# Perfect Secrecy 

Chester Rebeiro<br>IIT Madras

## Encryption



"Attack at Dawn!!"

How do we design ciphers?

## Cipher Models (What are the goals of the design?)

Computation Security


My cipher can withstand all attacks with complexity less than $2^{2048}$

The best attacker with the best computation resources would
take 3 centuries to attack my cipher

## Unconditional Securitv

Provable Security
(Hardness relative to a tough problem)

If my cipher can be broken then large numbers can be factored easily


This model is also known as Perfect Secrecy. Can such a cryptosystem be built? We shall investigate this.

## Analyzing Unconditional Security

- Assumptions
- Ciphertext only attack model

The attacker only has information about the ciphertext. The key and plaintext are secret.

- We first analyze a single encryption then relax this assumption by analyzing multiple encryptions with the same key


## Encryption



- For a given key, the encryption $\left(\mathrm{e}_{\mathrm{k}}\right)$ defines an injective mapping between the plaintext set ( P ) and ciphertext set (C)
- Alice picks a plaintext $x \in P$, chooses a key (independently), and encrypts it to obtain a ciphertext $y \in C$


## Plaintext Distribution

## Plaintext Distribution

- Let $\mathbf{X}$ be a discrete random variable over the set $P$
- Alice chooses $x$ from $P$ based on some probability distribution
- Let $\operatorname{Pr}[\boldsymbol{X}=x]$ be the probability that x is chosen
- This probability may depend on the language


$$
\begin{aligned}
& \text { Plaintext set } \\
& \operatorname{Pr}[X=a]=1 / 2 \\
& \operatorname{Pr}[X=b]=1 / 3 \\
& \operatorname{Pr}[X=c]=1 / 6
\end{aligned}
$$

Note : $\operatorname{Pr}[\mathrm{a}]+\operatorname{Pr}[\mathrm{b}]+\operatorname{Pr}[\mathrm{c}]=1$

## Key Distribution

## Key Distribution

- Alice \& Bob agree upon a key k chosen from a key set K
- Let $\boldsymbol{K}$ be a random variable denoting this choice

```
keyspace
Pr[K=k}\mp@subsup{\mathbf{1}}{1}{}]=3/
Pr[K=k
```



There are two keys in the keyset thus there are two possible encryption mappings


## Ciphertext Distribution

- Let $\mathbf{Y}$ be a discrete random variable over the set $\mathbf{C}$
- The probability of obtaining a particular ciphertext y depends on the plaintext and key probabilities

$$
\begin{gathered}
\operatorname{Pr}[Y=y]=\sum_{k} \operatorname{Pr}(k) \operatorname{Pr}\left(d_{k}(y)\right) \\
\begin{aligned}
\operatorname{Pr}[Y=P] & =\operatorname{Pr}\left(\mathrm{k}_{1}\right) * \operatorname{Pr}(\mathrm{c})+\operatorname{Pr}\left(\mathrm{k}_{2}\right) * \operatorname{Pr}(\mathrm{c}) \\
= & (3 / 4 * 1 / 6)+(1 / 4 * 1 / 6)=1 / 6
\end{aligned} \\
\operatorname{Pr}[Y=Q]=\operatorname{Pr}\left(\mathrm{k}_{1}\right) * \operatorname{Pr}(\mathrm{~b})+\operatorname{Pr}\left(\mathrm{k}_{2}\right) * \operatorname{Pr}(\mathrm{a}) \\
= \\
=\left(3 / 4^{*} 1 / 3\right)+(1 / 4 * 1 / 2)=\mathbf{3 / 8} \\
\operatorname{Pr}[Y=R]=\operatorname{Pr}\left(\mathrm{k}_{1}\right) * \operatorname{Pr}(\mathrm{a})+\operatorname{Pr}\left(\mathrm{k}_{2}\right) * \operatorname{Pr}(\mathrm{~b}) \\
= \\
=(3 / 4 * 1 / 2)+(1 / 4 * 1 / 3)=11 / \mathbf{2 4}
\end{gathered}
$$

Note: $\operatorname{Pr}[\mathrm{Y}=\mathrm{P}]+\operatorname{Pr}[\mathrm{Y}=\mathrm{Q}]+\operatorname{Pr}[\mathrm{Y}=\mathrm{R}]=1$


$$
\begin{array}{ll}
\operatorname{Pr}[\mathbf{X}=\mathrm{a}]=1 / 2 & \text { keyspace } \\
\operatorname{Pr}[\mathbf{X}=\mathrm{b}]=1 / 3 & \operatorname{Pr}\left[\mathbf{K}=\mathrm{k}_{1}\right]=3 / 4 \\
\operatorname{Pr}[\mathbf{X}=\mathrm{c}]=1 / 6 & \operatorname{Pr}\left[\mathbf{K}=\mathrm{k}_{2}\right]=1 / 4
\end{array}
$$

