An Introduction to Applied Cryptography

> Chester Rebeiro IIT Madras

Connected and Stored

Everything is connected!

Everything is stored!

Increased Security Breaches

81% more in 2015

£1.46m - £3.14m	£75k - £311k
is the average	is the average
cost to a large	cost to a small
organisation	business

Security Studies (Research)

Cryptography

- A crucial component in all security systems
- Fundamental component to achieve

Allows only authorized users access to data

Cryptography (its use)

- A crucial component in all security systems
- Fundamental component to achieve
 - Confidentiality
 - Data Integrity

Cryptography can be used to ensure that only authorized users can make modifications (for instance to a bank account number)

Cryptography (its use)

- A crucial component in all security systems
- Fundamental component to achieve
 - Confidentiality
 - Data Integrity
 - Authentication

Cryptography helps prove identities

Cryptography (its use)

- A crucial component in all security systems
- Fundamental component to achieve
 - Confidentiality
 - Data Integrity
 - Authentication
 - Non-repudiation

The sender of a message cannot claim that she did not send it

Scheme for Confidentiality

Encryption

Secrets

- Only Alice knows the encryption key K_E
- Only Bob knows the decryption key $\rm K_{\rm D}$

Only sees ciphertext. cannot get the plaintext message because she does not know the keys

Encryption Algorithms

- Should be easy to compute for Alice / Bob (who know the key)
- Should be difficult to compute for Mallory (who does not know the key)
- What is 'difficult'?
 - Ideal case : Prove that the probability of Mallory determining the encryption / decryption key is *no better than a random guess*
 - **Computationally :** Show that it is *difficult* for Mallory to determine the keys even if she has massive computational power

Ciphers

Symmetric Algorithms

- Encryption and Decryption use the same key
- i.e. $K_E = K_D$
- Examples:
 - Block Ciphers : DES, AES, PRESENT, etc.
 - Stream Ciphers : A5, Grain, etc.
- Asymmetric Algorithms
 - Encryption and Decryption keys are different
 - $K_{E} \neq K_{D}$
 - Examples:
 - RSA
 - ECC

Encryption Keys

- How are keys managed
 - How does Alice & Bob select the keys?
 - Need algorithms for key exchange

Algorithmic Attacks

• Can Mallory use tricks to break the algorithm

• There by reducing the 'difficulty' of getting the key.

- For security, the algorithms need to be computation intensive.
 - Often require large numbers, complex mathematical operations.
- Design Challenges: Performance, Size, Power.
 - Algorithms to achieve this

Implementation Attacks (Side Channel Analysis)

Gets information about the keys by monitor Side channels of the device

Side Channel Analysis

Ciphers Design Challenges

Tradeoffs between Security, Speed, Side-Channel Attacks

Cryptography Study

Some Hot Research Trends

The Plan Ahead

• How are ciphers designed?

- Ideal security vs Computational security
- Block ciphers / Stream ciphers
- Asymmetric Key ciphers
- Trade offs between security and implementation
- Attacks
 - Algorithmic / Implementation based Attacks

Applications

 How are they used to achieve confidentiality, integrity, authentication, non-repudiation

Case Studies

- Key Establishments, Digital Signatures, Bitcoins

Course Structure

- Classical Cryptography
- Shannon's Theory
- Block Ciphers
 - DES, AES, their implementations and their attacks
- Stream Ciphers
- Digital Signatures and Authentication
 - Hash functions
- Public key ciphers
 - RSA, implementations, and attacks
 - ECC
- Side channel analysis
- Case Studies : Bitcoins

Expected Learning Outcomes

- What you would learn by the end of the course?
 - Distinguish between cipher algorithms
 - Where to use what algorithm?
 - Evaluate ciphers and their implementations for security
 - Mathematical cryptanalysis of some algorithms
 - Side channel based attacks on cipher implementations
 - Apply algorithms to solve security problems in real-world systems

Books / References

Textbooks

(STINSON) "Cryptography: Theory and Practice", Third Edition, by Douglas R. Stinson, CRC Press, Taylor and Francis Group

References

(STALLINGS) "Cryptography and Network Security: Principles and Practices", Sixth Edition, by William Stallings

(HANDBOOK) "Handbook of Applied Cryptography", Fifth Printing, by Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, CRC Press

Grading

- Quiz 1 : 20%
- Quiz 2 : 20%
- End semester : 30%
- Assignments : 15%
- Tutorials : 15%

- on (18/2/2016)
- on (25/3/2016)
- on (28/4/2016)

Course Webpages

• For slides / syllabus / schedule etc.

http://www.cse.iitm.ac.in/~chester/courses/17e_ac/index.html

• For discussions / announcements / submissions

CSE Moodle

Google Groups (aciitm_2017)

Logistics

- CS36
- Time:
 - Tuesdays : 11:00 11:50 AM
 - Wednesdays : 10:00 10:50 AM
 - Thursdays : 8:00 8:50 AM
 - Fridays : 4:50 5:40 PM