
CPU Scheduling

Chester Rebeiro
IIT Madras

Execution phases of a process

2

Types of Processes

3

CPU Scheduler

Scheduler triggered to run when timer interrupt occurs or when
running process is blocked on I/O
Scheduler picks another process from the ready queue
Performs a context switch

Running
Process

CPU
Scheduler

Queue of Ready Processes

interrupt
every 100ms

4

Schedulers

•  Decides which process should run next.
•  Aims,

–  Minimize waiting time
•  Process should not wait long in the ready queue

–  Maximize CPU utilization
•  CPU should not be idle

–  Maximize throughput
•  Complete as many processes as possible per unit time

–  Minimize response time
•  CPU should respond immediately

–  Fairness
•  Give each process a fair share of CPU

5

FCFS Scheduling
(First Come First Serve)

•  First job that requests the CPU gets the CPU
•  Non preemptive

–  Process continues till the burst cycle ends

•  Example

6

FCFS Example

Process Arrival
Time

Burst
Time

P1 0 7
P2 0 4
P3 0 2
P4 0 5

Grantt Chart

time

Average Waiting Time
= (0 + 7 + 11 + 13) / 4
= 7.75

Average Response Time
= (0 + 7 + 11 + 13) / 4
= 7.75
(same as Average Waiting Time)

P1 P2 P3 P4

7

FCFS Example

•  Order of scheduling matters

Process Arrival
Time

Burst
Time

P1 0 7
P2 0 4
P3 0 2
P4 0 5

Grantt Chart

time

Average Waiting Time
= (0 + 4 + 6 + 11) / 4
= 5.25

P1 P2 P3 P4

8

FCFS Pros and Cons

•  Advantages
–  Simple
–  Fair (as long as no process hogs the CPU, every

process will eventually run)

•  Disadvantages
–  Waiting time depends on arrival order
–  short processes stuck waiting for long process to

complete

9

Shortest Job First (SJF)
 no preemption

•  Schedule process with the shortest burst time
–  FCFS if same

•  Advantages
–  Minimizes average wait time and average response

time
•  Disadvantages

–  Not practical : difficult to predict burst time
•  Learning to predict future

–  May starve long jobs

10

SJF (without preemption)
Process Arrival

Time
Burst
Time

P1 0 7
P2 2 4
P3 4 2
7 8 1

Grantt Chart

P1 P2 P3 P4

P1 P2 P3 P4

Arrival

Schedule

Average wait time
= (0 + 8 + 4 + 0) / 4
= 3

Average response time
= (Average wait time)

11

1 7 8 9

Shortest Remaining Time First -- SRTF
(SJF with preemption)

•  If a new process arrives with a shorter burst time than
remaining of current process then schedule new process

•  Further reduces average waiting time and average
response time

•  Not practical

12

SRTF Example
Process Arrival

Time
Burst
Time

P1 0 7
P2 2 4
P3 4 2
P4 7 1

Grantt Chart

P1 P2 P3 P4

P1 P2 P3

Arrival

Schedule

Average wait time
= (7 + 0 + 2 + 1) / 4
= 2.5

Average response time
= (0 + 0 + 2 + 1) / 4
= 0.75

P2 burst is 4, P1 remaining is 5
(preempt P1)

P3 burst is 2, P2 remaining is 2
(no preemption)

13

P4 P1

Round Robin Scheduling

•  Run process for a time slice then move to
FIFO

14

Round Robin Scheduling

Process Arrival
Time

Burst
Time

P1 0 7
P2 2 4
P3 3 2
P4 9 1

P1 P2 P3 P4

P1 P2 P1 P3 P2 P1 P4 P1

P1 P1
P3

P3
P2

P2
P1

P1 P1
P4

P4
P1

P1

Arrival

schedule

FIFO

Average Waiting time
= (7 + 4 + 3 + 3) / 4
= 4.25

Average Response Time
= (0 + 0 + 3 + 3) / 4
= 1.5

#Context Switches = 7

Time slice = 2

15

16

Why Number of Context Switches
Matter

1 2 3 4 1 2 3 4 4

Time slice / time quanta

time

context switching

P1 P2

scheduler

1

2

3

4,5

6

7

3

Context switch time could be significant

Recall
Context Switching Overheads

•  Direct Factors affecting context switching time
–  Timer Interrupt latency
–  Saving/restoring contexts
–  Finding the next process to execute

