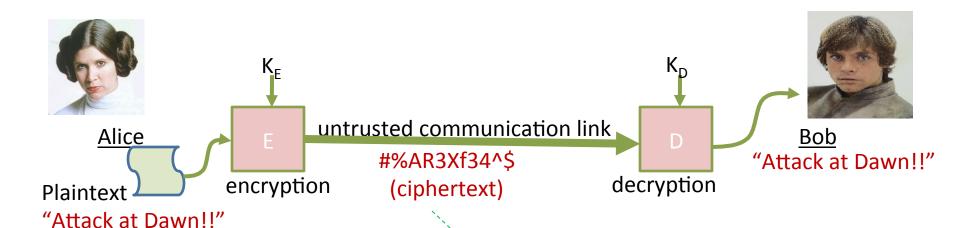
Classical Cryptography

Chester Rebeiro
IIT Madras

Ciphers



Are of 2 types

- Symmetric Key
- Asymmetric Key

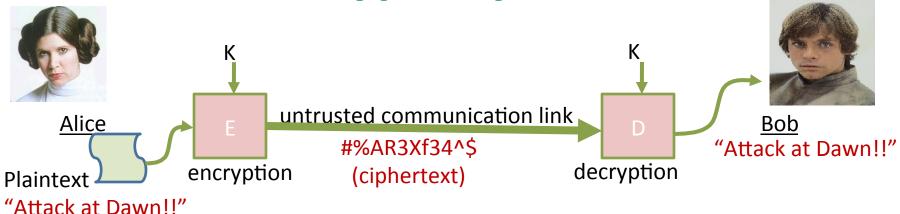
Mallory

Only sees ciphertext. cannot get the plaintext message because she does not know the key

Ciphers

- Symmetric Key Algorithms
 - Encryption and Decryption use the same key
 - i.e. $K_F = K_D = K$ (kept secret)
 - Examples:
 - Block Ciphers : DES, AES, PRESENT, etc.
 - Stream Ciphers : A5, Grain, etc.
- Asymmetric Key Algorithms
 - Encryption and Decryption keys are different
 - $K_F \neq K_D (K_F \text{ kept public; } K_D \text{ kept secret})$
 - Examples:
 - RSA
 - ECC

A CryptoSystem



A **cryptosystem** is a five-tuple (P,C,K,E,D), where the following are satisfied:

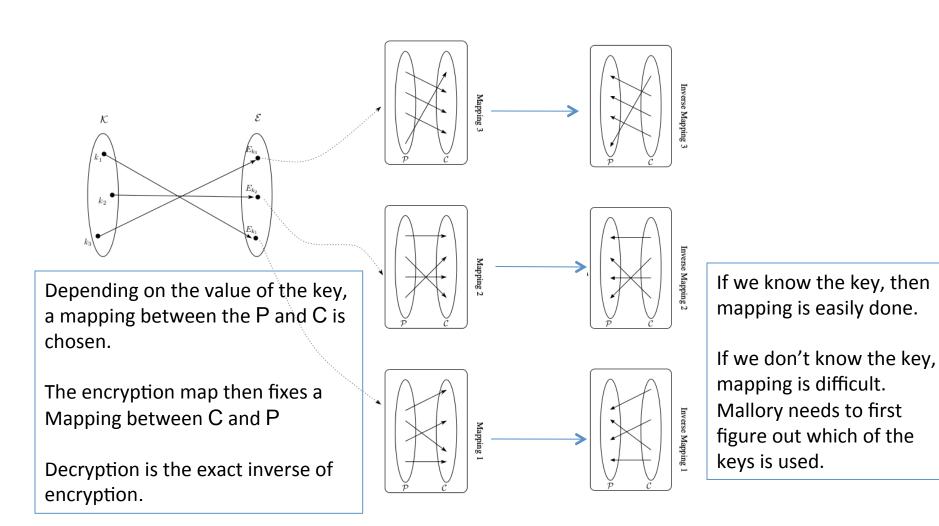
- P is a finite set of possible plaintexts
- C is a finite set of possible ciphertexts
- K, the **keyspace**, is a finite set of possible **keys**
- E is a finite set of encryption functions
- D is a finite set of decryption functions
- ∀*K*∈K

Encryption Rule : $\exists e_{\kappa} \in \mathsf{E}$, and

Decryption Rule : $\exists d_{\kappa} \in D$

such that $(e_K: P \rightarrow C)$, $(d_k: C \rightarrow P)$ and $\forall x \in P$, $d_K(e_K(x)) = x$.