## Attacker's Probabilities

- The attacker wants to determine the plaintext $\boldsymbol{x}$
- Two scenarios
- Attacker does not have y (a priori Probability)
- Probability of determining $x$ is simply $\operatorname{Pr}[x]$
- Depends on plaintext distribution (eg. Language charcteristics)
- Attacker has y (a posteriori probability)
- Probability of determining $x$ is simply $\operatorname{Pr}[x / y]$


## A posteriori Probabilities

- How to compute the attacker's a posteriori probabilities? $\operatorname{Pr}[X=x \mid Y=y]$
- Bayes' Theorem

$$
\operatorname{Pr}[x \mid y]=\frac{\operatorname{Pr}[x] \times \operatorname{Pr}[y \mid x]}{\operatorname{Pr}[y]}
$$

probability of the plaintext
probability of this ciphertext

The probability that y is obtained given $x$ depends on the keys which provide such a mapping

$$
\operatorname{Pr}[y \mid x]=\sum_{\left\{k: d_{k}(y)=x\right\}} \operatorname{Pr}[k]
$$

## $\operatorname{Pr}[y \mid x]$

$$
\begin{aligned}
& \operatorname{Pr}[P \mid a]=0 \\
& \operatorname{Pr}[P \mid b]=0 \\
& \operatorname{Pr}[P \mid c]=1 \\
& \operatorname{Pr}[Q \mid a]=\operatorname{Pr}\left[k_{2}\right]=1 / 4 \\
& \operatorname{Pr}[Q \mid b]=\operatorname{Pr}\left[k_{1}\right]=3 / 4 \\
& \operatorname{Pr}[Q \mid c]=0 \\
& \operatorname{Pr}[R \mid a]=\operatorname{Pr}\left[k_{1}\right]=3 / 4 \\
& \operatorname{Pr}[R \mid b]=\operatorname{Pr}\left[k_{2}\right]=1 / 4 \\
& \operatorname{Pr}[R \mid c]=0
\end{aligned}
$$


keyspace

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathbf{K}=\mathrm{k}_{1}\right]=3 / 4 \\
& \operatorname{Pr}\left[\mathbf{K}=\mathrm{k}_{2}\right]=1 / 4
\end{aligned}
$$

## Computing A Posteriori Probabilities

$$
\begin{array}{clll}
\operatorname{Pr}[x \mid y]=\frac{\operatorname{Pr}[x] \times \operatorname{Pr}[y \mid x]}{\operatorname{Pr}[y]} & \begin{array}{lll}
\operatorname{Pr}[\mathbf{X}=\mathrm{a}]=1 / 2
\end{array} & \operatorname{Pr}[\mathbf{Y}=\operatorname{Pr}] \\
& \operatorname{Pr}[\mathbf{X}=\mathrm{b}]=1 / 3 & \operatorname{Pr}[\mathbf{Y}=\mathrm{Q}] \\
& \operatorname{Pr}[\mathbf{X}=\mathrm{c}]=1 / 6 & \operatorname{Pr}[\mathbf{Y}=\mathrm{R}] \\
& \operatorname{Pr}[\mathrm{a} \mid \mathrm{P}]=0 & \operatorname{Pr}[\mathrm{~b} \mid \mathrm{P}]=0 & \operatorname{Pr}[\mathrm{c} \mid \mathrm{P}]=1 \\
\operatorname{Pr}[\mathrm{a} \mid \mathrm{Q}]=1 / 3 & \operatorname{Pr}[\mathrm{~b} \mid \mathrm{Q}]=2 / 3 & \operatorname{Pr}[\mathrm{c} \mid \mathrm{Q}]=0 \\
\operatorname{Pr}[\mathrm{a} \mid \mathrm{R}]=9 / 11 & \operatorname{Pr}[\mathrm{~b} \mid \mathrm{R}]=2 / 11 & \operatorname{Pr}[\mathrm{c} \mid \mathrm{R}]=0
\end{array}
$$

## ciphertext

$\operatorname{Pr}[\mathrm{Y}=\mathrm{P}]=1 / 6$
$\operatorname{Pr}[\mathbf{Y}=\mathrm{Q}]=3 / 8$
$\operatorname{Pr}[\mathbf{Y}=\mathrm{R}]=11 / 24$
$\operatorname{Pr}[y \mid x]$
$\operatorname{Pr}[P \mid a]=0$
$\operatorname{Pr}[P \mid b]=0$
$\operatorname{Pr}[P \mid c]=1$
$\operatorname{Pr}[Q \mid a]=1 / 4$
$\operatorname{Pr}[\mathrm{Q} \mid \mathrm{b}]=3 / 4$
$\operatorname{Pr}[Q \mid c]=0$
$\operatorname{Pr}[\mathrm{R} \mid \mathrm{a}]=3 / 4$
$\operatorname{Pr}[\mathrm{R} \mid \mathrm{b}]=1 / 4$
$\operatorname{Pr}[R \mid c]=0$

