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x86 address translation 
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x86 Memory Management 
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Segmentation 
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Executing Programs 
(Process) 

•  Process 
–  A program in execution 
–  Present in the RAM 
–  Comprises of 

•  Executable instructions 
•  Stack 
•  Heap 
•  State in the OS (in kernel) 

–  State contains : registers, list 
of open files, related 
processes, etc. 

Executable 
(a.out) 

$gcc hello.c 

Process 
$./a.out 

Stored on 
hard disk 

Executes from 
RAM 
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Segments 
(an example) 

Heap 

Stack stack segment 

heap segment 

data segment 

text segment Text 

Data 
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Segmentation 
(logical to linear address) 

Logical address 

Heap 

Stack 

Text 

Data 



(linear address) 

(logical address) 
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Example 
Segment Base Limit 

0 - - 

1 1000 1000 

2 4000 500 

3 8000 1000 

4 9000 1000 

1 
segment register (eg %CS) 

0x3000 
pointer to descriptor table 

0x3000   (descriptor table) 

100 
offset register (eg %eip) 

+ 1100 
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Pointer to Descriptor Table 
•  Global Descriptor Table (GDT) 

–  Stored in memory 

•  Pointed to by GDTR (GDT Register) 
–  lgdt (instruction used to load the GDT register) 

 
 

0 47 16 
size base GDTR 

0 
Segment Descriptor 
Segment Descriptor 
Segment Descriptor 
Segment Descriptor 
Segment Descriptor 

GDT 
Size : size of GDT 
Base : pointer to GDT 
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Segment Descriptor 

0 to 3 : privilege level (DPL_USER : 3, Kernel : 0) 

Segment type : 
STA_X : executable segment 
STA_R : readable segment 
STA_W : writeable segment 
 

Segment base (32 bit) 

Segment limit (20 bit) 



12 

Segment Descriptor in xv6 

ref : mmu.h ([7], 0752, 0769) 

SEG(STA_W, 0, 0xFFFFFFFF, DPL_USER) 



Segments in xv6 
Segment Base Limit Type DPL 

Kernel Code 0 4 GB X, R 0 

Kernel Data  0 4 GB  W 0 

User Code 0 4 GB X, R 3 

User Data 0 4 GB W 3 
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Loading the GDT 

 struct segdesc gdt[NSEGS]; 
2308 

0512 

1724 
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Virtual Memory 



Paging Unit 
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Linear address space of  
process1 

block page frame 

1 14 

2 2 

3 13 

4 4 

5 1 

6 8 

process page table 

1 
2 
3 
4 
5 
6 

block page frame 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

Because of the page table, 
blocks need not be in contiguous 
page frames 

Every time a memory location  
is accessed, the processor looks 
into the page table to identify the 
corresponding page frame number. 
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Blocks from 
Several processes 
can share pages in 

RAM 
simultaneously 
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Do we really need to load all blocks into 
memory before the process starts 

executing? 

No.  
 
Not all parts of the program are accessed  
simultaneously.  
Infact, some code may not even be 
executed. 

Virtual memory takes advantage of this by 
using a concept called demand paging. 



Demand Paging 
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Swap space 
(on disk) 

P

1

0

0

0

1
1

present bit 

Pages are loaded from disk to RAM, only 
when needed. 
 
A ‘present bit’ in the page table indicates if 
the block is in RAM or not. 
 
If (present bit = 1){ block in RAM} 
else {block not in RAM} 
 

1 

6 

If a page is accessed that is not present in 
RAM, the processor issues a page fault 
interrupt, triggering the OS to load the page 
into RAM and mark the present bit to 1 

5 

06  1 
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If there are no pages free 
for a new block to be loaded, 
the OS makes a decision to  
remove another block from RAM. 
 
This is based on a replacement 
policy, implemented in the OS. 
 
Some replacement policies are 
   * First in first out 
   * Least recently used 
   * Least frequently used 
 
The replaced block may need to 
be written back to the swap 
(swap out) 
 

3 

0

114 
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The dirty bit, in the page table 
indicates if a page needs to be 
written back to disk 
 
If the dirty bit is 1, indicates  
    the page needs to be written 
    back to disk. 
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Protection bits, in the page table 
determine if  
  the page is executable, readonly, 
  and accessible by a user process. 
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2 Level Page Translation 
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linear 
address 

Table 
 

Offset 

Physical 
Address (p) 

(CR3) 
 

Dir 
 

Dir : 10 bits 
Table : 10 bits 
Offset : 12 bits 

Number of Page 
tables is  

210 = 1024. 
 

Total size of page 
tables is 4MB.  

But not contiguous! 
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Linear to Physical Address 
•  2 level page translation •  How many page 

tables are 
present? 