Pictorial View of Encryption



Attacker's Capabilities (Cryptanalysis)

Mallory wants to some how get information about the secret key.

- Attack models
 - ciphertext only attack
 - known plaintext attack
 - chosen plaintext attack
 Mallory has temporary access to the encryption machine. He can choose the plaintext and get the ciphertext.
 - chosen ciphertext attack

Mallory has temporary access to the decryption machine. He can choose the ciphertext and get the plaintext.

Kerckhoff's Principle for cipher design

Kerckhoff's Principle

- The system is completely known to the attacker. This includes encryption & decryption algorithms, plaintext
- only the key is secret
- Why do we make this assumption?
 - Algorithms can be leaked (secrets never remain secret)
 - or reverse engineered

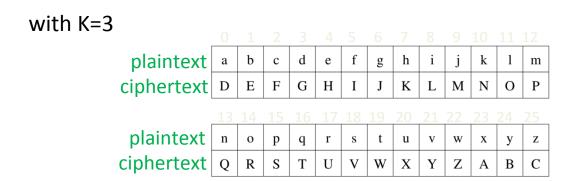
Facts about e_K

- It is injective (one-to-one)
 - i.e. $e_k(x_1) = e_k(x_2)$ iff $x_1 = x_2$
 - Why?
 - If not, then Bob does not know if the ciphertext came from x₁ or x₂
- If P = C, then the encryption function is a permutation
 - C is a rearrangement of P

A Shift Cipher

- Plaintext set : $P = \{0,1,2,3,...,25\}$
- Ciphertext set : C = {0,1,2,3 ..., 25}
- Keyspace : K = {0,1,2,3 ..., 25}
- Encryption Rule : $e_K(x) = (x + K) \mod 26$,
- Decryption Rule : $d_k(x) = (x K) \mod 26$ where $K \in K$ and $x \in P$
- Note:
 - − Each K results in a unique mapping e_{κ} : P→C and d_{κ} :C→P
 - $d_k(e_K(x)) = x$
 - The encryption/decryption rules are permutations

Using the Shift Cipher



attackatdawn--->DWWDFNDWFDZQ

Shift Cipher Mappings

• Each K results in a unique mapping e_{κ} : $P \rightarrow C$ and d_{κ} : $C \rightarrow P$

The mappings are injective (one-to-one)

plaintext	a	b	С	d	•••	x	у	z
	0	1	2	3		23	24	25
	K=8							
ciphertext	8	9	10	11		5	6	7
	I	J	K	L		F	G	Н
	K=10							
ciphertext	10	11	12	13		7	8	9
	K	L	M	N		Н	I	J
	K=13							
ciphertext	13	14	15	16		10	11	12
	N	0	Р	Q		K	L	М

$$y_1, y_2 \in C$$

 $d_K(y_1) \neq d_K(y_2)$

Encryption Rule $e_K(x) = (x + K) \mod 26$,

Decryption Rule $d_k(x) = (x - K) \mod 26$

How good is the shift cipher?

- A good cipher has two properties
 - Easy to compute
 - Satisfied
 - An attacker (Mallory), who views the ciphertext should not get any information about the plaintext.
 - Not Satisfied!!
 - The attacker needs at-most 26 guesses to determine the secret key
 - This is an exhaustive key search (known as brute force attack)

Cryptanalysis of Shift Cipher

By Brute Force...