If the attacker sees ciphertext $\boldsymbol{P}$ then she would know the plaintext was $\boldsymbol{C}$ If the attacker sees ciphertext $\boldsymbol{R}$ then she would know $\boldsymbol{a}$ is the most likely plaintext Not a good encryption mechanism!!

## Perfect Secrecy

- Perfect secrecy achieved when
a posteriori probabilities $=$ a priori probabilities

$$
\operatorname{Pr}[x \mid y]=\operatorname{Pr}[x]
$$

i.e the attacker learns nothing from the ciphertext

Intuitively, by seeing the safe, you learn nothing about what is in it


## Perfect Secrecy Example

- Find the a posteriori probabilities for the following scheme
- Verify that it is perfectly secret.

$$
\begin{aligned}
& \text { plaintext } \\
& \operatorname{Pr}[\mathbf{X}=\mathrm{a}]=1 / 2 \\
& \operatorname{Pr}[\mathbf{X}=\mathrm{b}]=1 / 3 \\
& \operatorname{Pr}[\mathbf{X}=\mathrm{c}]=1 / 6 \\
& \text { keyspace } \\
& \operatorname{Pr}\left[\mathbf{K}=\mathrm{k}_{1}\right]=1 / 3 \\
& \operatorname{Pr}\left[\mathbf{K}=\mathrm{k}_{2}\right]=1 / 3 \\
& \operatorname{Pr}\left[K=\mathrm{k}_{3}\right]=1 / 3
\end{aligned}
$$



## Observations on Perfect Secrecy

Perfect Secrecy iff
Follows from

$$
\operatorname{Pr}[Y=y \mid X=x]=\operatorname{Pr}[Y=y]
$$

Baye's theorem

## Perfect Indistinguishability

$\forall x_{1}, x_{2} \in P$

$$
\operatorname{Pr}\left[Y=y \mid X=x_{1}\right]=\operatorname{Pr}\left[Y=y \mid X=x_{2}\right]
$$

Perfect secrecy has nothing to do with plaintext distribution. Thus a crypto-scheme will achieve perfect secrecy irrespective of the language used in the plaintext.

## Shift Cipher with a Twist

- Plaintext set : $P=\{0,1,2,3 \ldots, 25\}$
- Ciphertext set : $\mathrm{C}=\{0,1,2,3$..., 25\}
- Keyspace : $\mathrm{K}=\{0,1,2,3 \ldots, 25\}$
- Encryption Rule : $e_{K}(x)=(x+K) \bmod 26$,
- Decryption Rule : $d_{k}(x)=(x-K) \bmod 26$ where $K \in \mathrm{~K}$ and $x \in \mathrm{P}$
The Twist:
(1) the key changes after every encryption
(2) keys are picked with uniform probability


## The Twisted Shift Cipher is Perfectly Secure

$$
\begin{aligned}
& \operatorname{Pr}[\mathbf{y}=y]=\sum_{K \in \mathbb{Z}_{26}} \operatorname{Pr}[\mathbf{K}=K] \mathbf{P r}\left[\mathbf{x}=d_{K}(y)\right] \\
&=\sum_{K \in \mathbb{Z}_{26}} \frac{1}{26} \operatorname{Pr}[\mathbf{x}=y-K] \\
&=\frac{\text { Keys chosen with uniform probability }}{26} \sum_{\operatorname{Pr}[\mathbf{x}=y-K] .} \\
&=\frac{1}{26} \\
& \begin{array}{ll}
\text { This is } 1 \text { because the sum is over } \\
\text { all values of } \mathrm{x}
\end{array} \\
&=\frac{1}{26} \quad \begin{array}{l}
\text { For every pair of } \mathrm{y} \text { and } \mathrm{x} \text {, there } \\
\text { is exactly one key. Probability of } \\
\text { that key is } 1 / 26
\end{array}
\end{aligned}
$$

