Cryptographic Hash Functions

Chester Rebeiro
IIT Madras

STINSON : chapterd

Issues with Integrity

Alice re channel " Bob ”
> 2 Attack at Dusk!!
Message 2

“Attack at Dawn!!”

Change ‘Dawn’ to ‘Dusk’

How can Bob ensure that Alice’s message has not been modified?

Note.... We are not concerned with confidentiality here

Hashes

y = h(x)

“Message digest”

secure channel

“Attack at Dawn!!”))
((Attack at Dawn!!
Message unsecure channel

“Attack at Dawn!!”

v
-

Alice passes the message through a hash function, which produces a
fixed length message digest.

* The message digest is representative of Alice’s message.

* Even a small change in the message will result in a completely new message digest
* Typically of 160 bits, irrespective of the message size.

Bob re-computes a message hash and verifies the digest with Alice’s message digest.

3 Integrity with Hashes
“ e Y=h(x)

h “Message digest”

secure channel

(‘ “Attack at Dawn!!” h “Attack at Dawn!!”
4
Message insecuré channel

“Attack at Dawn!!”

. Mallory does not have access to the digest y.
/ Her task (to modify Alice’s message) is much
more difficult.

If she modifies x to x’, the modification can be
detected unless h(x) = h(x’)

Hash functions are specially designed to
resist such collisions

Message Authentication Codes
(MAC)

T “Attack at Dawn!!”
(l Message Digest N h)
Message unsecure channel K

“Attack at Dawn!!”

MACs allow the message and the digest to be sent over an insecure channel

However, it requires Alice and Bob to share a common key

Avalanche Effect

\i Short
essage fixed length also called
M digest «—T ‘hash’

Hash functions provide unique digests with high probability.
Even a small change in M will result in a new digest

SHA256(“short sentence”)

0x Dacdf28f4e8b00b399d89ca51f07fef34708e729%9ae15e85429¢5b0f403295¢c9
SHA256("The quick brown fox jumps over the Iazy dog")

d7a8fbb d7809469ca9abcb0082e4f8d5651e46d3cdb 762d02d0bf 2592
SHA266(The quick brown fox jumps over the Iazy do@
(extra perlod added)

7f25c895bfa782526529a9b63d97aab631564d5d789c2b765448c8635fb6¢

Hash functions in Security

Digital signatures

Random number generation
Key updates and derivations
One way functions

MAC

Detect malware in code

User authentication (storing passwords)

Hash Family

hy
.~
:%<::
X Y

The hash family is a 4-tuple defined by (X,Y,K,H)

X is a set of messages
(may be infinite, we assume the minimum size is at least 2| Y|)

Y is a finite set of message digests (aka authentication tags)
K is a finite set of keys
Each K € K, defines a keyed hash function h, € H

Hash Family : some definitions

hy
.~
:%<::
X Y

* Valid pair under K: (x,y) € Xxy such that, x = h,(y)

* Size of the hash family:
is the number of functions possible from set X to set Y

Y| =M and [X| =N
then the number of mappings possible is MN

* The collection of all such mappings are termed (N,M)-
hash mapping.

Unkeyed Hash Function

h
i
:%ﬁ
X Y

The hash family is a 4-tuple defined by (X,Y,K,H)

X is a set of messages
(may be infinite, we assume the minimum size is at least 2| Y|)

Y is a finite set of message digests
In an unkeyed hash function: [K | =1
We thus have only one mapping function in the family

10

Security Aspects of

Unkeyed Hash Functions
h=X—2Y

y = h(x) ----- > no shortcuts in computing. The
only valid way if computing y is
to invoke the hash function h on x
* Three problems that define security of a hash function
* Preimage Resistance

* Second Preimage Resistance
* Collision Resistance

11

Hash function Requirement 1
Preimage Resistant

Also know as one-wayness problem
If Mallory happens to know the message digest, she should
not be able to determine the message

Given a hash function h: X 2Y and an element y € Y. Find
any x € X such that, h(x) =y

;

12

Hash function Requirement 2
(Second Preimage)

 Mallory has x and can compute h(x), she should not be able to
find another message x” which produces the same hash.

— It would be easy to forge new digital signatures from old signatures if
the hash function used weren’t second preimage resistant

* Given a hash function h: X 2Y and an element x € X, find, x’
€ X such that, h(x) = h(x’)

13

Hash Function Requirement
(Collision Resistant)

* Mallory should not be able to find two messages
x and x” which produce the same hash

* Given a hash function h : X =Y and an element x
€ X, find, x, X’ € X and x #x’ such that, h(x) = h(x’)

~ h (There is no \
collision Free
® ® hash Function but
[] hash functions
e can be designed
° so that collisions
are difficult to

\ find. J

14

Hash Function Requirement
(No shortcuts)

* For a message m, the only way to compute its
hash is to evaluate the function h(m)

* This should remain to irrespective of how many
hashes we compute

— Even if we have computed h(m,), h(m,), h(m,), , h(My000)
There should not be a shortcut to compute h(m)

— An example where this is not true :
eg. Consider h(x) =ax mod n

If h(x,) and h(x,) are known, then h(x;+x,) can be calculated

15

The Random Oracle Model
(to capture the ideal hash function)

The ideal hash function should be executed by applying h on
the message x.