Ciphertext: "DWWDFNDWGDZQ"

- There are only 26 possible keys, so 26 possible decryptions
- Try all of them
 - key=0, "dwwdfndwgdzq"
 - ▶ key=1, "cvvcemcvfcyp"
 - key=2, "buubdlbuebxo"
 - key=3, "attackatdawn" . . . makes sense
 - ▶ key=4, ...
 - ▶ key=25, ...
- Only key=3 makes sense, thus it is likely to be the key
- ... too easy!!!

Puzzle

Cryptanalyze, assuming a shift cipher

"COMEBSDISCKCCDBYXQKCSDCGOKUOCD VSXU"

History & Usage

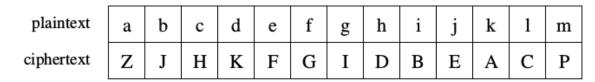
- Used by Julius Caesar in 55 AD with K=3. This variant known as Caesar's cipher.
- Augustus Caesar used a variant with K=-1 and no mod operation.
- Shift ciphers are extremely simple, still used in modern times
 - By Russian Soldiers in first world war
 - Last known use in 2011 (by militant groups)

Substitution Cipher

- Plaintext set : P = {a,b,c,d,...,z}
- Ciphertext set : C = {A,B,C,D,...,Z}
- Keyspace : $K = \{\pi \mid \text{ such that } \pi \text{ is a permutation of the alphabets} \}$
 - Size of keyspace is 26!
- Encryption Rule : $e_{\pi}(x) = \pi(x)$,
- Decryption Rule : $d_{\pi}(x) = \pi^{-1}(x)$

Substitution Cipher Example

Key is some permutation of the alphabets





Plaintext: "attackatdawn"

Ciphertext: "ZXXZHAXKZRY"

26! permutations possible. Thus possible keys are

 $26! \approx 4 \times 10^{26}$ rules out brute force!!!

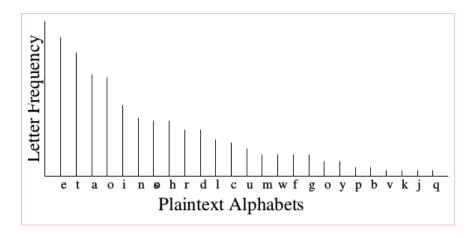
Note that the shift cipher is a special case of the substitution cipher which includes only 26 of the 26! keys

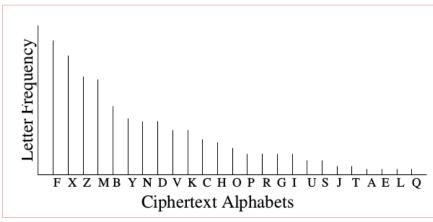
Cryptanalysis of Substitution Cipher (frequency analysis)

Languages do not have uniform probabilities

- Unigram probabilities of alphabets
 - E has probability 0.12 (12%)
 - ► T,A,O,I,N,S,H,R each have probabilities between 0.06 and 0.09
 - D,L each have probabilites around 0.04
 - C,U,M,W,F,G,Y,P,B each have probabilities between 0.015 and 0.028
 - V,K,J,X,Q,Z each occur less than 0.01
- 30 common digrams are TH, HE, IN, ER, AN, RE, AT,...

Cryptanalysis of Substitution Cipher (from their frequency characteristics)





Frequency analysis of plaintext alphabets

Frequency analysis of ciphertext alphabets

Usage & Variants

- Evidence showed that it was used before Caesar's cipher
- The technique of 'substitution' still used in modern day block ciphers
- Frequency based analysis attributed to Al-kindi, an Arab mathematician (in AD 800)

Polyalphabetic Ciphers

- Problem with the simple substitution cipher :
 - A plaintext letter always mapped to the same ciphertext letter (mono alphabetic)
 - eg. 'Z' always corresponds to plaintext 'a'
 - facilitating frequency analysis
- A variation (polyalphabetic cipher)
 - A plaintext letter may be mapped to multiple ciphertext letters
 - eg. 'a' may correspond to ciphertext 'Z' or 'T' or 'C' or 'M'
 - More difficult to do frequency analysis (but not impossible)
 - Example : Vigenere Cipher, Hill Cipher