## The Twisted Shift Cipher is Perfectly Secure

$$
\begin{aligned}
\operatorname{Pr}[\mathbf{y}=y] & =\sum_{K \in \mathbb{Z}_{26}} \operatorname{Pr}[\mathbf{K}=K] \operatorname{Pr}\left[\mathbf{x}=d_{K}(y)\right] \\
& =\sum_{K \in \mathbb{Z}_{26}} \frac{1}{26} \mathbf{P r}[\mathbf{x}=y-K] \\
& =\frac{1}{26} \sum_{K \in \mathbb{Z}_{26}} \operatorname{Pr}[\mathbf{x}=y-K] . \\
& =\frac{1}{26}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}[x \mid y] & =\frac{\operatorname{Pr}[x] \operatorname{Pr}[y \mid x]}{\operatorname{Pr}[y]} \\
& =\frac{\operatorname{Pr}[x] \frac{1}{26}}{\frac{1}{26}} \\
& =\operatorname{Pr}[x],
\end{aligned}
$$

$\operatorname{Pr}[y \mid x]=\mathbf{P r}[\mathbf{K}=(y-x) \bmod 26]$

$$
=\frac{1}{26}
$$

## Shannon's Theorem

If $|K|=|C|=|P|$ then the system provides perfect secrecy iff
(1) every key is used with equal probability $1 /|\mathrm{K}|$, and
(2) for every $x \in P$ and $y \in C$, there exists a unique key $k \in K$ such that $e_{k}(x)=y$

Intuition :
Every $y \in C$ can result from any of the possible plaintexts $x$
Since $|K|=|P|$ there is exactly one mapping from each plaintext to $y$
Since each key is equi-probable, each of these mappings is equally probable

## One Time Pad (Verman's Cipher)



## One Tme Pad (Example)

$$
\mathrm{e}=000 \mathrm{~h}=001 \mathrm{i}=010 \mathrm{k}=011 \mathrm{l}=100 \mathrm{r}=101 \mathrm{~s}=110 \mathrm{t}=111
$$

Encryption: Plaintext $\oplus$ Key $=$ Ciphertex $\dagger$

|  | h | e | i | l | h | i | t | l | e | r |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plaintext: | 001 | 000 | 010 | 100 | 001 | 010 | 111 | 100 | 000 | 101 |
| Key: | 111 | 101 | 110 | 101 | 111 | 100 | 000 | 101 | 110 | 000 |
| Ciphertext: | 110 | 101 | 100 | 001 | 110 | 110 | 111 | 001 | 110 | 101 |
|  | s | r | l | h | s | s | t | h | s | r |

## One Time Pad is Perfectly Secure

- Proof using indistinguishability

$$
\begin{gathered}
\operatorname{Pr}[Y=y \mid X=x]=\operatorname{Pr}[X=x, K=k \mid X=x] \quad \text { from } x \oplus k=y \\
=\operatorname{Pr}[K=k]=\frac{1}{2^{L}} \\
\operatorname{Pr}\left[Y=y \mid X=x_{1}\right]=\frac{1}{2^{L}}=\operatorname{Pr}\left[Y=y \mid X=x_{2}\right] \\
\forall x_{1}, x_{2} \in X
\end{gathered}
$$

This implies perfect Indistinguishability that is independent of the plaintext distribution

## Limitations of Perfect Secrecy

- Key must be at least as long as the message
- Limits applicability if messages are long
- Key must be changed for every encryption
- If the same key is used twice, then an adversary can compute the ex-or of the messages

$$
\begin{aligned}
& x_{1} \oplus k=y_{1} \\
& x_{2} \oplus k=y_{2} \\
& x_{1} \oplus x_{2}=y_{1} \oplus y_{2}
\end{aligned}
$$

The attacker can then do language analysis to determine $\mathrm{y}_{1}$ and $y_{2}$

## Ciphers in Practice

- Perfect secrecy is difficult to achieve in practice
- Instead we use a crypto-scheme that cannot be broken in reasonable time with reasonable success
- This means,
- Security is only achieved against adversaries that run in polynomial time
- Attackers can potentially succeed with a very small probability (attackers need to be very lucky to succeed)


## Quantifying Information

## A Metric to Quantify Information

There is one alphabet missing in each of these words. Can you find the alphabet so that the words make sense?

| nough <br> ntwork <br> hardwar | enough <br> network <br> hardware | reate <br> shool <br> sott | create <br> school <br> scott |
| :--- | :--- | :--- | :--- |

Frequently occurring letters (like e) contain less information than non-frequent letters (like c)

We need to have function to quantify information!
Additionally, the function should be (1) continuous (2) should be able to sum individual information (eg. X1: Message 1, X2 : Message 2)

$$
I(X 1, X 2)=I(\text { Message 1) +I(Message 2) }
$$

## Metric to Quantify Information



$$
\log _{2}\left(\frac{1}{p_{i}}\right)
$$

Claude Shannon

A higher probability
indicates lesser information content.

