PC Hardware and Booting

Chester Rebeiro
IIT Madras

CPUs

Processor
1386

A
v

Everything has an address

Processor
1386

A

0x0 : 0x200000

-

/////
/////

//////

-
- //

2488 &N ¢

- - -

/////
- , -

/////

”~ 7 v o

AN NS
-~
”~

Ox1f0:0x1f7

” |0x60:0x6f

Address Types

 Memory Addresses
* |O Addresses
 Memory Mapped |O Addresses

Address Types :
(Memory Addresses)

« Range : 0 to (RAM size or 232-1)
* Where main memory is mapped
— Used to store data for code, heap, stack, OS, etc.

Accessed by load/store instructions

INININININININ/N/N/N
Unused

Fom + <- depends on amount of RAM

S —— + <- 0x00100000 (1MB)

~|L —————————————————— + <- 0x000F0000 (960KB) Memory Address Map

16-bit devices,
expansion ROMs
X S —— + <- 0x000C0000 (768KB)

S + <- 0x000A0000 (640KB)

N ——— + <- 0x00000000

Low and Extended Memory
(Legacy Issues)

Why study it?
— Backward compatibility

8088 has 20 address lines; can address 220 bytes (1MB)

Memory Ranges

— 0 to 640KB used by IBM PC MSDOS
« Other DOS versions have a different memory limit

— 640 KB to 1MB used by video buffers, expansion ROMS, BIOS
ROMs

— 1 MB onwards called extended memory

Modern processors have more usable memory

— OSes like Linux and x86 simply ignore the first 1MB and load
kernel in extended memory

Address Types : (IO Ports)

Range : 0 to 270-1
Used to access devices

Uses a different bus compared
to RAM memory access

— Completely isolated from memory
Accessed by in/out instructions

inb $0x64, %al
outb %al, $0x64

1/O address range

00 - 1F
20 - 3F
40 - SF
60 - 6F
70 - 7F
80 - 9F
87

83

81

82

8B

89

8A

8F

AO - BF
Co - DF
FO

F1

F8 - FF
FO - F5
F8 - FF
100 - 10F
110 - 1EF
140 - 15F
170 - 177
1FO - 1F7
200 - 20F
210 - 217
220 - 233

Device
First DMA controller 8237 A-5
First Programmable Interrupt Controller, 8259A, Master
Programmable Interval Timer (System Timer), 8254
Keyboard, 8042
Real Time Clock, NMI mask
DMA Page Register, 74LS5612
DMA Channel 0
DMA Channel 1
DMA Channel 2
DMA Channel 3
DMA Channel 5
DMA Channel 6
DMA Channel 7
Refresh
Second Programmable Interrupt Controller, 8259A, Slave
Second DMA controller 8237 A-5
Clear 80287 Busy
Reset 80287
Math coprocessor, 80287
PCjr Disk Controller
Reserved for future microprocessor extensions
POS Programmable Option Select (PS/2)
System I/O channel
Secondary SCSI host adapter
Secondary Parallel ATA Disk Controller
Primary Parallel ATA Hard Disk Controller
Game port
Expansion Unit

Sound Blaster and most other sound cards

ref : http://bochs.sourceforge.net/techspec/PORTS.LST

Memory Mapped I/O

° Why? ;(__5;:;; _____ <- OXFFFFFFFF (4GB)
— More space < e ey icenr
e Devices and RAM share |”
ININININININ/N/N/NN
the same address space onused
° |nStrUCt|0nS used to Fomm e —————— + <- depends on amount of RAM
access RAM can also be Extended Memory
used to access devices. S § < 0x00100000 (1MB)
| BIOS ROM |
_ Eg load/store +“IE:1->;_§;;I;;;:-+ <- 0x000F0000 (960KB)
expansion ROMs
e + <- 0x000C0000 (768KB)
| VGA Display |
N + <- 0x000A0000 (640KB)
Low Memory
S — + <- 0x00000000

Memory Map

Who decides the address
ranges”?

« Standards / Legacy
— Such as the IBM PC standard
— Fixed for all PCs.
— Ensures BIOS and OS to be portable across
platforms
* Plug and Play devices
— Address range set by BIOS or OS

— A device address range may vary every time the
system is restarted

PC Organization

Processor
1

A

A 4

Processor
2

A

3

Processor

| Processor

A

A 4

4

l

l

l

l

DRAM

Memory bus

!