Vigenère Cipher

- Let the key be (2,5,8,7,9,12) of size 6
- Let the message to be encrypted be "attackatdawn"
- Convert message to integers modulo 26
 - "attackatdawn" becomes (0, 19, 19, 0, 2, 10, 0, 19, 3, 0, 22, 13)
- To encrypt, group them in terms of 6 and add the corresponding key

|keyspace| = 26^m (where m is the length of the key) plaintext (x)

key (k)

 $(x + k) \mod 26$

ciphertext

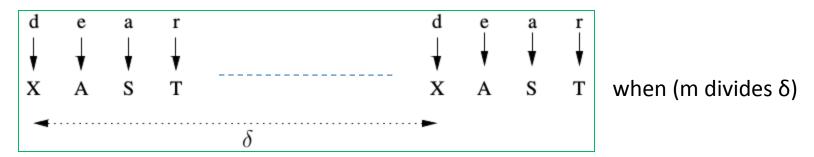
a	t	t	a	с	k	a	t	d	a	w	n
0	19	19	0	2	10	0	19	3	0	22	13
2	5	8	7	9	12	2	5	8	7	9	12
2	23	1	7	11	22	2	24	11	7	9	25
С	X	В	I	K	W	С	Y	K	Н	F	Z

Cryptanalysis of Vigenère Cipher

- Frequency analysis more difficult (but not impossible)
- Attack has two steps
 - 1. Determine the length *m* of the key
 - 2. Determine $K = (k_1, k_2, k_3, \dots k_m)$ by finding each k_i separately

Determining Key Length (Kaisiki Test)

- Kasiski test by Friedrich Kasiski in 1863
- Let m be the size of the key
- observation: two identical plaintext segments will encrypt to the same ciphertext when they are δ apart and $(m \mid \delta)$



- If several such δs are found (i.e. δ_1 , δ_2 , δ_3 ,) then
 - $-m/\delta_1, m/\delta_2, m/\delta_3,$
 - Thus m divides the gcd of $(\delta_1, \delta_2, \delta_3,)$

Example

Key: ABCDABCDABCDABCDABCDABCDABCD
Plaintext: CRYPTOISSHORTFORCRYPTOGRAPHY
Ciphertext: CSASTPKVSIQUTGQUCSASTPIUAQJB

The distance between the two "CSASTP" is 16. The key length is either 16,8,4,2, or 1.

Increasing Confidence of Key Length (Index of Coincidence)

Consider a multi set of letters of size N

say
$$s = \{a,b,c,d,a,a,e,f,e,g,....\}$$

Probability of picking two 'a' characters (without

replacement) is

$$\frac{n_0}{N} \times \frac{n_0 - 1}{N - 1}$$

 n_0 : Number of occurrences of 'a' in S

probability the first pick is 'a' probability the second pick is 'a'

Sum of probabilities of picking two similar characters is

$$I_c = \sum_{i=0}^{25} \frac{n_i(n_i - 1)}{N(N - 1)}$$

index of coincidence

Index of Coincidence

Consider a random permutation of the alphabets (as in the substitution cipher)

$$s = \{a,b,c,d,a,a,e,f,e,g,....\}$$
 $S = \{X,M,D,F,X,X,Z,G,Z,J,....\}$

- Note that : $n_a = n_X$; thus the value of I_c remains unaltered
- Number of occurrence of an alphabet in a text depends on the language, thus each language will have a unique I_c value

English	0.0667	French	0.0778
German	0.0762	Spanish	0.0770
Italian	0.0738	Russian	0.0529

Modular Arithmetic

Modular Arithmetic

slides in Mathematical Background

Affine Cipher

A special case of substitution cipher

 $(17 - 5)*9 \mod 26 = 4$

When $gcd(a,26) \neq 1$?

- Let gcd(a, 26) = d > 1
 - then d/a and d/26 (i.e. $d \mod 26 = 0$)
 - y = ax + b mod 26
 Let ciphertext y = b; ax = 0 mod 26
 In this case x can have two decrypted values: 0 and d.
 Thus the function is not injective.... cannot be used for an encryption

What is the ciphertext when (1) $x_1 = 1$ and (2) $x_2 = 14$ are encrypted with the Affine cipher with key (4, 0)?

