Interrupts, Exceptions, and
System Calls

Chester Rebeiro
IIT Madras

OS & Events

e OS is event driven

— I.e. executes only when there is an interrupt,
trap, or system call

@ User process 1 1

OS

User process 2

Privilege level

Why event driven design?

* OS cannot trust user processes
— User processes may be buggy or malicious
— User process crash should not affect OS

* OS needs to guarantee fairness to all user
processes

— One process cannot ‘hog’ CPU time
— Timer interrupts

Event Types

Events

v v

Interrupts Exceptions

|
| 1

Hardware Interrupts Software Interrupts

Events

* Interrupts : raised by hardware or
programs to get OS attention
— Types

- Hardware interrupts : raised by external hardware
devices

« Software Interrupts : raised by user programs

» Exceptions : due to illegal operations

Event view of CPU

4u| while(fetch next instruction)

!

Execute Instruction

Current task
suspended

Execute event
in handler

Where?

Exception & Interrupt Vectors

Event occured What to execute next?

Each interrupt/exception provided a number
Number used to index into an Interrupt descriptor table
(IDT)

IDT provides the entry point into a interrupt/exception
handler

0 to 255 vectors possible

— 0 to 31 used internally
— Remaining can be defined by the OS

Exception and Interrupt Vectors

Vector Mne- Description Tvpe Error Source
No. monic Code
0 #DE Divide Emror Fault No DIV and IDIV ins truc tions.
1 #08B RESERVED Fault/ Trap No For Intel use only.
2 - NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #gp Breakpoint Trap No INT 3 instruction.
“ #OF Owerflow Trap No INTOinstruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Opcode) | Fault No UD2 instruction or reserved opcode.!
7 #NM Device Not Available (No Math Fault No Floating-point or WAIT/FWAIT instruction.
Coprocessor)
8 #DF Double Fault Abort Yes Any instruction that can generate an
(zero) | exception, an NMI, or an INTR.
9 Coprocessor Segment Overrun Fault No Floating-point instruction?
(reserved)
10 #1S Invaid TSS Fault Yes Task switchor TSSaccess.
1n #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.
12 #sS Stack-Segment Fault Fault Yes Stack operations and SS register loads.
13 #oP General Protection Fault Yes Any memoary reference and ather
protection chedks.
14 #PF Page Fault Fault Yes Any memory reference.
15 - (intel reserved. Donot use.) No
16 #MF x87 FPU Foating-Point Error (Math | Fault No x87 FPU floating-point or WAITFWAIT
Fault) instruction.
17 #AC Alignment Chedk Fault Yes Any data reference in memory.3
2ero)
18 #MC Machine Chedk Abort No Error codes (if any) and source are model
dependent
19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE 3 floating-point
instructions®
20 #VE Virtualization Exception Fault No EPT violations®
21-31 - Intel reserved Donot use.
32-255 - User Defined (Non-reserved) Interrupt External interrupt or INT n instruction
Interrupts

Xvo Interrupt Vectors

* 0 to 31 reserved by Intel

« 32 to 63 used for hardware interrupts
T _IRQO = 32 (added to all hardware IRQs to
scale them)

* 64 used for system call interrupt

ref : traps.h ([31], 3152)

Events

Events

v

Interrupts

|
|

1

v

Exceptions

Hardware Interrupts

Software Interrupts

10

Why Hardware Interrupts?

Several devices connected to the CPU
— eg. Keyboards, mouse, network card, etc.

These devices occasionally need to be serviced
by the CPU

— eg. Inform CPU that a key has been pressed

These events are asynchronous i.e. we cannot
predict when they will happen.

Need a way for the CPU to determine when a
device needs attention

11

Interrupts

« Each device signals to the CPU that it wants to be serviced

« Generally CPUs have 2 pins
— INT : Interrupt
— NMI : Non maskable — for very critical signals

 How to support more than two interrupts?

Device 2 INT;

Device 1 >
NMI

8259 Programmable Interrupt Controller

8259 (Programmable interrupt

controller) relays upto 8 interrupt to . INT
CPU device 0 1—> 1

. L Ty INTA
Devices raise interrupts by an L 2> :ﬂ
‘interrupt request’ (IRQ) —> (.

