
Processes

Chester Rebeiro
IIT Madras

2

Executing Apps
(Process)

•  Process
–  A program in execution
–  Most important abstraction in

an OS
–  Comprises of

•  Code
•  Data
•  Stack
•  Heap
•  State in the OS
•  Kernel stack

–  State contains : registers, list
of open files, related
processes, etc.

ELF
Executable

(a.out)

$gcc hello.c

Process
$./a.out

from ELF In the
user space
of process

In the kernel
space

3

Program ≠ Process
Program Process

code + static and global data Dynamic instantiation of code +
data + heap + stack + process
state

One program can create several
processes

A process is unique isolated entity

4

Process Address Space

•  Virtual Address Map
–  All memory a process can

address
–  Large contiguous array of

addresses from 0 to
MAX_SIZE

Text
(instructions)

Data

Heap

Stack

0

MAX_SIZE

5

Process Address Space
•  Each process has a different address space
•  This is achieved by the use of virtual memory
•  Ie. 0 to MAX_SIZE are virtual memory addresses

Text
(instructions)

Data

Heap

Stack

0

MAX_SIZE

Text
(instructions)

Data

Heap

Stack

0

MAX_SIZE

Process A Process B

Process A
Page Table

Process B
Page Table

6

Virtual Address Mapping

Text
(instructions)

Data

Heap

Stack

Text
(instructions)

Data

Heap

Stack

Process A Process B

Virtual Memory Physical Memory Virtual Memory

Process A
Page
Table

Process B
Page
Table

7

Advantages of Virtual Address Map

•  Isolation (private address space)
–  One process cannot access another process’ memory

•  Relocatable
–  Data and code within the process is relocatable

•  Size
–  Processes can be much larger than physical memory

8

Process Address Map in xv6
•  Entire kernel mapped into

every process address space
–  This allows easy switching from

user code to kernel code (ie.
during system calls)

•  No change of page tables
needed

–  Easy access of user data from
kernel space

Text
(instructions)

Data

Heap

Kernel
Text + Data,

DeviceMemory

Stack

0

KERNBASE
(0x80000000)

0xFE000000

K
er

ne
l c

an
 a

cc
es

s

U
se

r P
ro

ce
ss

 c
an

 a
cc

es
s

9

Process Stacks

•  Each process has 2 stacks
–  User space stack

•  Used when executing user code
–  Kernel space stack

•  Used when executing kernel
code (for eg. during system
calls)

–  Advantage : Kernel can execute even if
user stack is corrupted

 (Attacks that target the stack, such as
buffer overflow attack, will not affect the
kernel)

Text
(instructions)

Data

Heap

User stack
for process

Kernel (Text + Data)

Kernel Stack
for process

Process Address
Space

10

Process Management in xv6

•  Each process has a PCB (process control block)
defined by struct proc in xv6

•  Holds important process specific information
•  Why?

–  Allows process to resume execution after a while
–  Keep track of resources used
–  Track the process state

ref : proc.h (struct proc) (2353)

11

Summary of entries in PCB
•  More entries

Size of process memory

Files opened

Current working directory

Executable name

à

à

later

later

Page directory pointer for
process

Kernel stack pointer

12

Entries in PCB

•  PID
– Process Identifier
– Number incremented sequentially

•  When maximum is reached
•  Reset and continue to increment.
•  This time skip already allocated PID numbers

13

Process States
•  Process State : specifies the state of the process

EMBRYO

SLEEPING

RUNNABLE

RUNNING

EMBRYO à The new process is currently being created
RUNNABLE à Ready to run
RUNNING à Currently executing
SLEEPING à Blocked for an I/O
Other states ZOMBIE (later)

ref : proc.h (struct proc) 2350

Scheduling Runnable Processes

Scheduler triggered to run when timer interrupt occurs or when
running process is blocked on I/O
Scheduler picks another process from the ready queue
Performs a context switch

Running
Process

CPU
Scheduler

Queue of RUNNABLE Processes

interrupt
every 100ms

15

Page Directory Pointer
 Page Directory Pointer

Text
(instructions)

Data

Heap

Stack

Process A

Virtual Memory

Process A
Page
Table

Physical Memory

Entries in PCB

•  Pointer to trapframe

16

EFLAGS
CS
EIP

Error Code

ESP
SS

Trap Number
ds
es
…

eax
ecx
…
esi
edi

(empty)

esp

trapframe

17

Context Pointer
•  Context pointer

–  Contains registers used for
context switches.

