
Memory Management

Chester Rebeiro
IIT Madras

Sharing RAM

2

Process 1 Process 2 Process 3 Process 4

M
em

or
y

m
ap

 o
f p

ro
ce

ss
 1

M
em

or
y

m
ap

 o
f p

ro
ce

ss
 2

M
em

or
y

m
ap

 o
f p

ro
ce

ss
 3

M
em

or
y

m
ap

 o
f p

ro
ce

ss
 4

3

x86 address translation

CPU
Logical
Address
(segment

+
offset)

Segmentation
Unit Linear

Address

Paging
Unit

Physical
Memory

Physical
Address

4

x86 Memory Management

5

Segmentation

6

Executing Programs
(Process)

•  Process
–  A program in execution
–  Present in the RAM
–  Comprises of

•  Executable instructions
•  Stack
•  Heap
•  State in the OS (in kernel)

–  State contains : registers, list
of open files, related
processes, etc.

Executable
(a.out)

$gcc hello.c

Process
$./a.out

Stored on
hard disk

Executes from
RAM

7

Segments
(an example)

Heap

Stack stack segment

heap segment

data segment

text segment Text

Data

8

Segmentation
(logical to linear address)

Logical address

Heap

Stack

Text

Data

(linear address)

(logical address)

9

Example
Segment Base Limit

0 - -

1 1000 1000

2 4000 500

3 8000 1000

4 9000 1000

1
segment register (eg %CS)

0x3000
pointer to descriptor table

0x3000 (descriptor table)

100
offset register (eg %eip)

+ 1100

10

Pointer to Descriptor Table
•  Global Descriptor Table (GDT)

–  Stored in memory

•  Pointed to by GDTR (GDT Register)
–  lgdt (instruction used to load the GDT register)

0 47 16
size base GDTR

0
Segment Descriptor
Segment Descriptor
Segment Descriptor
Segment Descriptor
Segment Descriptor

GDT
Size : size of GDT
Base : pointer to GDT

11

Segment Descriptor

0 to 3 : privilege level (DPL_USER : 3, Kernel : 0)

Segment type :
STA_X : executable segment
STA_R : readable segment
STA_W : writeable segment

Segment base (32 bit)

Segment limit (20 bit)

12

Segment Descriptor in xv6

ref : mmu.h ([7], 0752, 0769)

SEG(STA_W, 0, 0xFFFFFFFF, DPL_USER)

Segments in xv6
Segment Base Limit Type DPL

Kernel Code 0 4 GB X, R 0

Kernel Data 0 4 GB W 0

User Code 0 4 GB X, R 3

User Data 0 4 GB W 3

13

14

Loading the GDT

 struct segdesc gdt[NSEGS];
2308

0512

1724

15

Virtual Memory

Paging Unit

16

Linear address

Li
ne

ar
 A

dd
re

ss
 S

pa
ce

of

 a
 p

ro
ce

ss

Paging
Unit

Physical address Segmentation
Unit

RAM

Virtual Memory

17

RAM
1
2
3

4
5
6
7
8
9

10
11
12
13
14

1
2
3
4

5
6

Linear address space of
process1

block page frame

1 14

2 2

3 13

4 4

5 1

6 8

process page table

1
2
3
4
5
6

block page frame

1 1

2 2

3 3

4 4

5 5

6 6

Because of the page table,
blocks need not be in contiguous
page frames

Every time a memory location
is accessed, the processor looks
into the page table to identify the
corresponding page frame number.

Virtual Memory

18

RAM
1
2
3

4
5
6
7
8
9

10
11
12
13
14

1
2
3
4

5
6

process1

block page frame

1 14

2 2

3 13

4 4

5 1

6 8

process page table

1

2

3

4

5

6

1
2
3
4

process2

block page frame

1 10

2 7

3 12

4 9

process page table

1

2

3

4

process3

block page frame

1 11

2 6

3 3

4 5

process page table

1

2

3

1
2
3
4

4

Blocks from
Several processes
can share pages in

RAM
simultaneously

Virtual Memory

19

RAM
1
2
3

4
5
6
7
8
9

10
11
12
13
14

1
2
3
4

5
6

process1

block page frame

1 14

2 2

3 13

4 4

5 1

6 8

process page table

1

2

3

4

5

6

1

2

3

4

1

2

3

4

Do we really need to load all blocks into
memory before the process starts

executing?