 
 
•  What is the 

maximum size of 
the process’ 
address space? 
–  4G ref : mmu.h (PGADDR, NPDENTRIES, NPTENTRIES, PGSIZE) 
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back to booting… 
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so far… 

BIOS 

bootloader 

•  executes on reset.  
•  does POST, initializes devices 
•  loads boot loader to 0x07c00 and jump to it 
(all in real mode) 

Power on Reset 

•  disable interrupts 
•  Setup GDT (8941) 
•  switch real mode to protected mode 
•  setup an initial stack (8967) 
•  load kernel from second sector of disk to  
  0x100000 
•  executes kernel (_start) 
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Memory when kernel is invoked 
(just after the bootloader) 

•  Segmentation enabled but no paging 

•  Memory map 

CPU Segmentation 
Unit 

physical 
memory logical 

address 
physical 
address 

code 
data 

bootloader 

stack 
logical 
memory 

physical memory 

kernel 

0x
10

00
00

 

Slide taken from Anton Burtsev, Univ. of Utah 



Memory Management Analysis 

•  Advantages 
–  Got the kernel into protected mode (32 bit code) with minimum trouble 

•  Disadvantages 
–  Protection of kernel memory from user writes 
–  Protection between user processes 
–  User space restricted by physical memory 

•  The plan ahead 
–  Need to get paging up and running 
         

29 

CPU Segmentation 
Unit 

physical 
memory logical 

address 
physical 
address 
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entry 

Enable Paging 

The kernel executes 
 from here 



OS code Linker address 
•  kernel.asm (xv6) 
•  The linker sets the 

executable so that the 
kernel starts from 
0x80100000 

•  0x80100000 is a virtual 
address and not a physical 
address 

31 
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Virtual Address Space 

0 

0xffffffff 

KERNBASE 
0x80000000 

Virtual 

Physical 

Device memory 

+0x100000 

0 

0x100000 

PHYSTOP 

•  Kernel memory mapped into every process 
   - easy to switch between kernel and user modes 
•  VA(KERNBASE:+PHYSTOP) à PA(0:PHYSTOP) 
   - convert from VA to PA just by +/- KERNBASE 
   - easily write to physical page 
   - limits size of physical memory to 2GB 
 
        

Kernel Memory 

ref : memlayout.h (0200) 
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Virtual Address Space 

0 

0xffffffff 

KERNBASE 
0x80000000 

Virtual 

Physical 

Device memory 

+0x100000 

0 

0x100000 

PHYSTOP 

•  Linking address not the same as the loading 
address 
•  Linking address 0x80100000 
•  Loading address  0x100000 
        Kernel Memory 

ref : memlayout.h (0200) 



Converting virtual to physical 
in kernel space 

34 
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Enable Paging 

1. Start of with a quick solution  

Aim is get the kernel running with paging enabled 
    -- create a minimal paging environment 
        ---- two pages of 4MB size (just sufficient to hold the OS)  

2. Have an elaborate paging mechanism 

Create pages for each 4KB RAM block 
Allocate and manage free memory 
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Enable Paging 

Enable Paging 

Turn on Page size 
extension 

Aim is to create two  
4MB pages  

1 
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4MB Pages 
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Enable Paging 

Set Page Directory 

2 
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Kernel memory setup 
•  First setup two 4MB pages 

–  Entry 0: 
 Virtual addresses 0 to 0x04000000 àPhysical addresses 0 to 4MB 

–  Entry 512: 
     Virtual addresses 0x80000000 to 0x84000000 à 
     Physical addresses 0 to 4MB 

 
 

What would be the address generated before and immediately after paging is enabled?   

before : 0x001000xx 
Immediately after : 0x8001000xx 
So the OS needs to be present at two memory ranges 
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Enable Paging 

Turn on Paging 

1 

2 

3 
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First Page Table 

courtesy Anton Burtsev, Univ. of Utah 

logical 
memory 

physical memory 

virtual memory 
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Execute main 

Set up stack 

Jump to main 
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Stack 

courtesy Anton Burtsev, Univ. of Utah 
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(Re)Initializing Paging 
•  Configure another page table 

–  Map kernel only once making space for other user level 
processes 

–  Map more physical memory, not just the first 4MB 
–  Use 4KB pages instead of 4MB pages 

•  4MB pages very wasteful if processes are small 
•  Xv6 programs are a few dozen kilobytes 

 

main  à  kvmalloc à setupkvm 
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Setup kernel vm 

1823 

KERNBASE = 0x80000000 
KERNLINK = KERNBASE + 0x100000 
PHYSTOP = 0xE000000 
EXTMEM = 0x100000 

Setting Up kernel pages (vm.c) 
1.  stuct kmap 

 data obtained from linker script, which determines 
size of code+readonly data 

2. Kernel page tables set up in kvmalloc() (1857) 
     (invoked from main) 



Creating the Page Table Mapping for the 
kernel 

•  Enable paging 

•  Create/Fill page directory 

•  Create/Fill page tables 

•  Load CR3 register 
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Creating the Page Table Mapping for the 
kernel 

•  Enable paging 

•  Create/Fill page directory 

•  Create/Fill page tables 

•  Load CR3 register 
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Setting paging enable bit in CR0 
register (1049) 



Creating the Page Table Mapping for the 
kernel 

•  Enable paging 

•  Create/Fill page directory 

•  Create/Fill page tables 

•  Load CR3 register 
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done in function walkpgdir (1754) 



walkpgdir (1754) 
•  Create a page directory entry 

corresponding to a virtual 
address.  