–  Registers in context : %edi,
%esi, %ebx, %ebp, %eip

–  Stored in the kernel stack
space

Text
(instructions)

Data

Heap

Stack context

Kernel (Text + Data)

Kernel Stack
for process

18

Storing procs in xv6
•  In a globally defined array present in ptable
•  NPROC is the maximum number of processes that can

be present in the system (#define NPROC 64)
•  Also present in ptable is a lock that seralizes access to

the array.

ref : proc.c (struct ptable) 2409, params.h (NPROC) 0150

19

Creating a Process by Cloning

•  Cloning
–  Child process is an exact replica of the parent
–  Fork system call

Process 1

Kernel
(execute fork)

system call
fork

Process 1

Kernel
(execute fork)

Process 2

Parent Child

=>

20

Creating a Process by Cloning
(using fork system call)

•  In parent
–  fork returns child

pid

•  In child process
–  fork returns 0

•  Other system

calls
–  Wait, returns pid

of an exiting
child

int pid;

pid = fork();
if (pid > 0){
 printf(“Parent : child PID = %d”, pid);
 pid = wait();
 printf(“Parent : child %d exited\n”, pid);
} else{
 printf(“In child process”);
 exit(0);
}

21

•  Making a copy of a process
is called forking.
–  Parent (is the original)
–  child (is the new process)

•  When fork is invoked,
–  child is an exact copy of

parent
•  When fork is called all pages

are shared between parent
and child

•  Easily done by copying the
parent’s page tables

Physical Memory

Parent
Page
Table

Child
Page
Table

Virtual Addressing Advantage
(easy to make copies of a process)

22

Modifying Data in Parent or Child

Output

parent : 0
child : 1

int i=0, pid;
pid = fork();
if (pid > 0){

 sleep(1);
 printf("parent : %d\n", i);
 wait();

} else{
 i = i + 1;
 printf("child : %d\n", i);

}

23

Executing a Program
(exec system call)

•  exec system call
–  Load into memory and then

execute
•  COW big advantage for

exec
–  Time not wasted in copying

pages.
–  Common code (for example

shared libraries) would
continue to be shared

int pid;

pid = fork();
if (pid > 0){
 pid = wait();
} else{
 execlp("ls", "", NULL);
 exit(0);

24

Copy on Write
(COW)

•  When data in any of the shared pages
change, OS intercepts and makes a copy
of the page.

•  Thus, parent and child will have different
copies of this page

•  Why?
–  A large portion of executables are not

used.
–  Copying each page from parent and child

would incur significant disk swapping..
 huge performance penalties.

–  Postpone coping of pages as much as
possible thus optimizing performance

i of child here

i of parent here

Parent
Page
Table

Child
Page
Table

This page now is no longer shared

25

Virtual Addressing Advantages
(Shared libraries)

•  Many common functions such as printf implemented in shared libraries
•  Pages from shared libraries, shared between processes

Process A Process B

Virtual Memory Physical Memory Virtual Memory

Process A
Page
Table

Process B
Page
Table

printf(){ …} printf(){ …}
printf(){ …}

How COW works

•  When forking,
– Kernel makes COW pages as read only
– Any write to the pages would cause a page

fault
– The kernel detects that it is a COW page and

duplicates the page

26

27

The first process

•  Unix : /sbin/init (xv6 initcode.S)
–  Unlike the others, this is created by the kernel

during boot
– Super parent.

•  Responsible for forking all other processes
•  Typically starts several scripts present in /etc/init.d

in Linux

28

Process tree

Processes in the
system arranged in
the form of a tree.

pstree in Linux

Who creates the first process?

init

NetworkManager lightdm

dhclient dnsmasq

Init.d

gnome-session

compiz

29

Process Termination

•  Voluntary : exit(status)
–  OS passes exit status to parent via wait(&status)
–  OS frees process resources

•  Involuntary : kill(pid, signal)
–  Signal can be sent by another process or by OS
–  pid is for the process to be killed
–  signal a signal that the process needs to be killed

•  Examples : SIGTERM, SIGQUIT (ctrl+\), SIGINT (ctrl+c),
SIGHUP

30

Zombies
•  When a process terminates it becomes a zombie (or

defunct process)
–  PCB in OS still exists even though program no longer executing
–  Why? So that the parent process can read the child’s exit status

(through wait system call)

•  When parent reads status,
–  zombie entries removed from OS… process reaped!

