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Virtual Memory View 
•  During execution, each process can only view its virtual addresses,  
•  It cannot 

–  View another processes virtual address space 
–  Determine the physical address mapping 
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Inter Process Communication 
•  Advantages of Inter Process Communication (IPC) 

–  Information sharing 
–  Modularity/Convenience 

•  3 ways 
–  Shared memory 
–  Message Passing 

–  Signals 
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Shared Memory 
•  One process will create an area in RAM which 

the other process can access 
•  Both processes can access shared memory like 

a regular working memory 
–  Reading/writing is like regular reading/writing 
–  Fast 

•  Limitation : Error prone. Needs synchronization 
between processes 

Process 1 
 
 

Process 2 
 
 

Shared  
memory 

userspace 
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Shared Memory in Linux 
•  int shmget (key, size, flags) 

–  Create a shared memory segment; 
–  Returns ID of segment : shmid 
–  key : unique identifier of the shared memory segment 
–  size : size of the shared memory (rounded up to the 

PAGE_SIZE) 
•  int shmat(shmid, addr, flags) 

–  Attach shmid shared memory to address space of the 
calling process 

–  addr : pointer to the shared memory address space 
•  int shmdt(shmid) 

–  Detach shared memory 
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Example 
server.c client.c 
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Message Passing 
•  Shared memory created in the kernel 
•  System calls such as send and receive 

used for communication 
–  Cooperating : each send must have a 

receive 

•  Advantage : Explicit sharing, less error 
prone 

•  Limitation : Slow. Each call involves 
marshalling / demarshalling of 
information 

Process 1 
 
 

Process 2 
 
 

Shared  
memory 

Kernel 

userspace 
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Pipes 
–  Always between parent and child 
–  Always unidirectional 
–  Accessed by two associated file descriptors: 

•  fd[0] for reading from pipe  
•  fd[1] for writing to the pipe 
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Pipes for two way 
communication 

•  Two pipes opened 
pipe0 and pipe1 

•  Note the unnecessary 
pipes 

•  Close the unnecessary 
pipes 
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Example 
(child process sending a string to parent) 
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Signals  

•  Asynchronous unidirectional communication 
between processes 

•  Signals are a small integer 
–  eg. 9: kill, 11: segmentation fault 

•  Send a signal to a process 
–  kill(pid, signum) 

•  Process handler for a signal 
–  sighandler_t signal(signum, handler); 
–  Default if no handler defined 

ref : http://www.comptechdoc.org/os/linux/programming/linux_pgsignals.html 
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Synchronization 

Chester Rebeiro 
IIT Madras 
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Motivating Scenario 

•  Single core 
–  Program 1 and program 2 are executing at the same time but sharing a 

single core 

{ 
   * 
   * 
counter++ 
   * 
} 

{ 
  * 
  * 
counter-- 
  * 
} 

program 0 program 1 int counter=5; 
shared variable 

1 2 1 2 1 2 1 2 

CPU usage wrt time 
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Motivating Scenario 

•  What is the value of counter? 
– expected to be 5 
– but could also be 4 and 6 

{ 
   * 
   * 
counter++ 
   * 
} 

{ 
  * 
  * 
counter-- 
  * 
} 

program 0 program 1 int counter=5; 
Shared variable 
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Motivating Scenario 

{ 
   * 
   * 
counter++ 
   * 
} 

{ 
  * 
  * 
counter-- 
  * 
} 

program 0 program 1 int counter=5; 
Shared variable 

R1 ß counter 
R1 ß R1 + 1 
counter ßR1 
R2 ß counter 
R2 ß R2 - 1 
counter ßR2 

context 
switch 

counter = 5 

R1 ß counter 
R2 ß counter 
R2 ßR2 - 1 
counter ßR2 
R1 ß R1 + 1 
counter ß R1 

counter = 6 

R2 ß counter 
R2 ß counter 
R2 ßR2 + 1 
counter ßR2 
R2 ß R2 - 1 
counter ß R2 

counter = 4 
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Race Conditions 
•  Race conditions 

–  A situation where several processes access and manipulate the 
same data (critical section) 

–  The outcome depends on the order in which the access take 
place 

–  Prevent race conditions by synchronization 
•  Ensure only one process at a time manipulates the critical data 

{ 
   * 
   * 
counter++ 
   * 
} 

critical section 
 
No more than one  
process should execute in  
critical section at a time 
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Race Conditions in Multicore 

•  Multi core 
–  Program 1 and program 2 are executing at the same time on different 

cores 

{ 
   * 
   * 
counter++ 
   * 
} 

{ 
  * 
  * 
counter-- 
  * 
} 

program 0 program 1 int counter=5; 

1 
2 

CPU usage wrt time 

shared variable 
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Critical Section 

•  Any solution should satisfy the following 
requirements 
–  Mutual Exclusion : No more than one process in 

critical section at a given time 
–  Progress : When no process is in the critical section, 

any process that requests entry into the critical 
section must be permitted without any delay 

–  No starvation (bounded wait): There is an upper 
bound on the number of times a process enters the 
critical section, while another is waiting. 
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Locks and Unlocks 

•  lock(L) : acquire lock L exclusively 
–  Only the process with L can access the critical section 

•  unlock(L) : release exclusive access to lock L 
–  Permitting other processes to access the critical section 

{ 
   * 
   * 
lock(L) 
counter++ 
unlock(L) 
   * 
} 

{ 
  * 
  * 
lock(L) 
counter-- 
unlock(L) 
  * 
} 

program 0 program 1 int counter=5; 
lock_t L; 

shared variable 
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When to have Locking? 