•  Indirect factors
–  TLB needs to be reloaded
–  Loss of cache locality (therefore more cache misses)
–  Processor pipeline flush

17

Example (smaller timeslice)
Process Arrival

Time
Burst
Time

P1 0 7
P2 2 4
P3 3 2
P4 9 1

P1 P2 P3 P4

P1 P2 P1 P3 P2 P1 P3 P2 P1 P4 P2 P1 P1

P1 P3
P2

P2
P1

P1
P3

P3
P2

P2
P1

P1 P4
P2

P2
P1

P1

Arrival

schedule

FIFO

Average Waiting time
= (7 + 6 + 3 + 1) / 4
= 4.25

Average Response Time
= (0 + 0 + 1 + 1) / 4
= 1/2

#Context Switches = 11

Time slice = 1

18 More context switches but quicker response times

Example (larger timeslice)
Process Arrival

Time
Burst
Time

P1 0 7
P2 2 4
P3 3 2
P4 9 1

P1 P2 P3 P4

P1 P2 P3 P4

P2 P2
P3

P2
P3

P3
P1

P3
P1

P3
P1

P3
P1

P4
P1

P4
P1

P1

Arrival

schedule

FIFO

Average Waiting time
= (7 + 3 + 6 + 2) / 4
= 4.25

Average Response Time
= (0 + 3 + 6 + 2) / 4
= 2.75

#Context Switches = 4

Time slice = 5

19 Lesser context switches but looks more like FCFS (bad response time)

Round Robin Scheduling

•  Advantages
–  Fair (Each process gets a fair chance to run on the

CPU)
–  Low average wait time, when burst times vary
–  Faster response time

•  Disadvantages
–  Increased context switching

•  Context switches are overheads!!!

–  High average wait time, when burst times have equal
lengths

20

xv6 Scheduler Policy
Decided by the
Scheduling Policy

21

The xv6 schedule
Policy
--- Strawman Scheduler
•  organize processes in a list
•  pick the first one that

is runnable
•  put suspended task the

 end of the list
Far from ideal!!
•  only round robin
 scheduling policy
•  does not support
 priorities

Priority Based Scheduling
Algorithms

22

Chester Rebeiro
IIT Madras

Relook at Round Robin Scheduling

Process Arrival
Time

Burst
Time

P1 0 7
P2 2 4
P3 3 2
P4 9 1

P1 P2 P3 P4

P1 P2 P1 P3 P2 P1 P3 P2 P1 P4 P2 P1 P1

Arrival

schedule

Time slice = 1

23

Process P2 is a critical process while
process P1, P3, and P4 are less critical

Process P2 is delayed considerably

Priorities

Process Arrival
Time

Burst
Time

P1 0 7
P2 2 4
P3 3 2
P4 9 1

P1 P2 P3 P4

P1 P2 P1

Arrival

schedule

Time slice = 1

24

Process P2 is a critical process while
process P1, P3, and P4 are less critical

We need a higher priority for P2,
compared with the other processes

This leads to priority based scheduling
algorithms

Starvation

Process Arrival
Time

Burst
Time

P1 0 8
P2 2 4
P3 3 2
P4 9 1

P1 P2 P3 P4

P1 P2 P1

Arrival

schedule

Time slice = 1

25

Low priority process may never get a
chance to execute.