•  Suppose parent does’nt read status
–  Zombie will continue to exist infinitely … a resource leak
–  These are typically found by a reaper process

31

Orphans
•  When a parent process terminates before its child
•  Adopted by first process (/sbin/init)

=>

32

Orphans contd.

•  Unintentional orphans
–  When parent crashes

•  Intentional orphans
–  Process becomes detached from user session and

runs in the background
–  Called daemons, used to run background services
–  See nohup

33

The first process in xv6

The first process

•  initcode.S
•  Creating the first process

–  main (1239) invokes userinit (2503)
–  userinit

•  allocate a process id, kernel stack, fill in the proc entries
•  Setup kernel page tables
•  copy initcode.S to 0x0
•  create a user stack
•  set process to runnable

–  the scheduler would then execute the process

34

allocproc (2455)

35

find an unused proc entry in the PCB table

set the state to EMBRYO (neither RUNNING nor UNUSED)

set the pid (in real systems.. Need to ensure that the pid is unused)

1

2

3

4

allocproc (2455)

36

allocate kernel stack of size 4KB.
We next need to allocate space on to kernel stack for
 1. the trapframe
 2. trapret
 3. context

trapframe

trapret

context

Process’s stack in kernel space

kstack

kstack+KSTACKSIZE

important
but later

forkret: this is important, but we’ll look at it later

Setup pagetables
•  Kernel page tables

–  Invoked by setupkvm(1837)

•  User page tables
–  Setup in inituvm (1903)

37

User Space

Virtual Memory

Kernel stack
for process

initcode.S

i

Initcode.S

Physical Memory

Create PTEs in page directory
VA = 0 àPA (v2p(mem))
Size 1 page (4KB)

…do the rest

38

Set size to 4KB

Fill trapframe

Executing User Code

•  The kernel stack of the process has a trap
frame and context

•  The process is set as RUNNABLE
•  The scheduler is then invoked from main

 main àmpmain (1241) àscheduler (1257)
– The initcode process is selected
 (as it is the only process runnable)

– …and is then executed

39

40

Scheduling the first process

Recall : the virtual memory map

41

0x80000000

stack

text

0x0

before userinit

eip

esp

0x80000000

stack

text

0x0

after userinit

eip

esp

Initcode mirror

Initcode

Initcode kstack

The code and stack for
Initcode has been setup.

But we are still executing kernel
code with the kernel stack.

scheduler() changes this to get
Initcode to execute

What we need!

42

0x80000000

stack

text

0x0

before userinit

eip

esp stack

text

0x0

after userinit

eip

esp

Initcode mirror

Initcode

Initcode kstack

stack

text

Need to get here
(stack starts at 4KB
and grows downwards)

Initcode mirror

Initcode

Initcode kstack

eip
esp

Scheduler ()

•  main àmpmain (1241) àscheduler (1257)

43

Find the process which is RUNNABLE.
In this case initcode is selected

extern struct proc *proc asm("%gs:4"); // this is a per cpu
variable
 cpus[cpunum()].proc

Defined in struct cpu
(2306)

switchuvm

44

New TSS segment in GDT
Set the new stack (this is the kernel stack corresponding to initcode.S)

Set the new page tables (corresponding to initcode.S)

Load TSS offset

swtch(cpuàscheduler, procàcontext) (1)

45

procàcontext
&cpuàscheduler

eip eip
ebp
ebx
esi
edi

trapret

trapframe

context

eip

esp

return address

Scheduler
stack

Initcode.S
Kernel stack

cpuàscheduler

Present in cpu struct (2306)

swtch(cpuàscheduler, procàcontext) (2)

46

procàcontext
&cpuàscheduler

eip eip
ebp
ebx
esi
edi

trapret

trapframe

context

eip esp

return address

procàcontext
&cpuàscheduler

edx
eax

Scheduler
stack

Initcode.S
Kernel stack

cpuàscheduler

swtch(cpuàscheduler, procàcontext) (3)

47

procàcontext
&cpuàscheduler

eip
ebp
ebx
esi
edi

eip
ebp
ebx
esi
edi

trapret

trapframe

context

eip
esp

procàcontext
&cpuàscheduler

edx
eax

Scheduler
stack

Initcode.S
Kernel stack

cpuàscheduler

swtch(cpuàscheduler, procàcontext) (4)