•  Single instructions by themselves are 
atomic 
  eg. add %eax, %ebx 

 
•  Multiple instructions need to be explicitly 

made atomic 
– Each piece of code in the OS must be 

checked if they need to be atomic 
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How to Implement Locking 
(Software Solutions) 

Chester Rebeiro 
IIT Madras 
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Using Interrupts 

•  Simple 
–  When interrupts are disabled, context switches won’t happen 

•  Requires privileges  
–  User processes generally cannot disable interrupts 

•  Not suited for multicore systems 

while(1){ 
    disable interrupts () 
    critical section 
    enable interrupts ()  
     other code 
} 

while(1){ 
    disable interrupts () 
    critical section 
    enable interrupts ()  
     other code 
} 

Process 1 Process 2 

lock 

unlock 



25 

Software Solution (Attempt 1) 

•  Achieves mutual exclusion 
•  Busy waiting – waste of power and time 
•  Needs to alternate execution in critical section 

process1 àprocess2 àprocess1 àprocess2 

while(1){ 
    while(turn == 2); // lock 
    critical section 
    turn = 2;  // unlock 
     other code 
} 

while(1){ 
    while(turn == 1); // lock 
    critical section 
    turn = 1; // unlock 
    other code 
} 

Process 1 Process 2 
int turn=1; 

Shared 
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Problem with Attempt 1 

•  Had a common turn flag that was modified by 
both processes 

•  This required processes to alternate. 
•  Possible Solution : Have two flags – one for each 

process 

while(1){ 
    while(turn == 2); // lock 
    critical section 
    turn = 2;  // unlock 
     other code 
} 

while(1){ 
    while(turn == 1); // lock 
    critical section 
    turn = 1; // unlock 
    other code 
} 

Process 1 Process 2 
int turn=1; 

Shared 
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Software Solution (Attempt 2) 

•  Need not alternate execution in critical section 
•  Does not guarantee mutual exclusion 

while(1){ 
    while(p2_inside == True);  
    p1_inside = True; 
    critical section 
    p1_inside = False; 
     other code 
} 

Process 1 Process 2 
while(1){ 
    while(p1_inside == True);  
    p2_inside = True; 
    critical section 
    p2_inside = False; 
     other code 
} 

p2_inside = False, p1_inside = False 
shared 

lock 

unlock 



28 

Attempt 2: No mutual exclusion 
CPU p1_inside p2_inside 
while(p2_inside == True);  False False 

context switch 

while(p1_inside == True);  False False 
p2_inside = True; False True 

context switch 

p1_inside = True; True True 

Both p1 and p2 can enter into the critical section at the same time 

tim
e 

while(1){ 
    while(p1_inside == True);  
    p2_inside = True; 
    critical section 
    p2_inside = False; 
     other code 
} 

while(1){ 
    while(p2_inside == True);  
    p1_inside = True; 
    critical section 
    p1_inside = False; 
     other code 
} 
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Problem with Attempt 2 

•  The flag (p1_inside, p2_inside), is set after we 
break from the while loop. 

while(1){ 
    while(p2_inside == True);  
    p1_inside = True; 
    critical section 
    p1_inside = False; 
     other code 
} 

Process 1 Process 2 
while(1){ 
    while(p1_inside == True);  
    p2_inside = True; 
    critical section 
    p2_inside = False; 
     other code 
} 

p2_inside = False, p1_inside = False 
shared 

lock 

unlock 
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Software Solution (Attempt 3) 

•  Achieves mutual exclusion 
•  Does not achieve progress (could deadlock) 

while(1){ 
    p1_wants_to_enter = True 
    while(p2_wants_to_enter = True);  
    critical section 
    p1_wants_to_enter = False 
    other code 
} 

Process 1 Process 2 
p2_wants_to_enter, p1_wants_to_enter 

globally defined 

while(1){ 
    p2_wants_to_enter = True 
    while(p1_wants_to_enter = True);  
    critical section 
    p2_wants_to_enter = False 
    other code 
} 

lock 

unlock 
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Attempt 3: No Progress 
CPU p1_inside p2_inside 
p1_wants_to_enter = True False False 

context switch 
p2_wants_to_enter = True False False 

There is a tie!!! 
 
Both p1 and p2 will loop infinitely 
 
Progress not achieved  
      Each process is waiting for the other 
      this is a deadlock 

tim
e 

while(1){ 
    p2_wants_to_enter = True 
    while(p1_wants_to_enter = True);  
    critical section 
    p2_wants_to_enter = False 
    other code 
} 
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Deadlock 
CPU p1_inside p2_inside 
p1_wants_to_enter = True False False 

context switch 
p2_wants_to_enter = True False False 

There is a tie!!! 
 