Usage & Variants of Affine Cipher

- Ciphers built using the Affine Cipher
 - Caesar's cipher is a special case of the Affine cipher with a = 1
 - Atbash
 - b = 25, $a^{-1} = a = 25$
 - Encryption : y = 25x + 25 mod 26
 - Decryption : $x = 25x + 25 \mod 26$

Encryption function same as decryption function

Hill Cipher

- Encryption: $y = xK \pmod{26}$
- Decryption: $x = yK^{-1} \pmod{26}$
 - plaintext : x ∈ {0,1,2,3, 25}
 - ciphertext : y ∈ {0,1,2,3, 25}
 - : K is an invertible matrix kev
- example

$$K = \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix}$$

$$K = \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix} \qquad \begin{array}{c} \text{hill} \\ K^{-1} = \begin{bmatrix} 7 & 18 \\ 23 & 11 \end{bmatrix} \quad K \bullet K^{-1} = 1 \mod 26 \end{array}$$

$$K \bullet K^{-1} = 1 \operatorname{mod} 26$$

$$\begin{bmatrix} 7 & 8 \end{bmatrix} \times \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix} \pmod{26} = \begin{bmatrix} 23 & 8 \end{bmatrix}$$
 encryption
$$\begin{bmatrix} 23 & 8 \end{bmatrix} \times \begin{bmatrix} 7 & 18 \\ 23 & 11 \end{bmatrix} \pmod{26} = \begin{bmatrix} 7 & 8 \end{bmatrix}$$
 decryption

$$hill \rightarrow (7,8)(11,11) \longrightarrow (23,8)(24,9) \rightarrow XIYJ$$
plaintext ciphertext

Cryptanalysis of Hill Cipher

- ciphertext only attack is difficult
- known plaintext attack

(7,8)(11,11)
$$\times \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$$
 \longrightarrow (23,8)(24,9) corresponding ciphertext

Form equations and solve to get the key

$$7k_{11} + 8k_{21} = 23$$
 $7k_{12} + 8k_{22} = 8$
 $11k_{11} + 11k_{21} = 24$ $11k_{12} + 11k_{22} = 9$

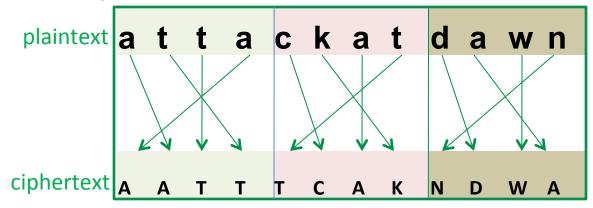
Permutation Cipher

- Ciphers we seen so far were substitution ciphers
 - Plaintext characters substituted with ciphertext characters

- Alternate technique : permutation
 - Plaintext characters re-ordred by a random permutation

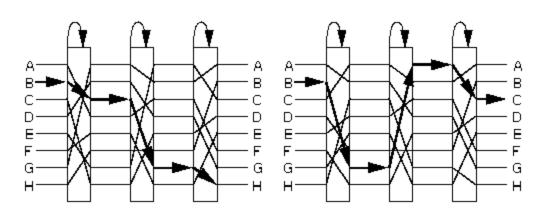
Permutation Cipher

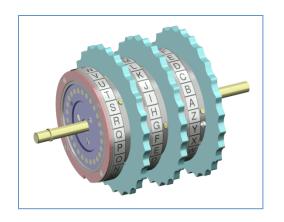
- Example plaintext: attackatdawn
 - key: (1,3,2,0) here is of length 4 and a permutation of (0,1,2,3)
 - It mean's 0th character in plaintext goes to 1st character in ciphertext (and so on...)



cryptanalysis: 4! possibilities

Rotor Machines (German Enigma)