No.

Not all parts of the program are accessed
simultaneously.
Infact, some code may not even be
executed.

Virtual memory takes advantage of this by
using a concept called demand paging.

Demand Paging

20

RAM
1
2
3

4
5
6
7
8
9

10
11
12
13
14

block page frame

1 14

2

3

4

5

6 8

process page table in RAM

1

2

3

4

1

2

3

4

1 2 3

4 5 6

Swap space
(on disk)

P

1

0

0

0

1
1

present bit

Pages are loaded from disk to RAM, only
when needed.

A ‘present bit’ in the page table indicates if
the block is in RAM or not.

If (present bit = 1){ block in RAM}
else {block not in RAM}

1

6

If a page is accessed that is not present in
RAM, the processor issues a page fault
interrupt, triggering the OS to load the page
into RAM and mark the present bit to 1

5

06 1

Demand Paging

21

RAM
1
2
3

4
5
6
7
8
9

10
11
12
13
14

block page frame

1 14

2 2

3

4 4

5 1

6 8

process page table in RAM

1

2

3

4

1

2

3

4

1 2 3

4 5 6

Swap space
(on disk)

P

1

1

0

1

1

11

6

5

1

6

2

4

If there are no pages free
for a new block to be loaded,
the OS makes a decision to
remove another block from RAM.

This is based on a replacement
policy, implemented in the OS.

Some replacement policies are
 * First in first out
 * Least recently used
 * Least frequently used

The replaced block may need to
be written back to the swap
(swap out)

3

0

114

Demand Paging

22

RAM
1
2
3

4
5
6
7
8
9

10
11
12
13
14

1

2

3

4

1

2

3

4

1 2 3

4 5 6

Swap space
(on disk)

6

5

6

2

4

The dirty bit, in the page table
indicates if a page needs to be
written back to disk

If the dirty bit is 1, indicates
 the page needs to be written
 back to disk.

3

block page frame

1 14

2 2

3 14

4 4

5 1

6 8

process page table in RAM

P

1

1

0

1

1

11

0

1

D

1

1

0

1

0

11

1

0

Demand Paging

23

RAM
1
2
3

4
5
6
7
8
9

10
11
12
13
14

block page frame

1 14

2 2

3 14

4 4

5 1

6 8

process page table in RAM

1

2

3

4

1

2

3

4

1 2 3

4 5 6

Swap space
(on disk)

P

1

1

0

1

1

1

6

5

1

6

2

4

Protection bits, in the page table
determine if
 the page is executable, readonly,
 and accessible by a user process.

3

0

1

D

1

1

0

1

0

11

1

0

1

10

0

11

01

1 10

11

00

protection bits

2 Level Page Translation

24

linear
address

Table

Offset

Physical
Address (p)

(CR3)

Dir

Dir : 10 bits
Table : 10 bits
Offset : 12 bits

Number of Page
tables is

210 = 1024.

Total size of page
tables is 4MB.

But not contiguous!

25

Linear to Physical Address
•  2 level page translation •  How many page

tables are
present?

•  What is the

maximum size of
the process’
address space?
–  4G ref : mmu.h (PGADDR, NPDENTRIES, NPTENTRIES, PGSIZE)

26

back to booting…

27

so far…

BIOS

bootloader

•  executes on reset.
•  does POST, initializes devices
•  loads boot loader to 0x07c00 and jump to it
(all in real mode)

Power on Reset

•  disable interrupts
•  Setup GDT (8941)
•  switch real mode to protected mode
•  setup an initial stack (8967)
•  load kernel from second sector of disk to
 0x100000
•  executes kernel (_start)

28

Memory when kernel is invoked
(just after the bootloader)

•  Segmentation enabled but no paging

•  Memory map

CPU Segmentation
Unit

physical
memory logical

address
physical
address

code
data

bootloader

stack
logical
memory

physical memory

kernel

0x
10

00
00

Slide taken from Anton Burtsev, Univ. of Utah

Memory Management Analysis

•  Advantages
–  Got the kernel into protected mode (32 bit code) with minimum trouble

•  Disadvantages
–  Protection of kernel memory from user writes
–  Protection between user processes
–  User space restricted by physical memory