Both p1 and p2 will loop infinitely 
 
Progress not achieved  
      Each process is waiting for the other 
      this is a deadlock 

tim
e 

Process 1 Process 2 

P1_wants_to_enter 

Waiting 
for FALSE 

P2_wants_to_enter 

Waiting 
for FALSE 

assign 

assign 
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Problem with Attempt 3 

•  Deadlock  
    Have a way to break the deadlock 

while(1){ 
    p1_wants_to_enter = True 
    while(p2_wants_to_enter = True);  
    critical section 
    p1_wants_to_enter = False 
    other code 
} 

Process 1 Process 2 
p2_wants_to_enter, p1_wants_to_enter 

globally defined 

while(1){ 
    p2_wants_to_enter = True 
    while(p1_wants_to_enter = True);  
    critical section 
    p2_wants_to_enter = False 
    other code 
} 

lock 

unlock 
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Peterson’s Solution 

 
Break the deadlock with a ‘favored’ process 

while(1){ 
    p1_wants_to_enter = True 
    favored = 2 
 
    while (p2_wants_to_enter AND     
               favored = 2);  
    critical section 
    p1_wants_to_enter = False 
    other code 
} 

Process 1 
p2_wants_to_enter, p1_wants_to_enter, favored 

globally defined 

favored is used to break the tie when  
both p1 and p2 want to enter the critical  
section. 
 
favored can take only two values : 1 or 2  
 
(* the process which sets favored last 
looses the tie *) 

If the second process wants to enter. favor 
it. (be nice !!!) lock 

unlock 
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Peterson’s Solution 

•  Deadlock broken because favored can only be 1 or 2. 
–  Therefore, tie is broken. Only one process will enter the critical section 

•  Solves Critical Section problem for two processes 

while(1){ 
    p1_wants_to_enter = True 
    favored = 2 
 
    while (p2_wants_to_enter AND     
               favored = 2);  
    critical section 
    p1_wants_to_enter = False 
    other code 
} 

Process 1 
p2_wants_to_enter, p1_wants_to_enter, favored 

globally defined 

while(1){ 
    p2_wants_to_enter = True 
    favored = 1 
 
    while (p1_wants_to_enter AND     
               favored = 1);  
    critical section 
    p2_wants_to_enter = False 
    other code 
} 

Process 2 
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Bakery Algorithm 

•  Synchronization between N > 2 processes 
•  By Leslie Lamport 

http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf 

wait your turn!! 

Eat 
when 196 displayed 
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Simplified Bakery Algorithm 
•  Processes numbered 0 to N-1 
•  num is an array N integers (initially 0).  

–  Each entry corresponds to a process 
lock(i){ 
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1 
    for(p = 0; p < N; ++p){ 
         while (num[p] != 0 and num[p] < num[i]); 
    }  
} 

unlock(i){ 
    num[i] = 0; 
} 

critical section 
This is at the doorway!!! 
It has to be atomic 
to ensure two processes 
do not get the same token 
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Simplified Bakery Algorithm 
(example) 

•  Processes numbered 0 to N-1 
•  num is an array N integers (initially 0).  

–  Each entry corresponds to a process 
lock(i){ 
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1 
    for(p = 0; p < N; ++p){ 
         while (num[p] != 0 and num[p] < num[i]); 
    }  
} 

unlock(i){ 
    num[i] = 0; 
} 

critical section P1   P2   P3   P4   P5 
0       0     0     0      0 0       0     1     0      0 0       0     1     2      0 0       4     1     2      3 
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Simplified Bakery Algorithm 
(example) 

lock(i){ 
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1 
    for(p = 0; p < N; ++p){ 
         while (num[p] != 0 and num[p] < num[i]); 
    }  
} 

unlock(i){ 
    num[i] = 0; 
} 

critical section P1   P2   P3   P4   P5 
0       4     1     2      3 0       4     0     2      3 0       4     0     0      3 0       4     0     0      0 0       0     0     0      0 

Processes numbered 0 to N-1 
num is an array N integers (initially 0).  

Each entry corresponds to a process 
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Simplified Bakery Algorithm 
(why atomic doorway?) 

•  Processes numbered 0 to N-1 
•  num is an array N integers (initially 0).  

–  Each entry corresponds to a process 
lock(i){ 
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1 
    for(p = 0; p < N; ++p){ 
         while (num[p] != 0 and num[p] < num[i]); 
    }  
} 

unlock(i){ 
    num[i] = 0; 
} 

critical section 

This is at the doorway!!! 
Assume it is not atomic 

P1   P2   P3   P4   P5 
0       0     0     0      0 0       0     1     0      0 0       0     1     2      2 0       3     1     2      2 

P4 and P5 can enter the critical section 
at the same time. 

0       3     0     2      2 



41 

Original Bakery Algorithm 
(making MAX atomic) 

•  Without atomic operation assumptions 
•  Introduce an array of N Booleans: choosing, initially all values False. 

lock(i){ 
    choosing[i] = True 
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1 
    choosing[i] = False 
    for(p = 0; p < N; ++p){ 
         while (choosing[p]); 
         while (num[p] != 0 and (num[p],p)<(num[i],i)); 
    }  
} 

unlock(i){ 
    num[i] = 0; 
} 

critical section 

(a, b) < (c, d) which is equivalent to: (a < c) or ((a == c) and (b < d)) 

Choosing ensures that a process  
Is not at the doorway 
i.e., the process is not ‘choosing’ 
a value for num 

doorway 
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Original Bakery Algorithm 
(making MAX atomic) 

•  Without atomic operation assumptions 
•  Introduce an array of N Booleans: choosing, initially all values False. 

lock(i){ 
    choosing[i] = True 
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1 
    choosing[i] = False 
    for(p = 0; p < N; ++p){ 
         while (choosing[p]); 
         while (num[p] != 0 and (num[p],p)<(num[i],i)); 
    }  
} 

unlock(i){ 
    num[i] = 0; 
} 

critical section 

(a, b) < (c, d) which is equivalent to: (a < c) or ((a == c) and (b < d)) 