South Bridge

DM BUS <

I/'North Bridge

> front side bus

PCI Bus 1

q

Legacy
Devices PS2

&
% PC speaker)

board, mouse,

USB
device

T PCI Bus 0
i i i i
PCI-PCI VGA Ethernet uUSB
Bridge Controller Controller
1 s USB USB
More cvice bridge device
PCI 0000
devices

10

The x86 Evolution (8088)

. 8088 General Purpose Registers
— 16 bit microprocessor 15 87 0 16-bit
— 20 bit external address bus AH AL AX
 Can address 1MB of memory BH o BX
) : CH L CX
— Regqisters are 16 bit T = ox
General Purpose Registers BP
AX, BX, CD, DX, S|
Pointer Registers DI
BP, SI, DI, SP SP
Instruction Pointer : |IP
Segment Registers GPRs can be accessed as
CS, SS, DS, ES 8 bit or 16 bit registers
— Accessing memory Eg.
(segment_base << 4) + offset mov $0x1, %ah ; 8 bit move

eg: (CS<<4)+IP mov $0x1, %ax : 16 bit move

11

The x86 Evolution (80386)

- 80386 (1995)

32 bit microprocessor
— 32 bit external address bus
« Can address 4GB of memory
— Registers are 32 bit
General Purpose Registers
EAX, EBX, ECD, EDX,
Pointer Registers
EBP, ESI, EDI, ESP
Instruction Pointer : IP
Segment Registers
CS, SS, DS, ES
— Lot more features
* Protected operating mode
» Virtual addresses

General Purpose Registers
General-Purpose Registers

31 1615 87 0 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH cL X ECX
DH DL DX EDX
BP EBP
Sl ESI
DI EDI
SP ESP

GPRs can be accessed as
8, 16, 32 bit registers

e.g.
mov $0x1, %ah ; 8 bit move
mov $0x1, %ax ; 16 bit move
mov $0x1, %eax ; 32 bit move

12

The x86 Evolution (k3)

« AMD k8 (2003)
— RAX instead of EAX
— X86-64, x64, amd64, intel64: all same thing

 Backward compatibility
— All systems backward compatible with 8088

13

Power on Reset

Powering Up

14

Powering up : Reset

Power on Reset

Every register initialized
to 0 except
CS=0xf000, IP=0xfff0

/
Inaccessible J
memory
first instructions 0x100000
(Jump to rom bim
BIOS)

RAM

-
-
-
-
-
-
-
-
-
-
-

» Should jump to another location

g i Physical address = (CS << 4) + IP i

= OxffffO

* first instruction fetched from location OxffffO.

. » Processor in real mode (backward compatible to
. 8088) g
: Limited to 1MB addresses :
i * No protection; no privilege levels |
' * Direct access to all memory |
* No multi-tasking

* First instruction is right on top of accessible
memory

15

Powering up : BIOS

Power on Reset

v

Every register initialized
to 0 except
CS=0xf000, IP=0xfff0

v

BIOS

 Present in a small chip connected to the
processor

— Flash/EPROM/E?PROM

* Does the following
— Power on self test
— Initialize video card and other devices
— Display BIOS screen
— Perform brief memory test
— Set DRAM memory parameters
— Configure Plug & Play devices
— Assign resources (DMA channels & IRQs)

— ldentify the boot device
Read sector 0 from boot device into memory location 0x7c00
Jumps to 0x7c00

ININININININININININ

Unused

g TR S S ——

-

"‘////ﬂ;////," & 005

0x00100000
=~ 0x000F0000

16

Powering up : MBR

Power on Reset
. L 2 /1« Sector 0 in the disk called Master Boot Record 5
very register initialized . (MBR) !
to 0 except S . I
CS=0xf000, IP=0xfff0 / 1+ Contains code that boots the OS or another boot
¥ . loader
BIOS i « Copied from disk to RAM (@0x7¢c00) by BIOS and
I . then begins to execute
' » Size 512 bytes
MBR Execution ; 446 bytes bootable code
‘ ' 64 bytes disk partition information (16 bytes per
partition)

2 bytes signature

« Typically, MBR code looks through partition table
! and loads the bootloader (such as Linux or
Windows)