. —>

CPU acknowledges and queries the 5 5
8259 to determine which device .
iInterrupted device 7 |-—>
Priorities can be assigned to each
IRQ line

8259s can be cascaded to support
more interrupts

13

Interrupts in legacy CPUs

15 IRQs (IRQO to IRQ15), so 15
possible devices
Interrupt types
— Edge
— Level
Limitations
— Limited IRQs

— Spurious interrupts by 8259
« Eg. de-asserted IRQ before IRQA

— Multi-processor support is
limited

System Timer

Keyboard

Serial Devices

Serial Devices

Parallel Devices

Floppy Drives

Parallel Devices

8259

CMOS Clock

Available

Available

Available

Available

Math Processor

Primary HD

Secondary HO

8259

14

Advanced Programmable Interrupt
Controller (APIC)

Frocessor #1 Hrocessor #2 Frocessor #3 Processor #4
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
Interrupt IPls Interrupt A IPls Interrupt IPls Interrupt 4 iPis
Messages Messages Y Messages Messages \
Interrupt A 3-wire APIC Bus
Messages
Y
External —
Interrupts |—» IO APIC
System Chip Set

External interrupts are routed from peripherals to CPUs in multi processor systems
through APIC

APIC distributes and prioritizes interrupts to processors
Interrupts can be configured as edge or level triggered
Comprises of two components

— Local APIC (LAPIC)

- /O APIC
APICs communicate through a special 3-wire APIC bus.

— In more recent processors, they communicate over the system bus

LAPIC and I/OAPIC

* LAPIC:

— Receives interrupts from 1/O APIC and routes it to the
local CPU

— Can also receive local interrupts (such as from
thermal sensor, internal timer, etc)

— Send and receive IPls (Inter processor interrupts)

 |Pls used to distribute interrupts between processors or
execute system wide functions like booting, load distribution,
etc.

« 1/O APIC

— Present in chipset (north bridge)
— Used to route external interrupts to local APIC

16

/O APIC Configuration in xv6

IO APIC : 82093AA 1/0O APIC

Function : ioapicinit (in ioapic.c)

All interrupts configured during boot up as
— Active high

— Edge triggered

— Disabled (interrupt masked)

Device drivers selectively turn on interrupts using
loapicenable
— Three devices turn on interrupts in xv6

« UART (uart.c)

+ IDE (ide.c)

« Keyboard (console.c)

ref ; ioapic.c [73], (http://www.intel.com/design/chipsets/datashts/29056601 .|

pdf) 7

LAPIC Configuration in xv6

1. Enable LAPIC and set the spurious IRQ (i.e.
the default IRQ)

2. Configure Timer
Initialize timer register (10000000)
Set to periodic

Initial count
10000000 » 9999999 » 9999998 .. 1

0t | 0

interrupt

ref : lapic.c (lapicinit) (7151)

What happens when there is an

By device
and APICs

By CPU<

Interrupt?

After current instruction completes

CPU senses interrupt line and obtains IRQ number
from LAPIC

Switch to kernel stack if necessary

/
Device asserts IRQ of I/OAPIC
I/O APIC transfer interrupt to LAPIC |------ >
LAPIC asserts CPU interrupts
L .

. Either special 3 wire APIC bus
. or system bus

By device
and APICs

T
CPU

automatically

Done in
software

19

What more happens when there is
an Interrupt?

: X86 saves the SS, ESP, EFLAGS,
., CS, EIP, error code on stack

' (restored by iret instruction).

- Suspends current task.

Basic program state saved

' How does hardware find the OS

Jump to interrupt handler » interrupt handler?
5 | Just do the important stuff like
i ... respond to interrupt
software Interrupt handler (top half) - > ... more storing of program state
' ... schedule the bottom half
l ... IRET
Restore flags and registers saved
Return from interrupt » earlier. Restore running task.
/ ' The work horse for the interrupt
software Interrupt handler (bottom half) - >

20

Stacks

 Each process has two - Kome st Dt
stacks
Kernel Stack

— a user space stack R —
— a kernel space stack

>
1e)
KOG B
"% GE)._ Heap
o< | =
&) o @9
3) User Stack
O @
e Data
Q o
o &
< 5 Text
(instructions)

Virtual Memory Map
21

Switching Stack

® (to switch or not to switch)

When event occurs OS executes
If executing user process, privilege changes from low to high
If already in OS no privilege change

Why switch stack?

OS cannot trust stack (SS and ESP) of user process

Therefore stack switch needed only when moving from user to
kernel mode

How to switch stack?