Favor one process when there is a  
conflict. 
If there are two processes, with the 
same num value, favor the process 
with the smaller id (i) 

doorway 
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Original Bakery Algorithm 
(example) 

•  Without atomic operation assumptions 
•  Introduce an array of N Booleans: choosing, initially all values False. 

lock(i){ 
    choosing[i] = True 
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1 
    choosing[i] = False 
    for(p = 0; p < N; ++p){ 
         while (choosing[p]); 
         while (num[p] != 0 and (num[p],p)<(num[i],i)); 
    }  
} 

unlock(i){ 
    num[i] = 0; 
} 

critical section 

(a, b) < (c, d) which is equivalent to: (a < c) or ((a == c) and (b < d)) 

doorway 

P1   P2   P3   P4   P5 
0       0     0     0      0 0       0     1     0      0 0       0     1     2      2 0       3     1     2      2 0       3     0     2      2 
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Original Bakery Algorithm 
(example) 

•  Without atomic operation assumptions 
•  Introduce an array of N Booleans: choosing, initially all values False. 

lock(i){ 
    choosing[i] = True 
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1 
    choosing[i] = False 
    for(p = 0; p < N; ++p){ 
         while (choosing[p]); 
         while (num[p] != 0 and (num[p],p)<(num[i],i)); 
    }  
} 

unlock(i){ 
    num[i] = 0; 
} 

critical section 

(a, b) < (c, d) which is equivalent to: (a < c) or ((a == c) and (b < d)) 

doorway 

P1   P2   P3   P4   P5 
0       3     0     0      0 0       3     0     0      2 0       3     1     2      2 0       3     0     2      2 0       0     0     0      0 
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How to Implement Locking 
(Hardware Solutions and Usage) 
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Analyze this 
•  Does this scheme provide mutual exclusion? 

while(1){ 
    while(lock != 0);  
    lock= 1; // lock 
    critical section 
    lock = 0;  // unlock 
    other code 
} 

while(1){ 
    while(lock != 0);  
    lock = 1; // lock 
    critical section 
    lock = 0; // unlock 
    other code 
} 

Process 1 Process 2 

lock = 0 
P1: while(lock != 0); 
P2: while(lock != 0); 
P2: lock = 1; 
P1: lock = 1; 
…. Both processes in critical section 

context switch No 

lock=0 
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If only… 

•  We could make this operation atomic 

while(1){ 
    while(lock != 0);  
    lock= 1; // lock 
    critical section 
    lock = 0;  // unlock 
    other code 
} 

Process 1 

Make atomic 

Hardware to the rescue…. 
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Hardware Support 
(Test & Set Instruction) 

 
•  Write to a memory location, return its old value 

 

int test_and_set(int  *L){ 
   int prev = *L; 
   *L = 1; 
   return prev; 
} 

equivalent software representation 
(the entire function is executed atomically) 

Processor 
Memory 
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Hardware Support 
(Test & Set Instruction) 

 
•  Write to a memory location, return its old value 

 

int test_and_set(int  *L){ 
   int prev = *L; 
   *L = 1; 
   return prev; 
} 

equivalent software representation 
(the entire function is executed atomically) 

Processor 
Memory 

0 1
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Hardware Support 
(Test & Set Instruction) 

 
•  Write to a memory location, return its old value 

 

int test_and_set(int  *L){ 
   int prev = *L; 
   *L = 1; 
   return prev; 
} 

equivalent software representation 
(the entire function is executed  
atomically) 

Processor 
Memory 

0 1

Why does this work? If two CPUs execute test_and_set at the same time, the 
hardware ensures that one test_and_set does both its steps before the other 
one starts.  

Processor 

0 
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Hardware Support 
(Test & Set Instruction) 

 
•  Write to a memory location, return its old value 

 

int test_and_set(int  *L){ 
   int prev = *L; 
   *L = 1; 
   return prev; 
} 

equivalent software representation 
(the entire function is executed  
atomically) 

Processor 
Memory 

0 1

Why does this work? If two CPUs execute test_and_set at the same time, the 
hardware ensures that one test_and_set does both its steps before the other 
one starts.  

Processor 

1 
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Hardware Support 
(Test & Set Instruction) 

 
•  Write to a memory location, return its old value 

 

int test_and_set(int  *L){ 
   int prev = *L; 
   *L = 1; 
   return prev; 
} 

equivalent software representation 
(the entire function is executed  
atomically) 

Processor 
Memory 

0 
1

Why does this work? If two CPUs execute test_and_set at the same time, the 
hardware ensures that one test_and_set does both its steps before the other 
one starts.  

Processor 

1 
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Hardware Support 
(Test & Set Instruction) 

 
•  Write to a memory location, return its old value 

 

int test_and_set(int  *L){ 
   int prev = *L; 
   *L = 1; 
   return prev; 
} 

equivalent software representation 
(the entire function is executed atomically) 

while(1){ 
    while(test_and_set(&lock) == 1);  
    critical section 
    lock = 0;  // unlock 
    other code 
} 

Usage for locking 
Why does this work? If two CPUs execute test_and_set at the same time, the 
hardware ensures that one test_and_set does both its steps before the other 
one starts.  
So the first invocation of test_and_set  will read a 0 and set lock to 1 and 
return. The second test_and_set invocation will then see lock as 1, and will 
loop continuously until lock becomes 0 
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Processor 

Processor 

Intel Hardware Support 
(xchg Instruction) 

 
•  Write to a memory location, return its old value 

 

int xchg(int  *L, int v){ 
   int prev = *L; 
   *L = v; 
   return prev; 
} 

equivalent software representation 
(the entire function is executed  
atomically) 

Memory 20 

10 

Why does this work? If two CPUs execute xchg at the same time, the 
hardware ensures that one xchg completes, only then the second xchg 
starts. 

