Perform brief memory test
–  Set DRAM memory parameters
–  Configure Plug & Play devices
–  Assign resources (DMA channels & IRQs)
–  Identify the boot device

•  Read sector 0 from boot device into memory location 0x7c00
•  Jumps to 0x7c00

Power on Reset

Every register initialized
to 0 except

CS=0xf000, IP=0xfff0

BIOS

17

Powering up : MBR

•  Sector 0 in the disk called Master Boot Record
(MBR)

•  Contains code that boots the OS or another boot
loader

•  Copied from disk to RAM (@0x7c00) by BIOS and
then begins to execute

•  Size 512 bytes
446 bytes bootable code
 64 bytes disk partition information (16 bytes per

partition)
 2 bytes signature

•  Typically, MBR code looks through partition table
and loads the bootloader (such as Linux or
Windows)

•  or, it may directly load the OS

Power on Reset

Every register initialized
to 0 except

CS=0xf000, IP=0xfff0

BIOS

MBR Execution

18

Powering Up : bootloader
Power on Reset

Every register initialized
to 0 except

CS=0xf000, IP=0xfff0

BIOS

MBR Execution

Bootloader

•  Loads the operating system
–  May also allow the user to select which OS to load

(eg. Windows or Linux)
•  Other jobs done

–  Disable interrupts :
•  Don’t want to bother with interrupts at this stage
•  Interrupts re-enabled by xv6 when ready

–  Setup GDT
–  Switch from real mode to protected mode
–  Read operating system from disk

The bootloader may be present in the MBR (sector 0)
itself

19

Powering Up : xv6
Power on Reset

Every register initialized
to 0 except

CS=0xf000, IP=0xfff0

BIOS

Bootloader

OS

•  Bootloader
•  Present in sector 0 of disk.
•  512 bytes
•  2 parts:

–  bootasm.S (8900)
•  Enters in 16 bit real mode, leaves in 32 bit

protected mode
•  Disables interrupts

–  We don’t want to use BIOS ISRs
•  Enable A20 line
•  Load GDT (only segmentation, no paging)
•  Set stack to 0x7c00
•  Invoke bootmain
•  Never returns

–  bootmain.c (9017)
•  Loads the xv6 kernel from sector 1 to RAM

starting at 0x100000 (1MB)
•  Invoke the xv6 kernel entry

–  _start present in entry.S (sheet 10)
–  This entry point is known from the ELF

header

xv6 : bootasm.S

20

Gets loaded into
0x7c00
by the BIOS?

Loading :
Handled by the BIOS

Linking :
What linker options
need to be set?

Note 16 bit code
(compatible with 8088)

xv6 : bootasm.S

21

Disable interrupts.
Initialize registers to 0

xv6 : bootasm.S

22

Enable A20 line.

Why do we have it?

xv6 : bootasm.S

23

Switch from real to protected mode

GDT related information

xv6 : bootasm.S

24

Switch from real to protected mode

16
 b

it
co

de

32
 b

it
co

de

xv6 : bootasm.S

25

Enable A20 line.

Why do we have it?

xv6 : bootasm.S

26

Set up stack and call a C function.

Note the stack pointer points to 0x7c00.
This means the stack grows downwards
from 0x7c00. why?

xv6 : bootasm.S

27

Set up stack and call a C function.

Note the stack pointer points to 0x7c00.
This means the stack grows downwards
from 0x7c00. why?

bootmain

28

Load in 1MB region

Read the entry function
in the kernel and
Invoke it.
This starts the OS

The xv6 kernel is stored as an
ELF image.

Read kernel from the disk
(sector 1) to RAM.

29

Powering Up : OS
Power on Reset

Every register initialized
to 0 except

CS=0xf000, IP=0xfff0

BIOS

MBR Execution

Bootloader

•  Set up virtual memory
•  Initialize interrupt vectors
•  Initilize

•  timers,
•  monitors,
•  hard disks,
•  consoles,
•  filesystems,

•  Initialized other processors (if any)
•  Startup user process

OS

Multi-processor Bootup

30

Multiprocessor Organization
Processor

1
Processor

2
Processor

3
Processor

4

front side bus

North Bridge DRAM
Memory bus

•  Memory Symmetry
•  All processors in the system share the same memory space
•  Advantage : Common operating system code

•  I/O Symmetry
•  All processors share the same I/O subsystem
•  Every processor can receive interrupt from any I/O device

32

Multiprocessor Booting
•  One processor designated as ‘Boot Processor’ (BSP)

–  Designation done either by Hardware or BIOS
–  All other processors are designated AP (Application Processors)

•  BIOS boots the BSP
•  BSP learns system configuration
•  BSP triggers boot of other AP

–  Done by sending an Startup IPI (inter processor interrupt) signal to
the AP

http://www.intel.com/design/pentium/datashts/24201606.pdf

xv6 Multiprocessor Boot

•  mpinit (7001) invoked from main (1221)
–  Searches for an MP table in memory

•  (generally put there by the BIOS)
•  Contains information about processors in system along with

other details such as IO-APICs, Processor buses, etc.
•  Extracts system information from MP table

–  Fills in the cpu id (7024)
•  CPU is a structure which contains CPU specific data (2304)

33

Booting APs

•  startothers (1274) invoked from main(1237)
–  copy ‘entryother’ to location 0x7000
–  For each CPU found

•  Allocate a stack (1295)
•  Set C entry point to mpenter (1252)
•  Send a Startup IPI (1299)

–  Pass the entryother.S location to the new processor (40:67 ß 0x7000
>> 4)

–  Send inter processor interrupt to the AP processor using its apicid

•  Wait until CPU has started

34

for next class

•  Read / revise about memory management
in x86 especially
– Segmentation (GDT)
– Virtual memory (page tables, CR3 register,

etc)

35