•  If page table is not present, then 
allocate it. 

•  PDX(va) : page directory index 
•  PTE_ADDR(*pde) : page 

directory entry 
•  PTX(va) : page table entry 

49 



Creating the Page Table Mapping for the 
kernel 

•  Enable paging 

•  Create/Fill page directory 

•  Create/Fill page tables 

•  Load CR3 register 
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done in function mappages (1779) 



mappages (1779) 
•  Fill page table entries 

mapping virtual addresses 
to physical addresses 

 

•  What are the contents? 
–  Physical address 
–  Permissions 
–  Present bit  

51 



Creating the Page Table Mapping for the 
kernel 

•  Enable paging 

•  Create/Fill page directory 

•  Create/Fill page tables 

•  Load CR3 register 

52 

Load the CR3 register to point to 
the page directory.  
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User Pages mapped twice 

0 

0xffffffff 

KERNBASE 

Virtual 

Physical 

Device memory 

+0x10000 

Device memory 

0 

0x10000 

PHYSTOP 

Kernel Memory 

•  Kernel has easy access to user pages (useful for 
system calls) 
 
 
        



Allocating Memory 

54 
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Allocating Pages (kalloc) 
RAM 

0 

end of  
kernel 

PHYSTOP 

used for allocation 

Used page 
Free page 

freelist 

•  Physical memory allocation done in page    
  granularity (i.e. 4KB) 
•  Free physical pages in a list 
•  Page Allocation removes from list head (see  
  function kalloc) 
•  Page free adds to list head (see kfree) 

ref : kalloc.c [30] 
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Freelist Implementation 
•  How is the freelist implemented? 

–  No exclusive memory to store links (3014) 
 

ptr to next free page 
 

ptr to next free page 
 

ptr to next free page 
 

ptr to next free page 
 

freelist 
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Initializing the list 
(chicken & egg problem) 

create free list marking  
all pages as free 

at boot 

access memory via 
Page tables 

this needs 

Page tables are 
in memory and need to 

be allocated 
Create a page table 

this needs 

ref : kalloc.c (kinit1 and kinit2) 

Resolved by a separate page allocator during boot up, which allocates 
4MB memory just after the kernel’s data segment (see kinit1 and kinit2). 



Per CPU Data 
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Recall  
Memory is Symmetric Across Processors 

Processor 
1 

Processor 
2 

Processor 
3 

Processor 
4 

front side bus 

North Bridge DRAM Memory bus 

•  Memory Symmetry 
•  All processors in the system share the same memory space 
•  Advantage : Common operating system code 

•  However there are certain data which have to be unique to each 
processor 
•  This is the per-cpu data 
•  example, cpu id, scheduler context, taskstate, gdt, etc. 



Naïve implementation of  
per-cpu data 

•  An array of structures, each element in array corresponding to a processor 
•  Access to a per-cpu data, example : cpu[cpunum()].ncli 
•  This requires locking every time the cpu structure is accessed 

–  eg. Consider process migrating from one processor to another while updating a 
per-cpu data 

–  slow (because locking can be tedious)!!! 
60 ref : proc.h [23] 



Alternate Solution 
(using CPU registers) 

 
•  CPU has several general purpose registers 

–  The registers are unique to each processor (not shared) 

•  Use CPU registers to store per-cpu data 
–  Must ensure the gcc does not use these registers for other 

purposes 

•  Fastest solution to our problem, but we do not have so 
many registers L 

61 Content borrowed from  Carmi Merimovich (http://www2.mta.ac.il/~carmi/) 



Next best solution 
(xv6 implementation) 

•  In seginit(), which is run on each CPU initialization, the 
following is done. 

–  GDTR will point upon cpu initialization to cpus[cpunum()].gdt. 
–  (Thus, each processor will have its own private GDT in struct cpu). 

•  Have an entry which is unique for each processor 
–  The base address field of SEG_KCPU entry in GDT is 

&cpus[cpunum()].cpu (1731) 
–  %gs register loaded with SEG KCPU << 3. 

•  Lock free access to per-cpu data 
–  %gs indexes into the SEG_KCPU offset in GDT 
–  This is unique for each processor 

62 

CPU0 CPU1 

GDT 
For CPU0 

GDT 
For CPU1 

per-cpu 
for CPU0 

per-cpu 
for CPU1 

%gs %gs 

Content borrowed from  Carmi Merimovich (http://www2.mta.ac.il/~carmi/) 



Using %gs 

•  Without locking or cpunum() overhead we have: 
–  %gs:0 is cpus[cpunum()].cpu. 
–  %gs:4 is cpus[cpunum()].proc. 

•  If we are interrupting user mode code then %gs 
might contain irrelevant value. Hence 
–  In alltraps %gs is loaded with SEG_KCPU << 3. 
–  (The interrupted code %gs is already on the trapframe.) 

•  gcc not aware of the existence of %gs, so it will no generate code messing 
up gs. 

63 Content borrowed from  Carmi Merimovich (http://www2.mta.ac.il/~carmi/) 