P4 is a low priority process

Priority based Scheduling
•  Priority based Scheduling

–  Each process is assigned a priority
•  A priority is a number in a range (for instance between 0 and 255)
•  A small number would mean high priority while a large number would mean

low priority

–  Scheduling policy : pick the process in the ready queue having
the highest priority

–  Advantage : mechanism to provide relative importance to
processes

–  Disadvantage : could lead to starvation of low priority processes

26

Dealing with Starvation
•  Scheduler adjusts priority of processes to ensure that

they all eventually execute
•  Several techniques possible. For example,

–  Every process is given a base priority
–  After every time slot increment the priority of all other process

•  This ensures that even a low priority process will eventually
execute

–  After a process executes, its priority is reset

27

Priorities are of two types
•  Static priority : typically set at start of execution

–  If not set by user, there is a default value (base priority)

•  Dynamic priority : scheduler can change the process priority
during execution in order to achieve scheduling goals
–  eg1. decrease priority of a process to give another process a

chance to execute
–  eg.2. increase priority for I/O bound processes

28

Priority based Scheduling
with large number of processes

•  Several processes get assigned the same
base priority
– Scheduling begins to behave more like round

robin

29

Process Arrival
Time

Burst
Time

Priority

P1 0 8 1
P2 2 4 1
P3 3 2 1
P4 9 1 1

Multilevel Queues
•  Processes assigned to a priority

classes
•  Each class has its own ready

queue
•  Scheduler picks the highest

priority queue (class) which has
at least one ready process

•  Selection of a process within the
class could have its own policy

–  Typically round robin (but can be
changed)

–  High priority classes can implement
first come first serve in order to
ensure quick response time for critical
tasks

30

More on Multilevel Queues

•  Scheduler can adjust time slice based on the
queue class picked
–  I/O bound process can be assigned to higher priority

classes with longer time slice
–  CPU bound processes can be assigned to lower

priority classes with shorter time slices
•  Disadvantage :

–  Class of a process must be assigned apriori
 (not the most efficient way to do things!)

31

Multilevel feedback Queues
•  Process dynamically moves between priority classes

based on its CPU/ IO activity
•  Basic observation

–  CPU bound process’ likely to complete its entire timeslice
–  IO bound process’ may not complete the entire time slice

32

1 2 3 4 1 2 3 4 4

time

3

Process 1 and 4 likely CPU bound
Process 2 likely IO bound

Multilevel feedback Queues
(basic Idea)

•  All processes start in the highest
priority class

•  If it finishes its time slice (likely
CPU bound)
–  Move to the next lower priority

class
•  If it does not finish its time slice

(likely IO bound)
–  Keep it on the same priority class

•  As with any other priority based
scheduling scheme, starvation
needs to be dealt with

33

Gaming the System

•  A compute intensive process can trick the
scheduler and remain in the high priority queue
(class)

34

while(1){
 do some work for most of the time slice
 sleep(till the end of the time slice)
}

1 2 3 4 1 2 3 4 4

time

3

Process 4 is gaming
the system

Sleep will force a context switch

35

Multiprocessor Scheduling

RAM

Process 1 Process 2 Process 3 Process 4

Process
1

Process
2

Process
3

Process
4

CPU
0

CPU
1

CPU
2

CPU
3

Process Migration

•  As a result of symmetrical multiprocessing
–  A process may execute in a processor in one

timeslice and another processor in the next time slice
–  This leads to process migration

•  Migration is expensive, it requires all memories to be repopulated
•  Processor affinity

–  Process has a bitmask that tells what processors it
can run on

•  Two types of processor affinity
–  Hard affinity – strict affinity to specific processors
–  Soft affinity

36

37

Multiprocessor Scheduling
with a single scheduler

RAM

Process 1 Process 2 Process 3 Process 4

Process
1

Process
2

Process
3

Process
4

Strawman approach!!
One processor decides for everyone

scheduler

CPU
0

CPU
1

CPU
2

CPU
3

38

Multiprocessor Scheduling
(Symmetical Scheduling)

RAM

Process 1 Process 2 Process 3 Process 4

Process
1

Process
2

Process
3

Process
4

Each processor runs
a scheduler independently
to select the process to
execute

Requires locking to
access the queues

scheduler scheduler scheduler scheduler

CPU
0

CPU
1

CPU
2

CPU
3

Two variants,
•  Global queues
•  Per CPU queues

Symmetrical Scheduling
(with global queues)