CPU should know locations of the new SS and ESP.
Done by task segment descriptor

Done automatically by CPU

22

To Switch or not to Switch

Executing in
Kernel space

No stack switch
Use the current stack

Executing in
User space

e Switch stack to a
kernel switch

How to switch stack?

Task State Segment

« Specialized segment for hardware
support for multitasking

« TSS stored in memory
— Pointer stored as part of GDT
— Loaded by instruction : ltir(SEG_TSS <<
3) in switchuvm()
* Important contents of TSS used to
find the new stack
— SS0 : the stack segment (in kernel)
— ESPO : stack pointer (in kernel)

1/0 bit map 64

60

58
50

‘ a8
EDI
ES|
EBP
ESP 38
EBX
EDX 30
ECX
EAX 28
EFLAGS

40

ref : (switchuvm) ([18],1873), taskstate ([08],0850)

24

® Saving Program State

Why?

» Current program being executed must be
able to resume after interrupt service is
completed

® Saving Program State

Done automatically by CPU

When no stack switch occurs
use existing stack

«— ESP before

EFLAGS
CS
EIP

Error Code |[«— ESP after

SS : No change
ESP : new frame pushed

Error code is only for some

exceptions. Contains additional
Information.

When stack switch occurs
also save the previous SS and ESP

«—— ESP before

Interrupted Procedure

Stack (in user space)

SS

ESP

EFLAGS

CS

Procedure’ s kernel stack

EIP

Error Code

«— ESP after

SS : from TSS (SS0)
ESP : from TSS (ESPO)

26

Finding the Interrupt/Exception
O Service Routine

IDT : Interrupt descriptor table .
Done automatically by
— Also called Interrupt vectors CPU

— Stored in memory and pointed to by IDTR
— Conceptually similar to GDT and LDT
— Initialized by OS at boot

IDTR Register
47 16 15 0
| IDT Base Address | IDT Limit
l Selected Descriptor =
Interrupt *
X Descriptor Table (IDT) Base Address + (Vector * 8)
NG —
N Gate for
Interrupt #n (n-1)+8
'
Gate for
Interrupt #3 16
Gate for
Interrupt #2 8
Gate for
- Interrupt #1 0
31 0

27

Interrupt Gate Descriptor

1 Segment present

points to offset in the segment 0 Segment absent
which contains the interrupt handler
(higher order bits) privilege level
n 16 15141312 8 7 5 4 0
Offset 31..16 pf,’ op110(000 4
L
31 16 15 0
Segment Selector Offset 15..0 0
points to a segment descriptor points to offset in the segment
for executable code in the GDT which contains the interrupt handler

(lower order bits)
ref : SETGATE (0921), gatedesc (0901) 28

Getting to the Interrupt Procedure

Destination
DT Code Segment
Interrupt
Offset Procedure
Interrupt Interrupt or >4+
Vector Trap Gate
(obtained from D
either the PIC or APIC) one .
automatically
-
IDTR o by CPU
Segment Selector
GDT or LDT
IDTR : pointer to IDT R s
table in memory
- Segment
- Descriptor
64 bytes

29

Setting up IDT in xv6

n 16 15 14 1312 8 7 5 4 0
D
Offset 31..16 Plep|lOD110|(0 00 4
L
31 16 15 0
Segment Selector Offset 15..0 0

« Array of 256 gate descriptors (idt)
 Each idt has

— Segment Selector : SEG_KCODE
» This is the offset in the GDT for kernel code segment

— Offset : (interrupt) vectors (generated by Script vectors.pl)
* Memory addresses for interrupt handler
» 256 interrupt handlers possible

 Load IDTR by instruction lidt

— The IDT table is the same for all processors.
— For each processor, we need to explicetly load lidt (idtinit())

ref : tvinit() (3317) and idtinit() (3329) in trap.c

30

Setting up IDT in xv6

tvinit invoked from main; idtinit invoked from mpmain [12]

3310 // Interrupt descriptor table (shared by all CPUs).

SETGATE(idt([i), 0, SEG_KCODE<<3, vectors[i], 0);
SETGATE(idt[T_SYSCALL), 1, SEG_KCODE<<3, vectors|T SYSCALL), DPL_USER);

// in vectors.S: array of 256 entry pointers

3311 struct gatedesc idt[256);

3312 extern uint vectors(];

3313 struct spinlock tickslock;

3314 uint ticks;

3315

3316 void

3317 tvinit(void)

3318 {

3319 int i;

3320

3321 for(i = 0; 1 < 256; i++)

3322

3323

3324

3325 initlock(&tickslock, "time");

3326) e

3327 0914

3328 void 0915

3329 idtinit(void) 0916

3330 { 0917

3331 lidt(idt, sizeof(idt)); 0918

3332) 0919
0920
0921

// Set up a normal interrupt/trap gate descriptor.

// - istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone

// - sel: Code segment selector for interrupt/trap handler

// - off: Offset in code segment for interrupt/trap handler

// - dpl: Descriptor Privilege Level -

/1 the privilege level required for software to invoke
/] this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

31

Interrupt Vectors in xv6

vectorO

vector1

vector2

vector i:
push
push i
Jmp alltraps

IS

Error code:

vector i

vector255

SS

ESP

EFLAGS

CS

EIP

Error Code

Trap number

Hardware pushes error
Code for some exceptions.
For others, xv6 pushes 0.

ref :

vectors.s [generated by vectors.pl (run $perl vectors.pl)] ([32]) 39

)

alltraps

Creates a trapframe
Stack frame used for
interrupt

\

Setup kernel data and code
segments

Invokes trap
(3350 [33])

3253 .globl alltraps
3254 aglltraps:
(3255 # Build trap frame.)
3256 pushl %ds
3257 pushl %es
3258 pushl %fs
3259 pushl %gs
\3260 _ pushal J
3261
3262 # Set up data and per-cpu segments.
(3263 movw $(SEG_KDATA<<3), %ax)
3264 movw %ax, %ds
32653 movw %ax, %es
3266 movw $(SEG_KCPU<<3), %ax
3267 movw %ax, %fs
\3268 movw %ax, %gs y,
3269
3270 # Call trap(tf), where tf=%esp
3271 pushl %esp
3272 call trap
3273 addl $4, %esp
3274
3275 # Return falls through to trapret...
3276 .globl trapret
3277 trapret:
3278 popal
3279 popl %gs
3280 popl %fs
3281 popl %es
3282 popl %ds
3283 addl $0x8, %esp # trapno and errcode
3284 iret

ref : trapasm.S [32] (alltraps), trap.c [33] (trap())

33

trapframe

SS

SS

ESP

EFLAGS

CS

EIP

Error Code —

Trap Number

ds

es

eax

ecXx

esi

edi

ESP—, ©sp

(empty)

p->kstack —

yoejs JI AjJuo

\ Y
alem)jos Ag

Ag

v
aljempJley

Pushed by
hardware or
software

argument for
trap
(pointer to this trapframe)

trapframe

ref : struct trapframe in x86.h (0602 [06])

34

0602

ublUZ
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
062

0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635

trapframe struct

struct trapframe {

// registers as pushed by pusha

uint edi;

uint esi;

uint ebp;

uint oesp; // useless & ignored
uint ebx;

uint edx;

uint ecx;

uint eax;

/ rest of trap frame

ushort gs;

ushort paddingl;
ushort fs;

ushort padding2;
ushort es;

ushort padding3;
ushort ds;

ushort paddingé;

uint trapno;

'/ below here defined by x86 hardware
uint err;

uint eip;

ushort cs;

ushort padding5;

uint eflags;

o
I
b
m Q
=
-
m
—
1]
[}
=]
H
bt
=
o2
I
=]
0

’
ushort ss;
ushort padding6;

rossing rings, such as from user to

kernel

SS

ESP

EFLAGS

CS

EIP

Error Code

Trap Number

ds

es

eax

ecX

esi

edi

esp

(empty)

35

@ Interrupt Handlers

* Typical Interrupt Handler
— Save additional CPU context (written in assembly)
(done by alltraps in xv6)
— Process interrupt (communicate with 1/O devices)
— Invoke kernel scheduler
— Restore CPU context and return (written in assembly)

36

Interrupt Latency

time needed to service an interrupt

. .

o i

>

o :

Q

g3 i

S i~ Userprocess 1 ‘ User process 2

o :
interrupt Interrupt handler executes
... ;tlme

Interrupt latency can be significant

37

Importance of Interrupt Latency

* Real time systems

— OS should ‘guarantee’ interrupt latency is less than a
specified value

 Minimum Interrupt Latency
— Mostly due to the interrupt controller

 Maximum Interrupt Latency
— Due to the OS

— Occurs when interrupt handler cannot be serviced
Immediately

* Eg. when OS executing atomic operations, interrupt handler
would need to wait till completion of atomic operations.