30 



55 

Intel Hardware Support 
(using xchg instruction) 

typical usage :  
   xchg reg, mem 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void acquire(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
  } 
} 
 
void release(int *locked){ 
    locked = 0; 
} 
 

Note. %eax is returned 

Processor 

Processor 

Memory 
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Intel Hardware Support 
(using xchg instruction) 

typical usage :  
   xchg reg, mem 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void acquire(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
  } 
} 
 
void release(int *locked){ 
    locked = 0; 
} 
 

Note. %eax is returned 

Processor 

Processor 

Memory 0 

1 

Got Lock 

1 
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Intel Hardware Support 
(using xchg instruction) 

typical usage :  
   xchg reg, mem 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void acquire(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
  } 
} 
 
void release(int *locked){ 
    locked = 0; 
} 
 

Note. %eax is returned 

Processor 

Processor 

Memory 0 

0 

Release Lock 

1 
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Intel Hardware Support 
(using xchg instruction) 

typical usage :  
   xchg reg, mem 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void acquire(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
  } 
} 
 
void release(int *locked){ 
    locked = 0; 
} 
 

Note. %eax is returned 

Processor 

Processor 

Memory 0 

1 

Release Lock 

1 

Got Lock 
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Intel Hardware Support 
(using xchg instruction) 

typical usage :  
   xchg reg, mem 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void acquire(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
  } 
} 
 
void release(int *locked){ 
    locked = 0; 
} 
 

Note. %eax is returned 

Processor 

Processor 

Memory 0 

0 

Release Lock 

0 

Release Lock 
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High Level Constructs 

•  Spinlock 
 
•  Mutex 
 
•  Semaphore 
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Spinlocks Usage 
int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void acquire(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
  } 
} 
 
void release(int *locked){ 
    locked = 0; 
} 
 

•  One process will acquire the lock 
•  The other will wait in a loop 

repeatedly checking if the lock is 
available  

•  The lock becomes available when 
the former process releases it 

acquire(&locked) 
critical section 
release(&locked) 

acquire(&locked) 
critical section 
release(&locked) 

Process 1 

Process 2 

See spinlock.c and spinlock.h in xv6 [15] 
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Issues with Spinlocks 

•  No compiler optimizations should be allowed 
–  Should not make X a register variable 

•  Write the loop in assembly or use volatile 

•  Should not reorder memory loads and stores 
•  Use serialized instructions (which forces instructions not to be reordered) 
•  Luckly xchg is already implements serialization 

xchg %eax, X 
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More issues with Spinlocks 

•  No caching of (X) possible. All xchg operations are bus transactions. 
–  CPU asserts the LOCK, to inform that there is a ‘locked ‘ memory 

access 
•  acquire function in spinlock invokes xchg in a loop…each operation 

is a bus transaction …. huge performance hits 

CPU0 
xchg %eax, X 

CPU1 

L1  cache L1  cache 

Memory 
X 

cache coherence 
protocol 

#LOCK 
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A better acquire 

void acquire(int *locked){ 
  reg = 1 
  while(1) 
      if(xchg(locked, reg) == 0) 
          break; 
} 

void acquire(int *locked) { 
  reg = 1; 
  while (xchg(locked, reg) == 1)  
        while (*locked == 1); 
} 
 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 

Better way 
Outer loop changes the value of locked 
inner loop only reads the value of  
locked. This allows caching of 
locked.  
Access cache instead of memory. 

Original. 
Loop with xchg. 
Bus transactions.  
Huge overheads 
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Spinlocks 
(when should it be used?) 

•  Characteristic : busy waiting 
–  Useful for short critical sections, where much CPU 

time is not wasted waiting 
•  eg. To increment a counter, access an array element, etc. 

–  Not useful, when the period of wait is unpredictable or 
will take a long time 

•  eg. Not good to read page from disk. 
•  Use mutex instead (…mutex) 
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Spinlock in pthreads 

lock 

unlock 

create spinlock 

destroy spinlock 
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Mutexes 
•  Can we do better than busy 

waiting? 
–  If critical section is locked then 

yield CPU  
•  Go to a SLEEP state 

–  While unlocking, wake up 
sleeping process 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void lock(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
    else 
       sleep(); 
  } 
} 
 
void unlock(int *locked){ 
    locked = 0; 
    wakeup(); 
} 

Ref: wakeup(2864), sleep(2803) 
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Thundering Herd Problem 
•  A large number of processes 

wake up (almost 
simultaneously) when the event 
occurs. 
–  All waiting processes wake up 
–  Leading to several context 

switches 
–  All processes go back to sleep 

except for one, which gets the 
critical section 

•  Large number of context switches 
•  Could lead to starvation 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void lock(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
    else 
       sleep(); 
  } 
} 
 
void unlock(int *locked){ 
    locked = 0; 
    wakeup(); 
} 



69 

Thundering Herd Problem 

•  The Solution 
– When entering critical 

section, push into a 
queue before blocking 

– When exiting critical 
section, wake up only 
the first process in the 
queue 

int xchg(addr, value){ 
  %eax = value 
  xchg %eax, (addr) 
} 
 
void lock(int *locked){ 
  while(1){ 
    if(xchg(locked, 1) == 0) 
      break; 
    else{ 
       // add this process to Queue 
       sleep(); 
    } 
  } 
} 
 
void unlock(int *locked){ 
    locked = 0; 
     // remove process P from queue 
     wakeup(P) 
} 
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pthread Mutex 