•  The plan ahead
–  Need to get paging up and running

29

CPU Segmentation
Unit

physical
memory logical

address
physical
address

30

entry

Enable Paging

The kernel executes
 from here

OS code Linker address
•  kernel.asm (xv6)
•  The linker sets the

executable so that the
kernel starts from
0x80100000

•  0x80100000 is a virtual
address and not a physical
address

31

32

Virtual Address Space

0

0xffffffff

KERNBASE
0x80000000

Virtual

Physical

Device memory

+0x100000

0

0x100000

PHYSTOP

•  Kernel memory mapped into every process
 - easy to switch between kernel and user modes
•  VA(KERNBASE:+PHYSTOP) à PA(0:PHYSTOP)
 - convert from VA to PA just by +/- KERNBASE
 - easily write to physical page
 - limits size of physical memory to 2GB

Kernel Memory

ref : memlayout.h (0200)

33

Virtual Address Space

0

0xffffffff

KERNBASE
0x80000000

Virtual

Physical

Device memory

+0x100000

0

0x100000

PHYSTOP

•  Linking address not the same as the loading
address
•  Linking address 0x80100000
•  Loading address 0x100000
 Kernel Memory

ref : memlayout.h (0200)

Converting virtual to physical
in kernel space

34

35

Enable Paging

1. Start of with a quick solution

Aim is get the kernel running with paging enabled
 -- create a minimal paging environment
 ---- two pages of 4MB size (just sufficient to hold the OS)

2. Have an elaborate paging mechanism

Create pages for each 4KB RAM block
Allocate and manage free memory

36

Enable Paging

Enable Paging

Turn on Page size
extension

Aim is to create two
4MB pages

1

37

4MB Pages

38

Enable Paging

Set Page Directory

2

39

Kernel memory setup
•  First setup two 4MB pages

–  Entry 0:
 Virtual addresses 0 to 0x04000000 àPhysical addresses 0 to 4MB

–  Entry 512:
 Virtual addresses 0x80000000 to 0x84000000 à
 Physical addresses 0 to 4MB

What would be the address generated before and immediately after paging is enabled?

before : 0x001000xx
Immediately after : 0x8001000xx
So the OS needs to be present at two memory ranges

40

Enable Paging

Turn on Paging

1

2

3

41

First Page Table

courtesy Anton Burtsev, Univ. of Utah

logical
memory

physical memory

virtual memory

42

Execute main

Set up stack

Jump to main

43

Stack

courtesy Anton Burtsev, Univ. of Utah

44

(Re)Initializing Paging
•  Configure another page table

–  Map kernel only once making space for other user level
processes

–  Map more physical memory, not just the first 4MB
–  Use 4KB pages instead of 4MB pages

•  4MB pages very wasteful if processes are small
•  Xv6 programs are a few dozen kilobytes

main à kvmalloc à setupkvm

45

Setup kernel vm

1823

KERNBASE = 0x80000000
KERNLINK = KERNBASE + 0x100000
PHYSTOP = 0xE000000
EXTMEM = 0x100000

Setting Up kernel pages (vm.c)
1.  stuct kmap

 data obtained from linker script, which determines
size of code+readonly data

2. Kernel page tables set up in kvmalloc() (1857)
 (invoked from main)

Creating the Page Table Mapping for the
kernel

•  Enable paging

•  Create/Fill page directory

•  Create/Fill page tables

•  Load CR3 register

46

Creating the Page Table Mapping for the
kernel

•  Enable paging

•  Create/Fill page directory

•  Create/Fill page tables

•  Load CR3 register

47

Setting paging enable bit in CR0
register (1049)

Creating the Page Table Mapping for the
kernel

•  Enable paging

•  Create/Fill page directory

•  Create/Fill page tables

•  Load CR3 register

48

done in function walkpgdir (1754)

walkpgdir (1754)
•  Create a page directory entry

corresponding to a virtual
address.

•  If page table is not present, then
allocate it.