48

procàcontext
&cpuàscheduler

eip
ebp
ebx
esi
edi

eip
ebp
ebx
esi
edi

trapret

trapframe

context

eip

esp

procàcontext
cpuàscheduler

edx
eax

Scheduler
stack

Initcode.S
Kernel stack

cpuàscheduler

swtch(cpuàscheduler, procàcontext) (5)

49

procàcontext
&cpuàscheduler

eip
ebp
ebx
esi
edi

eip
trapret

trapframe

eip

esp

procàcontext
cpuàscheduler

edx
eax

So, swtch return corresponds to initcode’s
eip. Where can that be?

Scheduler
stack

Initcode.S
Kernel stack

return from swtch

•  recollect forkret (a couple of slide back)
 p àcontextàeip = (uint) forkret;

•  So, swtch on return executes forkret

50

forkret
•  Does nothing much.

–  Initilizes a log for the first process

•  And then returns to trapret

51

trapret

trapframe

esp

Initcode.S
Kernel stack

recall the trapframe

•  Allocated in allproc.
•  Filled in userinit

EFLAGS
CS
EIP

Error Code

ESP
SS

Trap Number
ds
es
…

eax
ecx
…
esi
edi

tra
pf

ra
m

e
ref : struct trapframe in x86.h (0602 [06]) 52

esp

Initcode.S
Kernel stack

trapret

trapret

53

EFLAGS
CS
EIP

Error Code

ESP
SS

Trap Number
ds
es
…

eax
ecx
…
esi
edi esp

Initcode.S
Kernel stack

trapret

Return from trapret (iret)

54

EFLAGS
CS
EIP

ESP
SS

esp

Loads the new
%cs = SEG_UCODE | DPL_USER
%eip = 0
eflags = 0
%ss = SEG_UDATA | DPL_USER
%esp = 4096 (PGSZE)
…. there by starting initcode.S

Initcode.S
Kernel stack

finally … initcode.S J

•  Invokes system
call exec to
invoke /init

exec(‘/init’)

55

init.c

•  forks and
creates a shell
(sh)

56

CPU Context Switching

58

Process States

EMBRYO

SLEEPING

RUNNABLE

RUNNING

NEW (in xv6 EMBRYO) à The new process is currently being created
READY (in xv6 RUNNABLE) à Ready to run
RUNNING à Currently executing
WAITING (in xv6 SLEEPING) à Blocked for an I/O

ref : proc.h (struct proc) 2100

Context Switches
1.  When a process switches from RUNNING to

WAITING (eg. due to an I/O request)
2.  When a process switches from RUNNING to READY

(eg. when an interrupt occurs)
3.  When a process switches from WAITING to READY

(eg. Due to I/O completion)
4.  When a process terminates

The full picture

Scheduler triggered to run when timer interrupt occurs or when
running process is blocked on I/O
Scheduler picks another process from the ready queue
Performs a context switch

Running
Process

CPU
Scheduler

Queue of Ready Processes

interrupt
every 100ms

Process Context

•  The process context contains all
information, which would allow the process
to resume after a context switch

Process Contexts Revisited

•  Segment registers not needed
–  Since they are constants across kernel contexts

•  Caller has saved eax, ecx, edx
–  By x86 convention

•  Context contain just 5 registers
–  edi, esi, ebx, ebp, eip

•  Contexts always stored at the bottom of the
process’ kernel stack

63

How to perform a context switch?

•  Need to save current process registers without
changing them
–  Not easy!! because saving state needs to execute

code, which will modify registers
–  Solution : Use hardware + software … architecture

dependent

1.  Save current process state
2.  Load state of the next process
3.  Continue execution of the next process

64

Context switch in xv6
1.  Gets triggered when any interrupt is invoked

–  Save P1s user-mode CPU context and switch from user to
kernel mode

2.  Handle system call or interrupt
3.  Save P1’s kernel CPU context and switch to

scheduler CPU context
4.  Select another process P2
5.  Switch to P2’s address space
6.  Save scheduler CPU context and switch to P2’s

kernel CPU context
7.  Switch from kernel to user modeand load P2’s

user-mode CPU context

User
space

Kernel
space

P1 P2
scheduler

1

2

3

4,5

6

7

Tracing Context Switch
(The Timer Interrupts)