39

Global queues of runnable processes

Advantages
Good CPU Utilization
Fair to all processes

Disadvantages
Not scalable
 (contention for the global queue)
Processor affinity not easily achieved
Locking needed in scheduler
 (not a good idea. Schedulers need
 to be highly efficient)

CPU
0

CPU
1

CPU
2

CPU
3

 Used in Linux 2.4, xv6

Symmetrical Scheduling
(with per CPU queues)

•  Static partition of processes across CPUs

40

CPU
0

CPU
1

CPU
2

CPU
3

Advantages
Easy to implement
Scalable (no contention)
Locality

Disadvantages
Load imbalance

Hybrid Approach
•  Use local and global

queues
•  Load balancing across

queues feasible
•  Locality achieved by

processor affinity wrt
the local queues

•  Similar approach
followed in Linux 2.6

41

CPU
0

CPU
1

CPU
2

CPU
3

Load Balancing

•  On SMP systems, one processor may be
overworked, while another underworked

•  Load balancing attempts to keep the workload
evenly distributed across all processors

•  Two techniques
–  Push Migration : A special task periodically monitors

load of all processors, and redistributes work when it
finds an imbalance

–  Pull Migration : Idle processors pull a waiting task
from a busy processor

42

Scheduling in Linux

Chester Rebeiro
IIT Madras

Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel, 3rd Edition

Process Types
•  Real time

–  Deadlines that have to be met
–  Should never be blocked by a low priority task

•  Normal Processes
–  Interactive

•  Constantly interact with their users, therefore spend a lot of time waiting for
key presses and mouse operations.

•  When input is received, the process must wake up quickly (delay must be
between 50 to 150 ms)

–  Batch
•  Do not require any user interaction, often run in the background.

44

Process Types
•  Real time

–  Deadlines that have to be met
–  Should never be blocked by a low priority task

•  Normal Processes
–  Interactive

•  Constantly interact with their users, therefore spend a lot of time waiting for
key presses and mouse operations.

•  When input is received, the process must wake up quickly (delay must be
between 50 to 150 ms)

–  Batch
•  Do not require any user interaction, often run in the background.

45

Once a process is specified real
time, it is always considered a real

time process

Process Types
•  Real time

–  Deadlines that have to be met
–  Should never be blocked by a low priority task

•  Normal Processes
–  Interactive

•  Constantly interact with their users, therefore spend a lot of time waiting for
key presses and mouse operations.

•  When input is received, the process must wake up quickly (delay must be
between 50 to 150 ms)

–  Batch
•  Do not require any user interaction, often run in the background.

46

A process may act as an interactive
process for some time and then

become a batch process.

Linux uses sophisticated heuristics
based on past behavior of the

process to decide whether a given
process should be considered

interactive or batch

History
(Schedulers for Normal Processors)

•  O(n) scheduler
– Linux 2.4 to 2.6

•  O(1) scheduler
– Linux 2.6 to 2.6.22

•  CFS scheduler
– Linux 2.6.23 onwards

47

O(n) Scheduler
•  At every context switch

–  Scan the list of runnable processes
–  Compute priorities
–  Select the best process to run

•  O(n), when n is the number of runnable processes … not scalable!!
–  Scalability issues observed when Java was introduced (JVM spawns

many tasks)
•  Used a global run-queue in SMP systems

–  Again, not scalable!!