| $\operatorname{Pr}(\mathrm{e})=0.12702$ | $-\log 2(0.12702)=2.97$ |
| :--- | :--- |
| $\operatorname{Pr}(\mathrm{a})=0.08167$ | $-\log 2(0.08167)=3.61$ |
| $\operatorname{Pr}(\mathrm{~m})=0.02406$ | $-\log 2(0.02406)=5.37$ |
| $\operatorname{Pr}(\mathrm{c})=0.02782$ | $-\log 2(0.02782)=5.16$ |
| $\operatorname{Pr}(\mathrm{q})=0.0095$ | $-\log 2(0.0095)=6.71$ |

## Metric to Quantify Information



To find the average information content of a language find weighted sum as follows

$$
\sum_{i=1}^{n} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)
$$

## Metric to Quantify Information



Claude Shannon

## Entropy provides the average number of bits needed to represent letters in the language

To find the average information content of a language find weighted sum as follows

Call this term the Entropy

$$
H(X)=\sum_{i=1}^{n} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)
$$

Entropy of English
Contemporary : 4.03 bits
Shakesphere : 4.106 bits
German
: 4.08 bits
French : 4.00 bits
Italian
Spanish
: 3.98 bits
: 3.98 bits

Maximum Entropy occurs when each alphabet is equally likely (ie. 1/26).
The maximum entropy is $-\log \_2(1 / 26)=4.7$

## Entropy of the Weather Forecast

## Weather Forecast

Tomorrow I the weather will be

```
M1 : Sunny (with probability 0.05)
M2 : Cloudy (with probability 0.15)
M3 : Light Rain (with probability 0.70)
M4 : Heavy Rain (with probability 0.10)
```

$$
\begin{aligned}
H(\text { Forecast }) & =\sum_{i=1}^{n} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right) \\
& =-\left((0.05) \log _{2} 0.05+(0.15) \log _{2} 0.15+(0.7) \log _{2} 0.7+(0.1) \log _{2} 0.1\right) \\
& =1.319
\end{aligned}
$$

## Entropy and Uncertainity

- Alice thinks of a number (0 or 1)
- The choice is denoted by a discrete random variable $X$.



## What is X ?

- What is Mallory's uncertainty about X?
- Depends on the probability distribution of $X$


## Uncertainty

- Lets assume Mallory know this probability distribution.
- If $\operatorname{Pr}[X=1]=1$ and $\operatorname{Pr}[X=0]=0$
- Then Mallory can determine with $100 \%$ accuracy
- If $\operatorname{Pr}[X=0]=.75$ and $\operatorname{Pr}[X=1]=.25$

- Mallory will guess $X$ as 0 , and gets it right $75 \%$ of the time
- If $\operatorname{Pr}[\mathrm{X}=0]=\operatorname{Pr}[\mathrm{X}=1]=0.5$
- Mallory's guess would be similar to a uniformly random guess. Gets it right $1 / 2$ the time.



## What is the Entropy of X?



$$
\begin{aligned}
& \operatorname{Pr}[X=0]=p \text { and } \operatorname{Pr}[X=1]=1-p \\
& H(X)=-\operatorname{pog}_{2} p-(1-p) \log _{2}(1-p) \\
& H(X)_{p=0}=0, H(X)_{p=1}=0, H(X)_{p=.5}=1
\end{aligned}
$$

using $\lim _{p \rightarrow 0}(p \log p)=0$


## Properties of $\mathrm{H}(\mathrm{X})$

- If $X$ is a random variable, which takes on values $\{1,2,3, \ldots . n\}$ with probabilities $p_{1}, p_{2}, p_{3}, \ldots . p_{n}$, then

1. $H(X) \leq \log _{2} n$
2. When $p_{1}=p_{2}=p_{3}=\ldots p_{n}=1 / n$ then $H(X)=\log _{2} n$

Example an 8 face dice.
If the dice is fair, then we obtain the maximum entropy of 3 bits If the dice is unfair, then the entropy is $<3$ bits

## Entropy and Coding

- Entropy quantifies Information content "Can we encode a message M in such a way that the average length is as short as possible and hopefully equal to $\mathrm{H}(\mathrm{M})$ ?"

Huffman Codes :
allocate more bits to least probable events allocate less bits to popular events

## Example

- $S=\{A, B, C, D\}$ are 4 symbols
- Probability of Occurrence is :

$$
P(A)=1 / 8, P(B)=1 / 2, P(C)=1 / 8, P(D)=1 / 4
$$



To decode, with each bit traverse the tree from root until you reach a leaf.