•  Programming the Timer interval
– Single Processor Systems : PIT ([80],8054)
– Multi Processor Systems : LAPIC

•  Programmed to interrupt processor every
10ms

65

Timer Interrupt Stack
vector.s

[32]

alltraps
(3254)

trap
(3351)

yield
(2272)

sched
(2753)

swtch
(2958)

only if stack
changed EFLAGS

CS
EIP

0 (error code)

ESP
SS

32 (trap num)

SS
B

y hardw
are

ds
es
fs
gs

All registers
esp

eip (alltraps)
trap locals
eip (trap)

trapfram
e (602)

yield locals

sched locals
cpuàscheduler
&procàcontext

eip (yield)

(eip) sched

kernel stack of process 1

66

2 1

trap, yield & sched

67

trap.c (3423)

(2772)

(2753)

2

swtch(&procàcontext, cpuàscheduler)

68

SS

esp
eip (alltraps)
trap locals
eip (trap)

yield locals

sched locals
cpuàscheduler

&procàcontext

eip (yield)

(eip) sched

trapframe

procàcontext
cpuàscheduler

eip (scheduler)

ebp
ebx
esi
edi

&procàcontext

cpuàscheduler
eax
edx

eip

esp

ebp

ebx

esi

edi

Scheduler
stack

Process 1
Kernel stack

2 3

swtch(&procàcontext, cpuàscheduler)

69

SS

esp
eip (alltraps)
trap locals
eip (trap)

yield locals

sched locals
cpuàscheduler

&procàcontext

eip (yield)

(eip) sched

trapframe

procàcontext
cpuàscheduler

eip (scheduler)

ebp
ebx
esi
edi

&procàcontext

cpuàscheduler
eax
edx

eip

esp

ebp

ebx

esi

edi

Scheduler
stack

Process 1
Kernel stack

Execution in Scheduler

70

eip

swtch returns to line 2729.

1.  First switch to kvm pagetables
2.  then select new runnable process
3.  Switch to user process page tables
4.  swtch(&cpuàscheduler, procàconetxt)

4

swtch(&cpuàscheduler, procàcontext)

71

procàcontext
cpuàscheduler

eip
ebp
ebx
esi
edi

eip

procàcontext
cpuàscheduler

edx
eax

Swtch returns to sched

Scheduler
stack

Process 2
Kernel stack

esp
eip (alltraps)
trap locals
eip (trap)

yield locals

sched locals
cpuàscheduler

&procàcontext

eip (yield)

(eip) sched

trapframe

ebp

ebx

esi

edi

4 5

sched in Process 2’s context

72

eip

swtch returns to line 2767.

1.  Sched returns to yield
2.  Yeild returns to trap
3.  Trap returns to alltraps
4.  Alltraps restores user space registers of process 2 and
 invokes IRET

5 6

Context Switching Overheads

•  Direct Factors affecting context switching time
–  Timer Interrupt latency
–  Saving/restoring contexts
–  Finding the next process to execute

•  Indirect factors
–  TLB needs to be reloaded
–  Loss of cache locality (therefore more cache misses)
–  Processor pipeline flush

73

Context Switch Quantum
•  A short quantum

–  Good because, processes need not wait long before they are
scheduled in.

–  Bad because, context switch overhead increase

•  A long quantum
–  Bad because processes no longer appear to execute

concurrently
–  May degrade system performance

•  Typically kept between 10ms to 100ms
–  xv6 programs timers to interrupt every 10ms.

74

System Calls for Process
Management

75

76

Creating a Process by Cloning
•  Cloning

–  Child process is an exact replica of the parent
–  Fork system call

Process 1

Kernel
(execute fork)

system call fork

Process 1

Kernel
(execute fork)

Process 2

Parent Child

=>

77

Creating a Process by Cloning
(using fork system call)

int p;

p = fork();
if (p > 0){
 printf(“Parent : child PID = %d”, p);
 p = wait();
 printf(“Parent : child %d exited\n”, p);
} else{
 printf(“In child process”);
 exit(0);
}
 p=child’s PID p=0

P
ar

en
t

pr
oc

es
s

fork : from an OS perspective

78

PCB

contains PID, state, parent,
Files opened, pointers
to page table, kernel stack,
trapframe, context, etc.