« or, it may directly load the OS

17

Powering Up : bootloader

Power on Reset

v

Every register initialized
to 0 except
CS=0xf000, IP=0xfff0

v

BIOS

v

MBR Execution

v

Bootloader

__

! The_Po%tloader may be present in the MBR (sector 0)
itse

Loads the operating system

— May also allow the user to select which OS to load
(eg. Windows or Linux)

Other jobs done
— Disable interrupts :
« Don’ t want to bother with interrupts at this stage
* Interrupts re-enabled by xv6 when ready
— Setup GDT
— Switch from real mode to protected mode
— Read operating system from disk

18

Powering Up : xv6

Power on Reset

v

Every register initialized
to 0 except
CS=0xf000, IP=0xfff0

v

BIOS

v

Bootloader

v

0S

e sBootloader

* Present in sector 0 of disk.
512 bytes
« 2 parts:

— bootasm.S (8900)

Enters in 16 bit real mode, leaves in 32 bit
protected mode

Disables interrupts
— We don’ t want to use BIOS ISRs

Enable A20 line

Load GDT (only segmentation, no paging)
Set stack to 0x7c00

Invoke bootmain

Never returns

— bootmain.c (9077)

Loads the xv6 kernel from sector 1 to RAM
starting at 0x100000 (1MB)
Invoke the xv6 kernel entry

— _start present in entry.S (sheet 10)

— This entry point is known from the ELF
header

19

Gets loaded into
Ox7c00
by the BIOS?

XV6 : bootasm.S

8909

8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936

.codelé

8910 .globl start

Assemble for 16-bit mode

BIOS enabled interrupts; disable

Zero data segment registers DS, ES, and SS.

XOorw

%$ax,%ax
$ax,%ds
%$ax,%es
$ax,%ss

Set %ax to zero
-> Data Segment
-> Extra Segment
-> Stack Segment

Physical address line A20 is tied to zero so that the first PCs
with 2 MB would run software that assumed 1 MB. Undo that.

seta20.1:
inb
testb
jnz

movb
outb

seta20.2:
inb
testb
jnz

movb
outb

$0x64,%al
$0x2,%al
seta20.1

$0xdl,%al
$al,$0x64

S0x64,%al
$0x2,%al
seta20.2

$0xdf,%al
$al,$0x60

Wait for not busy

0xdl -> port 0x64

Wait for not busy

0xdf -> port 0x60

Note 16 bit code
(compatible with 8088)

Loading :
Handled by the BIOS

Linking :
What linker options
need to be set?

20

XV6 : bootasm.S

~

/

8909 .codel6 # Assemble for 16-bit mode
r+
8911 start:
8912 cli # BIOS enabled interrupts; disable
8913
8914 # Zero data segment registers DS, ES, and SS.
8915 xorw $ax,%ax # Set %ax to zero
8916 movw $ax,%ds # -> Data Segment
8917 movw $ax,%es # -> Extra Segment
\g:;: movw $ax,$ss # -> Stack Segment
8920 # Physical address line A20 is tied to zero so that the first PCs
8921 # with 2 MB would run software that assumed 1 MB. Undo that.
8922 seta20.1:
8923 inb $0x64,%al # Wait for not busy
8924 testb $0x2,%al
8925 jnz seta20.1
8926
8927 movb $0xdl,%al # 0xdl -> port 0x64
8928 outb $al,$0x64
8929
8930 seta20.2:
8931 inb S0x64,%al # Wait for not busy
8932 testb $0x2,%al
8933 jnz seta20.2
8934
8935 movb $0xdf,%al # 0xdf -> port 0x60
8936 outb $al,$0x60

Disable interrupts.
Initialize registers to 0

21

8909 .codel6

8910 .globl start

8911 start:
8912 cli
8913

XV6 : bootasm.S

Assemble for 16-bit mode

BIOS enabled interrupts; disable

8914 # Zero data segment registers DS, ES, and SS.

Enable A20 line.

8915 xorw $ax,%ax # Set %ax to zero
8916 movw $ax,%ds # -> Data Segment
8917 movw %ax,%es # -> Extra Segment
8918 movw $ax,$ss # -> Stack Segment
8

920 # Physical address line A20 is tied to zero so that the first
8921 # with 2 MB would run software that assumed 1 MB.