•  PDX(va) : page directory index
•  PTE_ADDR(*pde) : page

directory entry
•  PTX(va) : page table entry

49

Creating the Page Table Mapping for the
kernel

•  Enable paging

•  Create/Fill page directory

•  Create/Fill page tables

•  Load CR3 register

50

done in function mappages (1779)

mappages (1779)
•  Fill page table entries

mapping virtual addresses
to physical addresses

•  What are the contents?
–  Physical address
–  Permissions
–  Present bit

51

Creating the Page Table Mapping for the
kernel

•  Enable paging

•  Create/Fill page directory

•  Create/Fill page tables

•  Load CR3 register

52

Load the CR3 register to point to
the page directory.

53

User Pages mapped twice

0

0xffffffff

KERNBASE

Virtual

Physical

Device memory

+0x10000

Device memory

0

0x10000

PHYSTOP

Kernel Memory

•  Kernel has easy access to user pages (useful for
system calls)

Allocating Memory

54

55

Allocating Pages (kalloc)
RAM

0

end of
kernel

PHYSTOP

used for allocation

Used page
Free page

freelist

•  Physical memory allocation done in page
 granularity (i.e. 4KB)
•  Free physical pages in a list
•  Page Allocation removes from list head (see
 function kalloc)
•  Page free adds to list head (see kfree)

ref : kalloc.c [30]

56

Freelist Implementation
•  How is the freelist implemented?

–  No exclusive memory to store links (3014)

ptr to next free page

ptr to next free page

ptr to next free page

ptr to next free page

freelist

57

Initializing the list
(chicken & egg problem)

create free list marking
all pages as free

at boot

access memory via
Page tables

this needs

Page tables are
in memory and need to

be allocated
Create a page table

this needs

ref : kalloc.c (kinit1 and kinit2)

Resolved by a separate page allocator during boot up, which allocates
4MB memory just after the kernel’s data segment (see kinit1 and kinit2).

Per CPU Data

58

Recall
Memory is Symmetric Across Processors

Processor
1

Processor
2

Processor
3

Processor
4

front side bus

North Bridge DRAM Memory bus

•  Memory Symmetry
•  All processors in the system share the same memory space
•  Advantage : Common operating system code

•  However there are certain data which have to be unique to each
processor
•  This is the per-cpu data
•  example, cpu id, scheduler context, taskstate, gdt, etc.

Naïve implementation of
per-cpu data

•  An array of structures, each element in array corresponding to a processor
•  Access to a per-cpu data, example : cpu[cpunum()].ncli
•  This requires locking every time the cpu structure is accessed

–  eg. Consider process migrating from one processor to another while updating a
per-cpu data

–  slow (because locking can be tedious)!!!
60 ref : proc.h [23]

Alternate Solution
(using CPU registers)

•  CPU has several general purpose registers

–  The registers are unique to each processor (not shared)

•  Use CPU registers to store per-cpu data
–  Must ensure the gcc does not use these registers for other

purposes

•  Fastest solution to our problem, but we do not have so
many registers L

61 Content borrowed from Carmi Merimovich (http://www2.mta.ac.il/~carmi/)

Next best solution
(xv6 implementation)

•  In seginit(), which is run on each CPU initialization, the
following is done.

–  GDTR will point upon cpu initialization to cpus[cpunum()].gdt.
–  (Thus, each processor will have its own private GDT in struct cpu).

•  Have an entry which is unique for each processor
–  The base address field of SEG_KCPU entry in GDT is

&cpus[cpunum()].cpu (1731)
–  %gs register loaded with SEG KCPU << 3.

•  Lock free access to per-cpu data
–  %gs indexes into the SEG_KCPU offset in GDT
–  This is unique for each processor

62

CPU0 CPU1

GDT
For CPU0

GDT
For CPU1

per-cpu
for CPU0

per-cpu
for CPU1

%gs %gs

Content borrowed from Carmi Merimovich (http://www2.mta.ac.il/~carmi/)

Using %gs

•  Without locking or cpunum() overhead we have:
–  %gs:0 is cpus[cpunum()].cpu.
–  %gs:4 is cpus[cpunum()].proc.

•  If we are interrupting user mode code then %gs
might contain irrelevant value. Hence
–  In alltraps %gs is loaded with SEG_KCPU << 3.
–  (The interrupted code %gs is already on the trapframe.)

•  gcc not aware of the existence of %gs, so it will no generate code messing
up gs.

63 Content borrowed from Carmi Merimovich (http://www2.mta.ac.il/~carmi/)