48

Queue of Ready Processes

O(1) scheduler

•  Constant time required to pick the next process to

execute
–  easily scales to large number of processes

•  Processes divided into 2 types
–  Real time

•  Priorities from 0 to 99
–  Normal processes

•  Interactive
•  Batch
•  Priorities from 100 to 139 (100 highest, 139 lowest priority)

49

Scheduling Normal Processes
•  Two ready queues in each CPU

–  Each queue has 40 priority classes (100 – 139)
–  100 has highest priority, 139 has lowest priority

50

100

101

102
:

:

138

139

pr
io

rit
y

Active Run queues

100

101

102
:

:

138

139

Expired Run queues

pr
io

rit
y

low

high

The Scheduling Policy
•  Pick the first task from the lowest numbered run queue
•  When done put task in the appropriate queue in the

expired run queue

51

100

101

102
:

:

138

139

Active Run queues

100

101

102
:

:

138

139

Expired Run queues

pr
io

rit
y

execute

The Scheduling Policy

•  Once active run queues are complete
–  Make expired run queues active and vice versa

52

100

101

102
:

:

138

139

pr
io

rit
y

Active Run queues

100

101

102
:

:

138

139

Expired Run queues

pr
io

rit
y

low

high

contant time?
•  There are 2 steps in the scheduling

1.  Find the lowest numbered queue with at least 1 task
2.  Choose the first task from that queue

•  step 2 is obviously constant time
•  Is step 1 contant time?

•  Store bitmap of run queues with non-zero entries
•  Use special instruction ‘find-first-bit-set’

–  bsfl on intel

53

More on Priorities
•  0 to 99 meant for real time processes
•  100 is the highest priority for a normal process
•  139 is the lowest priority
•  Static Priorities

–  120 is the base priority (default)
–  nice : command line to change default priority of a process
 $nice –n N ./a.out
–  N is a value from +19 to -20;

•  most selfish ‘-20’; (I want to go first)
•  most generous ‘+19’; (I will go last)

54

Dynamic Priority
•  To distinguish between batch and interactive processes
•  Uses a ‘bonus’, which changes based on a heuristic

dynamic priority = MAX(100, MIN(static priority – bonus + 5), 139))

55

Based on
a heuristic

Has a value between 0 and 10

If bonus < 5, implies less interaction with the user
 thus more of a CPU bound process.
 The dynamic priority is therefore decreased (toward 139)

If bonus > 5, implies more interaction with the user
 thus more of an interactive process.
 The dynamic priority is increased (toward 100).

Dynamic Priority
(setting the bonus)

•  To distinguish between batch and interactive processes
•  Based on average sleep time

–  An I/O bound process will sleep more therefore should get a higher
priority

–  A CPU bound process will sleep less, therefore should get lower priority

dynamic priority = MAX(100, MIN(static priority – bonus + 5), 139))

56

Dynamic Priority and
Run Queues

•  Dynamic priority used to determine which run queue to
put the task

•  No matter how ‘nice’ you are, you still need to wait on
run queues --- prevents starvation

57

100

101

102
:

:

138

139

Active Run queues

100

101

102
:

:

138

139

Expired Run queues

execute

•  Interactive processes have high priorities.
–  But likely to not complete their timeslice
–  Give it the largest timeslice to ensure that it completes its burst without

being preempted. More heuristics

If priority < 120
time slice = (140 – priority) * 20 milliseconds

else
time slice = (140 – priority) * 5 milliseconds

Setting the Timeslice

58

Summarizing the O(1)
Scheduler

•  Multi level feed back queues with 40 priority
classes

•  Base priority set to 120 by default; modifiable by
users using nice.

•  Dynamic priority set by heuristics based on
process’ sleep time

•  Time slice interval for each process is set based
on the dynamic priority

59

Limitations of O(1) Scheduler
•  Too complex heuristics to distinguish between interactive and non-

interactive processes
•  Dependence between timeslice and priority
•  Priority and timeslice values not uniform

60

Completely Fair Scheduling
(CFS)

•  The Linux scheduler since 2.6.23
•  By Ingo Molnar

–  based on the Rotating Staircase Deadline Scheduler (RSDL) by Con
Kolivas.

–  Incorporated in the Linux kernel since 2007
•  No heuristics.
•  Elegant handling of I/O and CPU bound processes.