Decode this?
1101010111

## Example :

## Average Length and Entropy

- $S=\{A, B, C, D\}$ are 4 symbols
- Probability of Occurrence is :

$$
p(A)=1 / 8, p(B)=1 / 2, p(C)=1 / 8, p(D)=1 / 4
$$

D: 10

- Average Length of Huffman code :

$$
3 * p(A)+1 * p(B)+3 * p(C)+2 * p(D)=1.75
$$

- Entropy $\mathrm{H}(\mathrm{S})=$

$$
\begin{aligned}
& -1 / 8 \log _{2}(8)-1 / 2 \log _{2}(2)-1 / 8 \log _{2}(8)-1 / 4 \log _{2}(4) \\
& =1.75
\end{aligned}
$$

## Measuring the Redundancy in a Language

- Let $S$ be letter in a language (eg. $S=\{A, B, C, D\}$ )
- $\mathbf{S}=S \times S \times S \times S \times S \times S(k$ times $)$ is a set representing messages of length $k$
- Let $S^{(k)}$ be a random variable in $S$
- The average information in each letter is given by the rate of $S^{(k)}$.

$$
r_{k}=\frac{H\left(S^{(k)}\right)}{k}
$$

- $r_{k}$ for English is between 1.0 and 1.5 bits/letter


## Measuring the Redundancy in a Language

- Absolute Rate : The maximum amount of information per character in a language
- the absolute rate of language $S$ is $R=\log _{2}|S|$
- For English, $|S|=26$, therefore $R=4.7$ bits / letter
- Redundancy of a language is

$$
D=R-r_{k}
$$

- For English when $\mathrm{rk}=1$, then $\mathrm{D}=3.7 \rightarrow$ around $70 \%$ redundant


## Example (One letter analysis)

- Consider a language with 26 letters of the set $S=\left\{s_{1}, s_{2}, s_{3}\right.$, ....., $\left.\mathrm{s}_{26}\right\}$. Suppose the language is characterized by the following probabilities. What is the language redundancy?

$$
\begin{aligned}
& P\left(s_{1}\right)=\frac{1}{2}, P\left(s_{2}\right)=\frac{1}{4} \\
& P\left(s_{i}\right)=\frac{1}{64} \quad \text { for } \quad i=3,4,5,6,7,8,9,10 \\
& P\left(s_{i}\right)=\frac{1}{128} \quad \text { for } \quad i=11,12, \ldots, 26
\end{aligned}
$$

Rate of the Language for 1 letter analysis

$$
\begin{aligned}
r_{1} & =H\left(S^{(1)}\right) \\
& =\sum_{i=1}^{26} P\left(s_{i}\right) \log \frac{1}{P\left(s_{i}\right)} \\
& =\frac{1}{2} \log 2+\frac{1}{4} \log 4+8\left(\frac{1}{64} \log 64\right)+16\left(\frac{1}{128} \log 128\right) \\
& =\frac{1}{2}+\frac{1}{2}+\frac{6}{8}+\frac{7}{8}=2.625
\end{aligned}
$$

Absolute Rate

$$
R=\log 26=4.7
$$

Language Redundancy
$D=R-r_{1}=4.7-2.625=2.075$
Language is $\sim 70 \%$ redundant

## Example (Two letter analysis)

- In the set $S=\left\{s_{1}, s_{2}, s_{3}, \ldots . ., s_{26}\right\}$, suppose the diagram probabilites is as below. What is the language redundancy?

$$
\begin{aligned}
& P\left(s_{i+1} \mid s_{i}\right)=P\left(s_{i+2} \mid s i\right)=\frac{1}{2} \quad \text { for } \quad i=1 \text { to } 24 \\
& P\left(s_{26} \mid s_{25}\right)=P\left(s_{1} \mid s_{25}\right)=P\left(s_{1} \mid s_{26}\right)=P\left(s_{2} \mid s_{26}\right)=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& P\left(s_{1}, s_{2}\right)=P\left(s_{2} \mid s_{1}\right) \times P\left(s_{1}\right)=1 / 4 ; P\left(s_{1}, s_{3}\right)=P\left(s_{3} \mid s_{1}\right) \times P\left(s_{1}\right)=1 / 4 \\
& P\left(s_{2}, s_{3}\right)=P\left(s_{3} \mid s_{2}\right) \times P\left(s_{2}\right)=1 / 8 ; P\left(s_{2}, s_{4}\right)=P\left(s_{4} \mid s_{2}\right) \times P\left(s_{2}\right)=1 / 8
\end{aligned}
$$

$$
P\left(s_{i}, s_{i+1}\right)=P\left(s_{i+1} \mid s_{i}\right) P\left(s_{i}\right)=1 / 128 \quad \text { for } i=3,4, \ldots \ldots, 10
$$

$$
P\left(s_{i}, s_{i+2}\right)=P\left(s_{i+2} \mid s_{i}\right) P\left(s_{i}\right)=1 / 128 \quad \text { for } i=3,4, \ldots \ldots, 10
$$

$$
P\left(s_{i}, s_{i+1}\right)=P\left(s_{i+1} \mid s_{i}\right) P\left(s_{i}\right)=1 / 256 \quad \text { for } i=11,12, \ldots \ldots, 24
$$

$$
P\left(s_{i}, s_{i+2}\right)=P\left(s_{i+2} \mid s_{i}\right) P\left(s_{i}\right)=1 / 256 \quad \text { for } i=11,12, \ldots \ldots, 24
$$

$$
P\left(s_{25}, s_{26}\right)=P\left(s_{25}, s_{1}\right)=P\left(s_{26}, s_{1}\right)=P\left(s_{26}, s_{2}\right)=1 / 256
$$