8922 seta20.1:

8923 inb $0x64,%al # Wait for not busy
8924 testb $0x2,%al
8925 jnz seta20.1
8926
8927 movb $0xdl,%al # 0xdl -> port 0x64
8928 outb %al,$0x64
8929
8930 seta20.2:
8931 inb S0x64,%al # Wait for not busy
8932 testb $0x2,%al
8933 jnz seta20.2
8934
\g:;i; movb $0xdf,%al # 0xdf -> port 0x60
6 outb $al,$0x60

Undo that.

ch Why do we have it?

/

22

XV6 : bootasm.S

Switch from real to protected mode

8938
8939
8940
8941
8942
8943
8944

Switch from real to protected mode. Use a bootstrap GDT that makes
virtual addresses map directly to physical addresses so that the

effective memory map doesn’t change during the transition.

lgdt gdtdesc

movl $cr0, %eax

orl SCR0O _PE, %eax

movl $eax, %crl

5980 # Bootstrap GDT

8931 .p2align 2 # force 4 byte alignment
8982 gdt:

898: SEG NULLASM # null seg

8984 SEG ASM(STA X|STA R, 0x0, Oxffffffff) # code seg

8985 SEG_ASM(STA W, 0x0, Oxffffffff) # data seg

8986

8987 gdtdesc:

8988 .word (gdtdesc - gdt - 1) # sizeof(gdt) - 1
8989 .long gdt # address gdt
8990

GDT related information

23

XV6 : bootasm.S

Switch from real to protected mode

8938 # Switch from real to protected mode. Use a bootstrap GDT that makes
8939 # virtual addresses map directly to physical addresses so that the

% 8940 # effective memory map doesn’t change during the transition.

o) 8941 lgdt gdtdesc

O 18942 movl %cr0, seax

'S 8943 orl $CRO_PE, %eax

[T 8944 movl $eax, scrl

- 4
8950 # Complete transition to 32-bit protected mode by using long jmp
8951 # to reload %cs and %eip. The segment descriptors are set up with no
8952 # translation, so that the mapping is still the identity mapping.
8953 1ljmp $ (SEG_KCODE<<3), $start32
8954
8955 .code32 # Tell assembler to generate 32-bit code now.

3 8956 start32:

8 8957 # Set up the protected-mode data segment registers

wd

Qo

N Y

™

24

8909 .codel6

8910 .globl start

8911 start:
8912 cli
8913

XV6 : bootasm.S

Assemble for 16-bit mode

BIOS enabled interrupts; disable

8914 # Zero data segment registers DS, ES, and SS.

Enable A20 line.

8915 xorw $ax,%ax # Set %ax to zero
8916 movw $ax,%ds # -> Data Segment
8917 movw %ax,%es # -> Extra Segment
8918 movw $ax,$ss # -> Stack Segment
8

920 # Physical address line A20 is tied to zero so that the first
8921 # with 2 MB would run software that assumed 1 MB.

8922 seta20.1:

8923 inb $0x64,%al # Wait for not busy
8924 testb $0x2,%al
8925 jnz seta20.1
8926
8927 movb $0xdl,%al # 0xdl -> port 0x64
8928 outb %al,$0x64
8929
8930 seta20.2:
8931 inb S0x64,%al # Wait for not busy
8932 testb $0x2,%al
8933 jnz seta20.2
8934
\g:;i; movb $0xdf,%al # 0xdf -> port 0x60
6 outb $al,$0x60

Undo that.

ch Why do we have it?

/

25

XV6 : bootasm.S

8956 start32:

8957 # Set up the protected-mode data segment registers

8958 moww $(SEG_KDATA<<3), %ax # Our data segment selector

8959 moww fax, %ds -> DS: Data Segment

8960 moww $ax, %es -> ES: Extra Segment

8961 mowvw fax, %ss -> §S: Stack Segment

8962 movw $0, %ax Zero segments not ready for use
8963 movw fax, %fs -> FS

8964 movw fax, %gs -> GS

ottt % %

8966 # Set up the stack pointer and call into C.
8967 movl $start, %esp
\ 8968 call bootmain

Set up stack and call a C function.

Note the stack pointer points to 0x7c00.
This means the stack grows downwards
from 0x7c00. why?