Atomic Operations

Interrupt handler

Global variable :
int x;

Kernel code Kernel code

/ interrupt

for(i=0; | < 1000; ++i)
X+ X=X*95

Value of x depends on whether an interrupt occurred or not!

Solution : make the part of code atomic (i.e. disable interrupts while executing
this code)

Nested Interrupts

Interrupt handler 2

Interrupt handler 1

interrupt

Kernel code Kernel code

interrupt
Typically interrupts disabled until handler executes
— This reduces system responsiveness
To improve responsiveness, enable Interrupts within handlers
— This often causes nested interrupts
— Makes system more responsive but difficult to develop and validate

Linux Interrupt handler approach: design interrupt handlers to be
small so that nested interrupts are less likely

Small Interrupt Handlers

* Do as little as possible in the interrupt
handler

— Often just queue a work item or set a flag
» Defer non-critical actions till later

Top and Bottom Half Technique
(Linux)

* Top half : do minimum work and return from
interrupt handler

— Saving registers
— Unmasking other interrupts
— Restore registers and return to previous context

» Bottom half : deferred processing
— eg. Workqueue
— Can be interrupted

Interrupt Handlers in xv6

vectors.S

alltraps
(alltraps.S)

trap
(trap.c)

(3350)

Interrupt s
>~ specific
handler

Example

(Keyboard Interrupt in xv6)

» Keyboard connected to
second interrupt line in
8259 master

 Mapped to vector 33 in xv6
(T_IRQO + IRQ_KBD).

 In function trap, invoke
keyboard interrupt
(kbdintr), which is
redirected to consleintr

System Timer

. 0 o

- ———— N
Keyboard !
2

>
3

Serial Devices

>

Serial Devices

4

Parallel Devices

Floppy Drives

Parallel Devices

8259

INT

CMOS Clock

Available

Available

Available

Available

Math Processor

Primary HD

Secondary HO

8259

Keyboard Interrupt Handler

consoleintr (console.c)

get pressed character (kbdgetc (kbd.c0)

Service special characters

Push into circular buffer

talks to keyboard through
specific predifined io ports

segment where data is written

read pointer write pointer
N /
r W

segment where data is NOT written

System Calls and Exceptions

Events

Events

v

Interrupts

|
|

1

v

Exceptions

Hardware Interrupts

Software Interrupts

47

Hardware vs Software

Hardware Interrupt

Device

-

* A device (like the PIC)
asserts a pin in the CPU

INT

Interrupt

Software Interrupt

INT x

 An instruction which
when executed causes
an interrupt

48

Software Interrupt

Software interrupt used
for implementing
system calls

— In Linux INT 128, is
used for system calls

— In xv6, INT 64 is used
for system calls

Process

ﬁSystem Calls
INT 64

Kernel

49

Example (write system call)

printf("%s", str);

libc invocation

User |
space Write(STDOUT) |

int

Int Handler

Kernel
space

Implementation
of
write syscall

System call processing in kernel

Almost similar to hardware interrupts

INT 64

|

‘vectors.S

alltraps
(alltraps.S)

trap
(trap.c)

if vector = 64

Back to user
process

syscall
(syscall.c)

Executes the
System calls

51

System Calls in xv6

System call

tork()

exit()

wait()

kill(pid)

getpid()

sleep(n)
exec(filename, *argv)
sbrk(n)
open(filename, flags)
read(td, buf, n)
write(td, buf, n)
close(td)

dup(td)

pipe(p)
chdir(dirname)
mkdir(dirname)

mknod(name, major, minor)

fstat(fd)
link(f1, 12)
unlink(filename)

Description

Create process

Terminate current process

Wait for a child process to exit
Terminate process pid

Return current process's id

Sleep for n seconds

Load a file and execute it

Grow process’s memory by n bytes
Open a file; flags indicate read/write
Read n byes from an open file into buf
Write n bytes to an open file
Release open file td

Duplicate fd

Create a pipe and return fd’s in p
Change the current directory
Create a new directory

Create a device file

Return info about an open file
Create another name (£2) for the file 1
Remove a file

How does the
OS distinguish
between the system
calls?