Rate of the Language for $\mathbf{2}$ letter analysis

$$
\begin{aligned}
r_{2} & =H\left(S^{(2)}\right) / 2 \\
& =\frac{1}{2} \sum_{i, j=1}^{26} P\left(s_{i}, s_{j}\right) \log \frac{1}{P\left(s_{i}, s_{j}\right)} \\
& =\frac{1}{2}\left[2\left(\frac{1}{4} \log 4\right)+2\left(\frac{1}{8} \log 8\right)+16\left(\frac{1}{128} \log 128\right)+32\left(\frac{1}{256} \log 256\right)\right] \\
& =\frac{1}{2}\left[1+\frac{3}{4}+\frac{7}{8}+1\right]=\frac{3.625}{2}=1.8125
\end{aligned}
$$

## Language Redundancy

$$
D=R-r_{2}=4.7-1.8125=2.9
$$

Language is $\sim 60 \%$ redundant

## Observations

$$
\begin{gathered}
\text { Single letter analysis }: r_{1}=H\left(S^{(1)}\right)=2.625 ; D=2.075 \\
\text { Two letter analysis }: H\left(S^{(2)}\right)=3.625 ; r_{2}=1.8125 ; D=2.9
\end{gathered}
$$

- $\mathrm{H}(\mathrm{S}(2))-\mathrm{H}(\mathrm{S}(1))=1$ bit
- why?
- As we increase the message size
- Rate reduces; inferring less information per letter
- Redundancy increases


## Conditional Entropy

- Suppose $X$ and $Y$ are two discrete random variables, then conditional entropy is defined as

$$
\begin{aligned}
H(X \mid Y) & =\sum_{y} p(y) \sum_{x} p(x \mid y) \log _{2}\left(\frac{1}{p(x \mid y)}\right) \\
& =\sum_{x} \sum_{y} p(x, y) \log _{2}\left(\frac{p(x)}{p(x, y)}\right)
\end{aligned}
$$

- Conditional entropy means ....
- What is the remaining uncertainty about $X$ given $Y$
$-H(X \mid Y) \leq H(X)$ with equality when $X$ and $Y$ are independent


## Joint Entropy

- Suppose $X$ and $Y$ are two discrete random variables, and $p(x, y)$ the value of the joint probability distribution when $X=x$ and $Y=y$
- Then the joint entropy is given by

$$
H(X, Y)=\sum_{y} \sum_{x} p(x, y) \log _{2}\left(\frac{1}{p(x, y)}\right)
$$

- The joint entropy is the average uncertainty of 2 random variables


## Entropy and Encryption

n : length of message/ciphertext


- There are three entropies: $H\left(P^{(n)}\right), H(K), H\left(C^{(n)}\right)$
- Message Equivocation :

If the attacker can view $n$ ciphertexts, what is his uncertainty about the message

$$
H\left(M^{(n)} \mid C^{(n)}\right)=\sum_{c \in C^{n}} p(c) \sum_{m \in M^{n}} p(m \mid c) \log _{2}\left(\frac{1}{p(m \mid c)}\right)
$$

## Entropy and Encryption

n : length of message/ciphertext


- Key Equivocation :

If the attacker can view $n$ ciphertexts, what is his uncertainty about the key

$$
H\left(K \mid C^{(n)}\right)=\sum_{c \in C^{n}} p(c) \sum_{m \in M^{n}} p(k \mid c) \log _{2}\left(\frac{1}{p(k \mid c)}\right)
$$

## Unicity Distance

$$
H\left(K \mid C^{(n)}\right)=\sum_{c \in C^{n}} p(c) \sum_{m \in \mathcal{M}^{n}} p(k \mid c) \log _{2}\left(\frac{1}{p(k \mid c)}\right)
$$

- As n increases, $\mathrm{H}\left(\mathrm{K} \mid \mathrm{C}^{(\mathrm{n})}\right)$ reduces...
- This means that the uncertainty of the key reduces as the attacker observes more ciphertexts
- Unicity distance is the value of n for which $H\left(K \mid C^{(n)}\right) \approx 0$
- This means, the entire key can be determined in this case