•  pthread_mutex_lock 
•  pthread_mutex_unlock 
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Locks and Priorities 

•  What happens when a high priority task requests 
a lock, while a low priority task is in the critical 
section 
–  Priority Inversion 
–  Possible solution 

•  Priority Inheritance 

Interesting Read : Mass Pathfinder 
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html 
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Semaphores 
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Producer – Consumer 
Problems 

•  Also known as Bounded buffer Problem 
•  Producer produces and stores in buffer, Consumer consumes from 

buffer 

Producer Consumer 

Buffer (of size N) 
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Producer – Consumer 
Problems 

•  Also known as Bounded buffer Problem 
•  Producer produces and stores in buffer, Consumer consumes from 

buffer 
•  Trouble when 

–  Producer produces, but buffer is full 
–  Consumer consumes, but buffer is empty 

Producer Consumer 

Buffer (of size N) 
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Producer-Consumer Code 

void producer(){ 
    while(TRUE){  
        item = produce_item(); 
        if (count == N) sleep(empty);  
        lock(mutex); 
        insert_item(item); // into buffer 
        count++; 
        unlock(mutex); 
        if (count == 1) wakeup(full); 
    } 
} 

void consumer(){ 
    while(TRUE){  
        if (count == 0) sleep(full);  
        lock(mutex);  
        item = remove_item(); // from buffer 
        count--; 
        unlock(mutex); 
        if (count == N-1) wakeup(empty); 
        consume_item(item); 
    } 
} 

Buffer of size N 
int count=0; 
Mutex mutex, empty, full; 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
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Producer-Consumer Code 

void producer(){ 
    while(TRUE){  
        item = produce_item(); 
        if (count == N) sleep(empty);  
        lock(mutex); 
        insert_item(item); // into buffer 
        count++; 
        unlock(mutex); 
        if (count == 1) wakeup(full); 
    } 
} 

void consumer(){ 
    while(TRUE){  
        if (count == 0) sleep(full);  
        lock(mutex);  
        item = remove_item(); // from buffer 
        count--; 
        unlock(mutex); 
        if (count == N-1) wakeup(empty); 
        consume_item(item); 
    } 
} 

Buffer of size N 
int count=0; 
Mutex mutex, empty, full; 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Read count value 
Test count = 0 
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Lost Wakeups 
•  Consider the following 

context of instructions 
•  Assume buffer is initially 

empty 

read count value // count ß 0 
item = produce_item(); 
lock(mutex); 
insert_item(item); // into buffer 
count++;  // count = 1 
unlock(mutex) 
test (count == 1)  // yes 
signal(full); 
test (count == 0) // yes 
wait(); 

consumer  
still uses the old value of count (ie 0) 

Note, the wakeup is lost. 
Consumer waits even though buffer is not empty. 
Eventually producer and consumer will wait infinitely 

context switch 

3 
3 
5 
6 
7 
8 
9 
9 
3 
3 
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Semaphores 
•  Proposed by Dijkstra in 1965 
•  Functions down and up must be 

atomic 
•  down also called P (Proberen Dutch 

for try) 
•  up also called V (Verhogen, Dutch 

form make higher) 
•  Can have different variants 

–  Such as blocking, non-blocking 
•  If S is initially set to 1, 

–  Blocking semaphore similar to a Mutex  
–  Non-blocking semaphore similar to a 

spinlock 

 
void down(int *S){ 
  while( *S <= 0);  
  *S--; 
} 
 
void up(int *S){ 
   *S++; 
} 
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Producer-Consumer  
with Semaphores 

void producer(){ 
    while(TRUE){  
        item = produce_item(); 
        down(empty);  
        wait(mutex); 
        insert_item(item); // into buffer 
        signal(mutex); 
        up(full); 
    } 
} 

void consumer(){ 
    while(TRUE){  
        down(full);  
        wait(mutex); 
        item = remove_item(); // from buffer 
        signal(mutex); 
        up(empty); 
        consume_item(item); 
    } 
} 

Buffer of size N 
int count;                full = 0, empty = N 
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POSIX semaphores 

•  sem_init 
•  sem_wait 
•  sem_post 
•  sem_getvalue 
•  sem_destroy 
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Dining Philosophers Problem 
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Dining Philosophers Problem 
•  Philosophers either think or eat 

• To eat, a philosopher needs to hold   
  both forks (the one on his left and the    
  one on his right) 

•  If the philosopher is not eating, he is    
  thinking. 

•  Problem Statement : Develop an   
  algorithm where no philosopher      
  starves. 
 