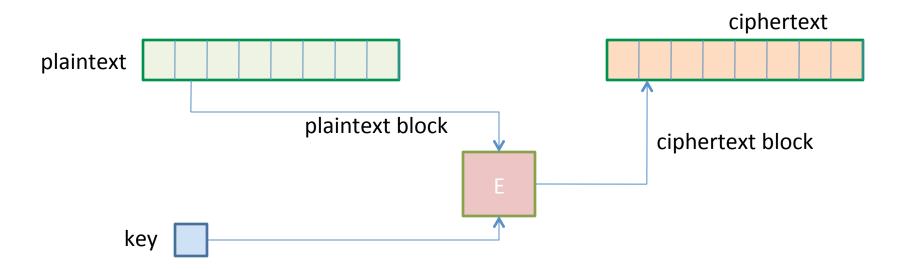




- Each rotor makes a permutation
 - Adding / removing a rotor would change the ciphertext
- Additionally, the rotors rotates with a gear after a character is entered
- Broken by Alan Turing

Block Ciphers

- General principal of all ciphers seen so far
 - Plaintext divided into blocks and each block encrypted with the same key
 - Blocks can vary in length starting from 1 character

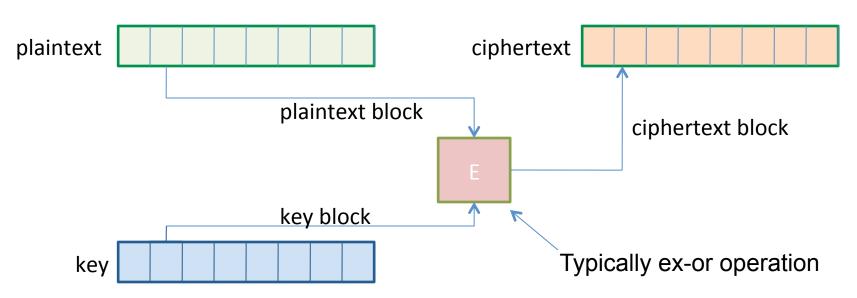


examples: substitution ciphers, polyalphabetic ciphers, permutation ciphers, etc.

Stream Ciphers

Typically a bit, but can also more than a bit

Each block of plaintext is encrypted with a different key



Formally,
$$y = y_1 y_2 y_3 ... = e_{k_1}(x_1) e_{k_2}(x_2) e_{k_3}(x_3) ...$$

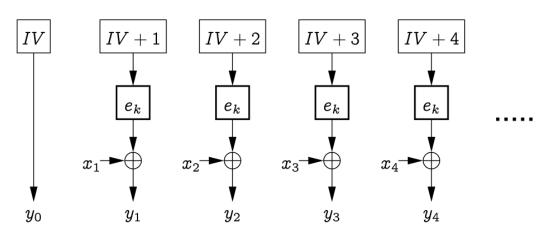
Observe: the key should be variable length... we call this a key stream.

Stream Ciphers (how they work)

$$y=y_1y_2y_3...$$
 stream cipher output :
$$y_1=x_1\oplus k_1; y_2=x_2\oplus k_2; y_3=x_3\oplus k_3,....$$

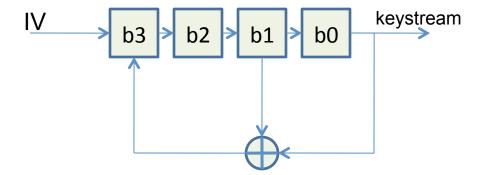
How to generate the ith key: $k_i = f_i(K, k_1, k_2, k_3, ..., k_{i-1})$

ith key is a function of K and the first i-1 plaintexts $k_1, k_2, k_3, ..., k_i$ Is known as the keystream



Generating the Initialization Vector keystream in practice

Using LFSRs (Linear feedback shift registers)



b3	b2	b1	b0
1	0	0	0
0	1	0	0
0	0	1	0
1	0	0	1
1	1	0	0
0	1	1	0
1	0	1	1
0	1	0	1
1	0	1	0
1	1	0	1
1	1	1	0
1	1	1	1
0	1	1	1
0	0	1	1
0	0	0	1
1	0	0	0