52

System Call Number

System call number used to distinguish between system calls

call number

mov xf %eax
INT 64

Based on the system call number
function syscall invokes the
corresponding syscall handler

System

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SYS fork
SYS exit
SYS wait
SYS pipe
SYS read
SYS kill
SYS exec
SYS fstat
SYS chdir
SYS dup
SYS getpid
SYS sbrk
SYS sleep
SYS uptime
SYS open
SYS write
SYS mknod
SYS unlink
SYS link
SYS mkdir
SYS close

System call numbers

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
Pl

System call handlers

[SYS fork]
[SYS exit]
[SYS wait]
[SYS pipe]
[SYS read]
[SYS kill]
[SYS exec]
[SYS fstat]
[SYS chdir]
[SYS dup]
[SYS getpid]
[SYS sbrk]
[SYS sleep]
[SYS uptime]
[SYS open]
[SYS write]
[SYS mknod]
[SYS unlink]
[SYS link]
[SYS mkdir]
[SYS close]

(U D D I O

éys fork:rv

sys exit,
sys wait,
sys pipe,
sys read,
sys kill,
sys exec,
sys fstat,
sys chdir,
sys dup,
sys getpid,
sys sbrk,
sys sleep,
sys uptime,
sys open,
sys write,
sys mknod,
sys unlink,
sys link,
sys mkdir,
sys close,

ref : syscall.h, syscall() in syscall.c

53

Prototype of a typical System Call

int system_call(resource_descriptor, parameters)

return is generally
‘int" (or equivalent)

sometimes ‘void’ What OS resource is the target
here?

int used to denote completion For example a file, device, etc.

status of system call sometimes

also has additional information If not Specified, genera”y means

like number of bytes written to the current process

file

System call specific parameters
passed.
How are they passed?

54

Passing Parameters
iIn System Calls

* Passing parameters to system calls not similar to
passing parameters in function calls

— Recall stack changes from user mode stack to kernel
stack.
* Typical Methods
— Pass by Registers (eg. Linux)
— Pass via user mode stack (eg. xv6)
« Complex

— Pass via a designated memory region
« Address passed through registers

55

Pass By Registers (Linux)

« System calls with fewer than 6 parameters
passed in registers

— %eax (sys call number), %ebx, %ecx,, %esi, %edi,
%ebp

 |f 6 or more arguments
— Pass pointer to block structure containing argument
list
« Max size of argument is the register size (eg. 32
bit)

— Larger pointers passed through pointers

56

Pass via User Mode Stack (xv6)

User process

push param1

push param?2

push param3

mov sysnum, %eax
int 64

User stack

trapframe

param1

SS

param?2

ESP

param3

EFLAGS

/

CS

EIP

Error Code

Trap Number

ds

es

eax

ecX

esi

edi

ESP

(empty)

ESP pushed by hardware
contains user mode stack

pointer

proc entry
for process

Points to trapframe

ref : sys_open (sysfile.c), argint, fetchint (syscall.c)

o7

Returns from System Calls

User process

push param1

push param?2

push param3

mov sysnum, %eax
int 64

Return value
register EAX b\o oot ¥

trapframe

SS

ESP

in system call

EFLAGS

CS

EIP

move result to eax in
trap frame

Error Code

Trap Number

ds

es

eax

ecX

esi

edi

ESP

(empty)

58

Events

Events

v

Interrupts

|
|

1

v

Exceptions

Hardware Interrupts

Software Interrupts

59

Exception Sources

— Program-Error Exceptions
« Eg. divide by zero
— Software Generated Exceptions
« Example INTO, INT 3, BOUND
« INT 3 is a break point exception
* INTO overflow instruction
« BOUND, Bound range exceeded
— Machine-Check Exceptions

« Exception occurring due to a hardware error (eg. System bus error,
parity errors in memory, cache memory errors)

STOP: Ox0000009C (©x00000004, Ox00000000, OxB20000OO, 0x00020151) "MACHINE_CHECK_EXCEPTION"

Microsoft Windows : Machine check exception

60

Exception Types

Exceptions

Faults

Exceptions in the user space vs kernel space

Traps

Aborts

61

Faults

Exception that generally can be corrected.
Once corrected, the program can continue execution.

Examples :

Divide by zero error
Invalid Opcode
Device not available
Segment not present
Page not present

62

Traps

Traps are reported immediately after the
execution of the trapping instruction.

Examples:
Breakpoint
Overflow

Debug instructions

63

Aborts

Severe unrecoverable errors

Examples

Double fault : occurs when an exception is
unhandled or when an exception occurs while
the CPU is trying to call an exception handler.

Machine Check : internal errors in hardware

detected. Such as bad memory, bus errors,
cache errors, etc.

64