## Unicity Distance and Classical Ciphers

| Cipher | Unicity Distance (for English) |
| :--- | :--- |
| Caesar's Cipher | 1.5 letters |
| Affine Cipher | 2.6 letters |
| Simple Substitution Cipher | 27.6 letters |
| Permutation Cipher | 0.12 (block size $=3$ ) |
|  | 0.66 (block size $=4$ ) |
|  | 1.32 (block size $=5$ ) |
|  | 2.05 (block size $=6$ ) |
| Vigenere Cipher | 1.47 d (d is the key length) |

## Product Ciphers

- Consider a cryptosystem where $\mathrm{P}=\mathrm{C}$ (this is an endomorphic system)
- Thus the ciphertext and the plaintext set is the same
- Combine two ciphering schemes to build a product cipher

Given two endomorphic crypto-systems

$$
\begin{aligned}
& S_{1}:\left(P, P, K_{1}, E_{1}, D_{1}\right) \\
& S_{2}:\left(P, P, K_{2}, E_{2}, D_{2}\right)
\end{aligned}
$$

## Resultant Product Cipher

$S_{1} \times S_{2}:\left(P, P, K_{1} \times K_{2}, E, D\right)$
Resultant Key Space $K_{1} \times K_{2}$


Ciphertext of first cipher fed as input to the second cipher

## Product Ciphers

- Consider a cryptosystem where $\mathrm{P}=\mathrm{C}$ (this is an endomorphic system)
- Thus the ciphertext and the plaintext set is the same
- Combine two ciphering schemes to build a product cipher


## Given two endomorphic crypto-systems

$$
\begin{aligned}
& S_{1}: x=d_{K_{1}}\left(e_{K_{1}}(x)\right) \\
& S_{2}: x=d_{K_{2}}\left(e_{K_{2}}(x)\right)
\end{aligned}
$$

## Resultant Product Cipher

$S_{1} \times S_{2}$

$$
\begin{aligned}
& e_{\left(K_{1}, K_{2}\right)}(x)=e_{K_{2}}\left(e_{K_{1}}(x)\right) \\
& d_{\left(K_{1}, K_{2}\right)}(x)=d_{K_{2}}\left(d_{K_{1}}(x)\right)
\end{aligned}
$$

Resultant Key Space $K_{1} \times K_{2}$


Ciphertext of first cipher fed as input to the second cipher

## Affine Cipher is a Product Cipher

Multiplicative Cipher Shift Cipher

- $P=C=\{0,1,2, \ldots 25\}$

Affine Cipher $=M \times S$

Encryption $\left(e_{a}(x)\right): y=a x \bmod 26$
Decryption $\left(d_{a}(x)\right): x=a^{-1} y \bmod 26$

## Encryption $\left(e_{b}(x)\right): y=x+b \bmod 26$ Decryption $\left(d_{b}(x)\right): x=y-b \bmod 26$

- Affine cipher : $y=a x+b$ mod 26
- Size of Key space is
- Size of key space for Multiplicative cipher * Size of keyspace for shift cipher
- 12 * $26=312$


## Is S x M same as the Affine Cipher

- $S x M: y=a(x+b) \bmod 26$

$$
=a x+b a \bmod 26
$$

- Key is (b,a)
- ba mod 26 is some b' such that $\mathrm{a}^{-1} \mathrm{~b}^{\prime}=\mathrm{b} \bmod 26$
- This can be represented as an Affine cipher,

$$
y=a x+b^{\prime} \bmod 26
$$

Thus affine ciphers are commutable (i.e. $\mathrm{S} \times \mathrm{M}=\mathrm{M} \times \mathrm{S}$ )

Create a non-commutable product ciphers

## Idempotent Ciphers

- If $S_{1}:\left(P, P, K, E_{1}, D_{1}\right)$ is an endomorphic cipher
- then it is possible to construct product ciphers of the form $\mathrm{S}_{1} \times \mathrm{S}_{1}$, denoted $S^{2}:(P, P, K \times K, E, D)$
- If $S^{2}=S$ then the cipher is called idempotent cipher

Show that the simple substitution cipher is idempotent
Does the security of the newly formed cipher increase?

In a non-idempotent cipher, however the security may increase.

## Iterative Cipher

- An n-fold product of this is $\mathbf{S} \mathbf{x} \mathbf{S} \mathbf{x} \mathbf{S}$... ( n times) $=\mathbf{S}^{\mathbf{n}}$ is an iterative cipher

All modern block ciphers like DES, 3-DES, AES, etc. are iterative, non-idempotent, product ciphers.

We will see more about these ciphers next!!