XV6 : bootasm.S

8956 start32:

8957 # Set up the protected-mode data segment registers

8958 moww $(SEG_KDATA<<3), %ax # Our data segment selector

8959 moww fax, %ds -> DS: Data Segment

8960 moww $ax, %es -> ES: Extra Segment

8961 mowvw fax, %ss -> §S: Stack Segment

8962 movw $0, %ax Zero segments not ready for use
8963 movw fax, %fs -> FS

8964 movw fax, %gs -> GS

ottt %

8966 # Set up the stack pointer and call into C.
8967 movl $start, Sesp
\ 8968 call bootmain

Set up stack and call a C function.

Note the stack pointer points to 0x7c00.
This means the stack grows downwards
from 0x7c00. why?

9016 void
9017 bootmain(void)

9018 {
9019 struct elfhdr *elf; -
9020 struct proghdr *ph, *eph; bootmain
9021 void (*entry)(void);
9022 uchar* pa;
9023
9024 elf = (struct elfhdr*)0x10000; . // scratch space
9023 — Load in 1MB region
26 // Read 1st page off disk
9027 readseg((uchar*)elf, 4096, 0); ﬁ‘\\\\
9028
9029 // Is this an ELF executable?
9030 if(elf->magic != ELF MAGIC)
9031 return; // let bootasm.S handle error
9032 The xv6 kernel is stored as an
9033 // load each program segment (ignores ph flags). ELF image.
9034 ph = (struct proghdr*)((uchar*)elf + elf->phoff);
9035 eph = ph + elf->phnum; Read kernel from the disk
9036 for(; ph < eph; ph+t){ (sector 1) to RAM.
9037 pa = (uchar*)ph->paddr;
9038 readseg(pa, ph->filesz, ph->off);
9039 if(ph->memsz > ph->filesz)
\\;::f stosb(pa + ph->filesz, 0, ph->memsz - ph->£iij:}J;
041 }
90%2 Read the entry function
9043 // Call the entry point frW eac e enty 1t
9044 // Does not return! .
9045 entry = (void(*)(void))(elf->entry); Invoke it.
9046 entry(); This starts the OS

9047 }

28

Powering Up : OS

Power on Reset

v

Every register initialized
to 0 except
CS=0xf000, IP=0xfff0

v

BIOS

v

MBR Execution

v

Bootloader

v

0S

__

Set up virtual memory
Initialize interrupt vectors
Initilize
o timers,
* monitors,
* hard disks,
 consoles,
» filesystems,
Initialized other processors (if any)
Startup user process

29

Multi-processor Bootup

30

Multiprocessor Organization

Processor Processor Processor Processor

< » < <

1 g 2 3 4

| T

Memory bus
S < orth Bridge

Memory Symmetry
« All processors in the system share the same memory space
« Advantage : Common operating system code
« /O Symmetry
« All processors share the same /O subsystem
« Every processor can receive interrupt from any 1/0O device

4
4
A 4
4
A 4

Multiprocessor Booting

One processor designated as ‘Boot Processor’ (BSP)

— Designation done either by Hardware or BIOS

— All other processors are designated AP (Application Processors)

BIOS boots the BSP
BSP learns system configuration
BSP triggers boot of other AP

— Done by sending an Startup IPI (inter processor interrupt) signal to

the AP

http://www.intel.com/design/pentium/datashts/24201606.pdf

32

xv6 Multiprocessor Boot

* mpinit (7001) invoked from main (1221)

— Searches for an MP table in memory

 (generally put there by the BIOS)

« Contains information about processors in system along with
other details such as IO-APICs, Processor buses, etc.

« Extracts system information from MP table

— Fills in the cpu id (7024)
« CPU is a structure which contains CPU specific data (2304)

33

Booting APs

 startothers (1274) invoked from main(1237)
— copy ‘entryother’ to location 0x7000

— For each CPU found
 Allocate a stack (1295)

« Set C entry point to mpenter (1252)

« Send a Startup IPI (1299)

— Pass the entryother.S location to the new processor (40:67 < 0x7000
>> 4)

— Send inter processor interrupt to the AP processor using its apicid

* Wait until CPU has started

34

for next class

» Read / revise about memory management
iIn Xx86 especially
— Segmentation (GDT)

— Virtual memory (page tables, CR3 register,
etc)

35