61

Completely Fair Scheduling
(CFS)

62

Ideal Fair Scheduling
Process burst

time
A 8ms
B 4ms
C 16ms
D 4ms

63

Ideal Fairness : If there are N processes in
the system, each process should have got
(100/N)% of the CPU time

Ideal Fairness

A 1 2 3 4 6 8

B 1 2 3 4

C 1 2 3 4 6 8 12 16

D 1 2 3 4

4ms slice
execution with respect to time

Divide processor time equally among processes

Ideal Fair Scheduling
Process burst

time
A 8ms
B 4ms
C 16ms
D 4ms

64

Ideal Fairness : If there are N processes in
the system, each process should have got
(100/N)% of the CPU time

Ideal Fairness

A 1 2 3 4 6 8

B 1 2 3 4

C 1 2 3 4 6 8 12 16

D 1 2 3 4

4ms slice
execution with respect to time

Divide processor time equally among processes

Each process gets
4/4 = 1ms of the processor time

Ideal Fair Scheduling
Process burst

time
A 8ms
B 4ms
C 16ms
D 4ms

65

Ideal Fairness : If there are N processes in
the system, each process should have got
(100/N)% of the CPU time

Ideal Fairness

A 1 2 3 4 6 8

B 1 2 3 4

C 1 2 3 4 6 8 12 16

D 1 2 3 4

4ms slice
execution with respect to time

Divide processor time equally among processes

Each process gets
4/2 = 2ms of the processor time

Ideal Fair Scheduling
Process burst

time
A 8ms
B 4ms
C 16ms
D 4ms

66

Ideal Fairness : If there are N processes in
the system, each process should have got
(100/N)% of the CPU time

Ideal Fairness

A 1 2 3 4 6 8

B 1 2 3 4

C 1 2 3 4 6 8 12 16

D 1 2 3 4

4ms slice
execution with respect to time

Divide processor time equally among processes

The single process gets the entire
4ms of the processor time

Virtual Runtimes

•  With each runnable process is included a
virtual runtime (vruntime)
– At every scheduling point, if process has run

for t ms, then (vruntime += t)
– vruntime for a process therefore

monotonically increases

67

The CFS Idea

•  When timer interrupt occurs
–  Choose the task with the lowest vruntime

(min_vruntime)
–  Compute its dynamic timeslice
–  Program the high resolution timer with this timeslice

•  The process begins to execute in the CPU
•  When interrupt occurs again

–  Context switch if there is another task with a smaller
runtime

68

Picking the Next Task to Run
•  CFS uses a red-black tree.

–  Each node in the tree represents a
runnable task

–  Nodes ordered according to their vruntime
–  Nodes on the left have lower vruntime

compared to nodes on the right of the tree
–  The left most node is the task with the

least vruntime
•  This is cached in min_vruntime

69

min_vruntime

Picking the Next Task to Run

•  At a context switch,

–  Pick the left most node of the tree
•  This has the lowest runtime.
•  It is cached in min_vruntime. Therefore

accessed in O(1)
–  If the previous process is runnable, it is

inserted into the tree depending on its
new vruntime. Done in O(log(n))

•  Tasks move from left to right of tree after
its execution completes… starvation
avoided

70

min_vruntime

Why Red Black Tree?

•  Self Balancing
–  No path in the tree will be twice as long as any other path

•  All operations are O(log n)
–  Thus inserting / deleting tasks from the tree is quick and efficient

71

Priorities and CFS
•  Priority (due to nice values) used to weigh the vruntime

•  if process has run for t ms, then
 vruntime += t * (weight based on nice of process)

•  A lower priority implies time moves at a faster rate
compared to that of a high priority task

72

I/O and CPU bound processes

•  What we need,
–  I/O bound should get higher priority and get a longer

time to execute compared to CPU bound
–  CFS achieves this efficiently

•  I/O bound processes have small CPU bursts therefore will
have a low vruntime. They would appear towards the left of
the tree…. Thus are given higher priorities

•  I/O bound processes will typically have larger time slices,
because they have smaller vruntime

73

New Process

•  Gets added to the RB-tree
•  Starts with an initial value of

min_vruntime..
•  This ensures that it gets to execute quickly

74

Thank You

75