1 

2 

3 

4 

5 
P1 

P2 P3 

P4 

P5 
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First Try 
#define N 5 
int forks = {1,2,3,4,5,1}; 
 
void philosopher(int i){ 
  while(TRUE){ 
      think(); // for some_time 
      take_fork(i); 
      take_fork(i + 1); 
      eat(); 
      put_fork(i); 
      put_fork(i + 1); 
  } 
} 

What happens if only philosophers P1 and P3 are always given the priority? 
P2, P4, and P5 starves… so scheme needs to be fair 

1 

2 

3 

4 

5 P1 

P2 P3 

P4 

P5 
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First Try 

What happens if all philosophers decide to pick up their left forks at the same time? 
Possible starvation due to deadlock 

1 

2 

3 

4 

5 P1 

P2 P3 

P4 

P5 

#define N 5 
int forks = {1,2,3,4,5,1}; 
 
void philosopher(int i){ 
  while(TRUE){ 
      think(); // for some_time 
      take_fork(i); 
      take_fork(i + 1); 
      eat(); 
      put_fork(i); 
      put_fork(i + 1); 
  } 
} 
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Deadlocks 
•  A situation where programs continue to run indefinitely 

without making any progress 
•  Each program is waiting for an event that another 

process can cause 
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Second try 
#define N 5 
int forks = {1,2,3,4,5,1}; 
 
void philosopher(int i){ 
  while(TRUE){ 
      think(); 
      take_fork(i); 
      if (available((i+1)){ 
         take_fork((i + 1)); 
         eat(); 
      }else{ 
          put_fork(i); 
     } 
} 

•  Take fork i, check if fork (i+1) is 
available 

•  Imagine, 
–  All philosophers start at the same time 
–  Run simultaneously 
–  And think for the same time 

•  This could lead to philosophers taking 
fork and putting it down continuously. 
a deadlock. 

•  A better alternative 
–  Philosophers wait a random time before 

take_fork(i) 
–  Less likelihood of deadlock. 
–  Used in schemes such as Ethernet 
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Solution using Mutex 
•  Protect critical sections with a 

mutex 
•  Prevents deadlock 
•  But has performance issues 

–  Only one philosopher can eat at a 
time 

#define N 5 
int forks = {1,2,3,4,5,1}; 
 
void philosopher(int i){ 
  while(TRUE){ 
      think(); // for some_time 
      wait(mutex); 
      take_fork(i); 
      take_fork((i + 1)); 
      eat(); 
      put_fork(i); 
      put_fork((i + 1)); 
      signal(mutex); 
  } 
} 
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Solution to Dining Philosophers 
Uses N semaphores (s[0], s[1], …., s[N-1]) all initialized to 0, and a mutex 
Philosopher has 3 states: HUNGRY, EATING, THINKING 
A philosopher can only move to EATING state if neither neighbor is eating 

void philosopher(int i){ 
    while(TRUE){ 
        think(); 
        take_forks(i); 
        eat(); 
        put_forks(); 
    } 
} 

void take_forks(int i){ 
     lock(mutex); 
     state[i] = HUNGRY; 
     test(i); 
     unlock(mutex); 
     down(s[i]); 
} 

void put_forks(int i){ 
     lock(mutex); 
     state[i] = THINKING; 
     test(LEFT); 
     test(RIGHT) 
     unlock(mutex); 
} 

void test(int i){ 
     if (state[i] = HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING){ 
             state[i] = EATING; 
             up(s[i]); 
     } 
} 
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Deadlocks 
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Deadlocks 

    

R1 

R2 

A B 

Consider this situation: 
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Deadlocks 

A Deadlock Arises:    
Deadlock :  A set of processes is deadlocked if each process in the set 

is waiting for an event that only another process in the set can 
cause. 

R1 

R2 

A B 

Resource Allocation Graph 
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Conditions for Resource 
Deadlocks 

1.  Mutual Exclusion  
–  Each resource is either available or currently assigned to exactly one 

process 
2.  Hold and wait 

–  A process holding a resource, can request another resource 
3.  No preemption 

–  Resources previously granted cannot be forcibly taken away from a 
process 

4.  Circular wait 
–  There must be a circular chain of two or more processes, each of 

which is waiting for a resouce held by the next member of the chain 

All four of these conditions must be present for a resource deadlock 
to occur!! 
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Deadlocks : 
(A Chanced Event) 

•  Ordering of resource requests and allocations are probabilistic, thus 
deadlock occurrence is also probabilistic 

Deadlock occurs 
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No dead lock occurrence 
(B can be granted S  
  after step q) 
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Should Deadlocks be handled? 
•  Preventing / detecting deadlocks could be tedious 
•  Can we live without detecting / preventing deadlocks? 

–  What is the probability of occurrence?  
–  What are the consequences of a deadlock? (How critical is a 

deadlock?) 
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Handling Deadlocks 

•  Detection and Recovery 
•  Avoidance 
•  Prevention 



97 

Deadlock detection 

•  How can an OS detect when there is a 
deadlock? 

•  OS needs to keep track of 
– Current resource allocation  

•  Which process has which resource 
– Current request allocation 

•  Which process is waiting for which resource 

•  Use this informaiton to detect deadlocks 
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Deadlock Detection 
•  Deadlock detection with one resource of each type 
•  Find cycles in resource graph 
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Deadlock Detection 
•  Deadlock detection with multiple resources of each type 

Existing Resource Vector Resources Available 

Current Allocation Matrix Request Matrix 

P1 
P2 
P3 

Process Pi holds Ci resources and requests Ri resources,  where i = 1 to 3 
Goal is to check if there is any sequence of allocations by which all current 
requests can be met. If so, there is no deadlock. 