kernel

Kernel
Stack

Page
Table

Page
Table
Page
Table
Page
Table
Page
Table

Kernel
Stack

Kernel
Stack

PCB

Parent Process Information in kernel

Child Process Information in kernel

•  Find an unused PID
•  Set state to NEW
•  Set pointers to newly

formed
•  Pagetable
•  Kernel stack
•  trapframe and

context
•  Copy information like

files opened, size, cwd,
from parent

Changing state from New to
Ready

79

PCB

contains PID, state, parent,
Files opened, pointers
to page table, kernel stack,
trapframe, context, etc.

kernel

Kernel
Stack

Page
Table

Page
Table
Page
Table
Page
Table
Page
Table

Kernel
Stack

Kernel
Stack

PCB

Parent Process Information in kernel

Child Process Information in kernel

•  Find an unused PID
•  Set state to NEW
•  Set pointers to newly

formed
•  Pagetable
•  Kernel stack
•  trapframe and

context
•  Copy information like

files opened, size, cwd,
from parent

•  Set state to READY

state NEW indicates the
pid has been taken, the
process is being created

but not ready to run

state READY means the
process is in the ready

queue and ready to run.

Child Process in Ready Queue

Running
Process

CPU
Scheduler

Queue of READY Processes

Child process
added to ready Q

Return from fork

81

PCB

Return from fork is placed
in the kernel stack

Return value in parent
has new child’s PID

Return value in child
has 0

The eax entry in the
Trapframe has each
process’ return value

kernel

Kernel
Stack

Page
Table

Page
Table
Page
Table
Page
Table
Page
Table

Kernel
Stack

(tf)

Kernel
Stack

(tf)

PCB

Child’s PID

0

The xv6 fork

82

Pick an UNUSED proc. Set pid. Allocate kstack.
fill kstack with (1) the trapframe pointer, (2) trapret
and (3) context
np is the proc pointer for the new process

Copy page directory from the parent process
(procàpgdir) to the child process (npàpgdir)

Set size of np same as that of parent
Set parent of np
Copy trapframe from parent to child

In child process, set eax register in
trapframe to 0. This is what fork
returns in the child process

Parent process returns the pid of the
child

Other things… copy file pointer from
parent, cwd, executable name

Child process is finally made runnable

83

Copying Page Tables of Parent

•  copyuvm (in vm.c)
–  replicates parents memory pages
–  Constructs new table pointing to the new pages
–  Steps involved

1.  Call kalloc to allocate a page directory (pgdir)
2.  Set up kernel pages in pgdir
3.  For each virtual page of the parent (starting from 0 to its sz)

i.  Find its page table entry (function walkpgdir)
ii.  Use kalloc to allocate a page (mem) in memory for the child
iii.  Use memmove to copy the parent page to mem
iv.  Use mappages to add a page table entry for mem

done by setupkvm

ref : 2053

xv6 does not
support COW

84

Register modifications w.r.t.
parent

Registers modified in child process
– %eax = 0 so that pid = 0 in child process
– %eip = forkret so that child exclusively

executes function forkret

85

Exit system call

int pid;

pid = fork();
if (pid > 0){
 printf(“Parent : child PID = %d”, pid);
 pid = wait();
 printf(“Parent : child %d exited\n”, pid);
} else{
 printf(“In child process”);
 exit();
}

86

exit internals
•  init, the first process, can never exit
•  For all other processes on exit,

1.  Decrement the usage count of all open files
•  If usage count is 0, close file

2.  Drop reference to in-memory inode
3.  wakeup parent

•  If parent state is sleeping, make it runnable
•  Needed, cause parent may be sleeping due to a wait

4.  Make init adopt children of exited process
5.  Set process state to ZOMBIE
6.  Force context switch to scheduler

note : page directory, kernel stack, not
deallocated here

ref : proc.c (exit) 2604

ref : proc.c

exit

87

initproc can never exit

Close all open files

Decrement in-memory inode usage

Wakeup parent of child

For every child of exiting process,
Set its parent to initproc

Set exiting process state to zombie
and invoke the scheduler, which performs
a context switch

88

Wait system call

•  Invoked in
parent parent

•  Parent ‘waits’
until child exits

int pid;

pid = fork();
if (pid > 0){
 printf(“Parent : child PID = %d”, pid);
 pid = wait();
 printf(“Parent : child %d exited\n”, pid);
} else{
 printf(“In child process”);
 exit();
}