Who has what!! Who is waiting for what!! 
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Deadlock Detection 
•  Deadlock detection with multiple resources of each type 

Existing Resource Vector Resources Available 

Current Allocation Matrix Request Matrix 

P1 
P2 
P3 

Process Pi holds Ci resources and requests Ri resources,  where i = 1 to 3 
 

P1 cannot be satisfied 

P2 cannot be satisfied 

P3 can be satisfied 
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Deadlock Detection 
•  Deadlock detection with multiple resources of each type 

Existing Resource Vector Resources Available 

Current Allocation Matrix Request Matrix 

P1 
P2 
P3 

P3 runs and its allocation is (2, 2, 2, 0) 
On completion it returns the available resources are A = (4 2 2 1) 
Either P1 or P2 can now run. 
NO Deadlock!!! 
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Deadlock Detection 
•  Deadlock detection with multiple resources of each type 

Existing Resource Vector Resources Available 

Current Allocation Matrix Request Matrix 

P1 
P2 
P3 

Process Pi holds Ci resources and requests Ri resources,  where i = 1 to 3 
Deadlock detected as none of the requests can be satisfied 

P1 cannot be satisfied 

P2 cannot be satisfied 

P3 cannot be satisfied 
deadlock 

2   1    1   0 
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Deadlock Recovery 
What should the OS do when it detects a deadlock? 
•  Raise an alarm 

–  Tell users and administrator 

•  Preemption 
–  Take away a resource temporarily (frequently not possible) 

•  Rollback 
–  Checkpoint states and then rollback 

•  Kill low priority process 
–  Keep killing processes until deadlock is broken 
–  (or reset the entire system) 
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Deadlock Avoidance 
•  System decides in advance if allocating a resource to a 

process will lead to a deadlock 

process 1 instructions 

pr
oc

es
s 

2 
in

st
ru

ct
io

ns
 

R1 

R1 

R2 

R2 

Both processes request  
Resource R1 

Both processes 
request  
Resource R2 

Unsafe state 
(may cause a  deadlock) 

Note: unsafe state is 
not a deadlocked state 
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Deadlock Avoidance 
    Is there an algorithm that can always avoid deadlocks by 

conservatively make the right choice. 
•  Ensures system never reaches an unsafe state 

•  Safe state : A state is said to be safe, if there is some 
scheduling order in which every process can run to 
completion even if all of them suddenly requests their 
maximum number of resources immediately 

•  An unsafe state does not have to lead to a deadlock; it 
could lead to a deadlock 
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Example with a Banker 
•  Consider a banker with 4 clients (P1, P2, P3, P4).  

–  Each client has certain credit limits (totaling 20 units) 
–  The banker knows that max credits will not be used at once, so 

he keeps only 10 units 

–  Clients declare maximum credits in advance. The banker can 
allocate credits provided no unsafe state is reached. 

 

Has Max 
A 3 9 

B 2 4 

C 2 7 
free : 3 units Total : 10 units 
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Safe State 
Has Max 

A 3 9 

B 2 4 

C 2 7 
free : 3 units 

Has Max 
A 3 9 

B 4 4 

C 2 7 
free : 1 units 

Has Max 
A 3 9 

B 0 - 

C 2 7 
free : 5 units 

Allocate 2 units to B B completes 

Has Max 
A 3 9 

B 0 - 

C 7 7 

Allocate 5 to C 

free : 0 units 

Has Max 
A 3 9 

B 0 - 

C 0 - 
free : 7 units 

C completes 
Has Max 

A 9 9 

B 0 - 

C 0 - 

Allocate 6 units to A 

free : 0 units 
This is a safe state because there is some scheduling  
order in which every process executes 
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Unsafe State 
Has Max 

A 4 9 

B 2 4 

C 2 7 
free : 2 units 

Has Max 
A 4 9 

B 4 4 

C 2 7 
free : 0 units 

Has Max 
A 4 9 

B 0 - 

C 2 7 
free : 4 units 

Allocate 2 units to B B completes 

This is an unsafe state because there exists NO scheduling  
order in which every process executes 



109 

Banker’s Algorithm 
(with a single resource) 

 
When a request occurs 

–  If(is_system_in_a_safe_state) 
•  Grant request 

–  else 
•  postpone until later 

Please read Banker’s Algorithm with multiple resources from  
Modern Operating Systems, Tanenbaum 

Deadlock unsafe 

safe 
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Deadlock Prevention 

•  Deadlock avoidance not practical, need to 
know maximum requests of a process 

•  Deadlock prevention 
– Prevent at-least one of the 4 conditions 
1.  Mutual Exclusion  
2.  Hold and wait 
3.  No preemption 
4.  Circular wait 
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Prevention 
1.  Preventing Mutual Exclusion  

–  Not feasible in practice 
–  But OS can ensure that resources are optimally allocated 

2.  Hold and wait 
–  One way is to achieve this is to require all processes to request resources 

before starting execution 
•  May not lead to optimal usage 
•  May not be feasible to know resource requirements 

3.  No preemption 
–  Pre-empt the resources, such as by virtualization of resources (eg. Printer 

spools) 

4.  Circular wait 
–  One way, process holding a resource cannot hold a resource and request for 

another one 
–  Ordering requests in a sequential / hierarchical order. 
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Hierarchical Ordering of 
Resources 

•  Group resources into levels  
 (i.e. prioritize resources numerically) 

•  A process may only request resources at higher levels 
than any resource it currently holds 

•  Resource may be released in any order 
•  eg.  

–  Semaphore s1, s2, s3 (with priorities in increasing order) 
    down(S1);  down(S2); down(S3) ; à allowed 
    down(S1); down(S3); down(S2); ànot allowed 