89

wait internals
Wait system call

If p is a
child

process ‘p’ in ptable

no

If p is a
zombie

no
yes

Deallocate kernel stack
free page directory

Set p.state to UNUSED

ne
xt

 p
ro

ce
ss

In

 p
ta

bl
e

yes

return pid(p)

sleep

return -1 if there are
no children

Sleep if there is at-least
one child which is not in a
zombie state
Will be
woken up by an exiting child.

return -1

ref : proc.c

wait

90

If ‘p’ is infact a child of
proc and is in the ZOMBIE
state then free remaining
entries in p and return pid of p

If ‘p’ is infact a child of
proc and is not a ZOMBIE then
block the current process

note : page directory, kernel stack,
deallocated here

… allows parent to peek into exited child’s process

91

Executing a Program
(exec system call)

•  exec system call
– Load a program into

memory and then
execute it

– Here ‘ls’ executed.

int pid;

pid = fork();
if (pid > 0){
 pid = wait();
} else{
 execlp("ls", "", NULL);
 exit(0);

ELF Executables
(linker view)

92

ref :www.skyfree.org/linux/references/ELF_Format.pdf

/bin/ls

This is an ELF
file

ELF Header
Section header table

Section 1
Section 2
Section 3
Section 4

ELF format of executable

ref :man elf

93

ELF Header

Identification

type

Can have values relocatable object,
executable, shared object, core file

Machine details

Entry

virtual address where program
begins execution

Ptr to program header

Ptr to section header

ELF Header
Program header table

Segment 1
Segment 2
Segment 3
Segment 4

Section header table

i386, X86_64, ARM, MIPS, etc.

number of section headers

number of program headers

Hello World’s ELF Header

94

$ gcc hello.c –c
$ readelf –h hello.o

Section Headers
•  Contains information about the various sections

95

$ readelf –S hello.o

Type of the section
PROGBITS : information defined by program
SYMTAB : symbol table
NULL : inactive section
NOBITS : Section that occupies no bits
RELA : Relocation table

Virtual address where the
Section should be loaded
(* all 0s because this is a .o file)

Offset and size of the section

Size of the table if present else 0

96

Program Header
(executable view)

•  Contains information about each
segment

•  One program header for each segment
•  A program header entry contains (among

others)
–  Offset of segment in ELF file
–  Virtual address of segment
–  Segment size in file (filesz)
–  Segment size in memory (memsz)
–  Segment type

•  Loadable segment
•  Shared library
•  etc

ELF Header
Program header table

Segment 1
Segment 2
Segment 3
Segment 4

Head 1
Head 2
Head 3
Head 4

Program Header Contents

97

type

offset

vaddr offset

paddr offset

Size in file image

Size in memory

flags

type of segment

Offset of segment in ELF file

Virtual address where the segment is to be loaded

physical address where the segment is to be loaded.
(ignored)

Program headers for Hello
World

•  readelf –l hello

98

Mapping between segments and sections

99

exec

•  Executable files begin with a
signature.

•  Sanity check for magic number. All
executables begin with a ELF Magic
number string : “\x7fELF”

ref : exec.c

Get pointer to the inode for the executable

Parameters are the path of executable and
command line arguments

Set up kernel side of the page
tables again!!!

Do we really need to do this?

stack

code

Virtual Memory Map

exec contd.
(load segments into memory)

100

Parse through all the elf program headers.

Only load into memory segments of type LOAD

Add more page table entries to grow page tables
from old size to new size (ph.vaddr + ph.memsz)

Copy program segment from disk to memory
at location ph.vaddr. (3rd param is inode pointer,
4th param is offset of segment in file, 5th param is the
segment size in file)

stack

code

Virtual Memory Map

code

data

exec contd.
(user stacks)

101

stack

code

Virtual Memory Map

code

data

stack
guard

The first acts as a guard page
protecting stack overflows

exec contd.
(fill user stack)

102

arg 0
arg 1

arg N

ptr to arg N
…

ptr to arg 1
ptr to arg 0

0

ptr to 0
argc

0xffffffff

command line
args

NULL termination

pointer to
command
line args (argv)

argc
dummy return location
from main

Unused

exec contd.
(proc, trapframe, etc.)

103

Set the executable file name in proc

these specify where execution should
start for the new program.
Also specifies the stack pointer

Alter TSS segment’s sp and esp.
Switch cr3 to the new page tables.

Exercise

•  How is the heap initialized in xv6?
 see sys_sbrk and growproc

104