The RO model was developed by Bellare and Rogaway for
analysis of ideal hash functions

random oracle * Let FX.Y) be the set of all functions mapping
XtoY.

* The oracle picks a random function h from FX.Y),
only the Oracle has the capability of executing
the hash function.

* All other entities, can invoke the oracle with a
message x € X . The oracle will return y = h(x).

We do not know h. Thus the only way to compute
h(x) is to query the oracle.

16

Independence Property

* Let h be a randomly chosen hash function from the set F(X.Y)
* If x, € Xand a different x, € X then
Pr[h(x,) = h(x,)] = 1/M
where M = | Y|
this means, the hash digests occur with uniform probability

17

Complexity of Problems
in the RO model

3 problems: First pre-image, Second pre-image,
Collision resistance

 We study the complexity of breaking these problems

— Use Las Vegas randomized algorithms
* A Las-Vegas algorithm may succeed or fail
* If it succeeds, the answer returned is always correct

— Worst case success probability

— Average case success probability (e)

* Probability that the algorithm returns success, averaged over all
problem instances is at least e

— (e, Q) Las Vegas algorithm:

* Is an algorithm which can make Q queries to the random oracle
and have an average success probability of e
e is the average across all MN hash functions and all possible

random choices of x or y.

18

Las Vegas Algorithm Example

Find a person who has a birthday today in at-most Q queries

BirthdayToday(){
X = set of Q randomly chosen people
for x in X{
if (birthday(x) == today) return x

}
return FAILURE;

19

Las Vegas Algorithm Example

* Find a person who has a birthday today in at-most Q queries

BirthdayToday(){
X = set of Q randomly chosen people from the universe
for x in X{
if (birthday(x) == today) return x

}
return FAILURE;

Is this the average case success?
* Let E be the event that a person has a birthday today

1
Pr that a person does not have a birthday today is (1 — —)

365

&
Pr[SuccessinQtrials] =1- Pr[FailureinQtries]=1- (1 — %)

20

First Preimage Attack

h
Problem : Given a hash vy, find an x : °
such that h(x) =y :/o y
x °
°

First_Prelmage_Attack(h, y, Q){
choose Q distinct values from X (say x,, X5,, Xg)
Ideal hash function for(i=1; i<=Q; ++i){
queried using the RO access \if(h(xi) ==y) return x,
}

return FAIL
}

Y] =M

1 \2
Pr[SuccessinQtrials on average] =1— (1 — ﬁ)

21

Second Preimage Attack

Problem : Given an x, find an
X" (#x) such that h(x’) = h(x)

Second_Prelmage_Attack(h, x, Q){
Extra Oraclel choose Q-1 distinct values from X (say X, Xy, ..., Xq.1)

—|

query =y =h(x)
for(i=1; i<=Q-1; ++i){
if (h(x;) ==y) return x,
}
return FAIL

}

0-1
PrlS 1
r[SuccessinQtrials on average]| =1 - (1 — H)

Finding Collisions

Find_Collisions(h, Q){
choose Q distinct values from X (say x;, X,,, Xg)
for(i=1; i<=Q; ++i) y; = h(x.)
if there exists (y; ==y,) for j #k then return (x;, x,)
return FAIL

}

0-1 :
SuccessProbability (¢)ise =1- (1 — ﬁ)

23

Birthday Paradox

Find the probability that at-least two people in
a room have the same birthday

Event A :atleast two peopleinthe room havethe same birthday

Event A':notwo peopleinthe room havethe same birthday
Pr[A]=1-Pr[4']

Pr[A']=1x(1—L) (1_i) (l_i) (1_@)
365 365 365 365

24

Birthday Paradox

* |f there are 23 people in a room, then the
probability that two birthdays collide is 1/2

_ 1
'S 0.9 b
08|
© 07|
O 0.6 |
>0.5
= 0.4 |
203}
Q02!

o1

Q 0 23 | | | | |
O 10 20 30 40 50 60 /70 80 90 100

Number of people

| | I | | | | | |

Collisions in Birthdays
to Collisions in Hash Functions

Find_Collisions(h, Q){
choose Q distinct values from X (say x;, X,,, Xg)
for(i=1; i<=Q; ++i) y; = h(x.)
if there exists (y; ==y,) for j #k then return (x;, x,)
return FAIL

}

0-1 :
SuccessProbability (¢)is € =1—H(l—ﬁ) ME

Relationship between Q, M, and success

Q always proportional to square root

Q \/2M1n— of M.

€ only affects the constant factor

If £ =0.5thenQ ~1.17\M

26

Birthday Attacks and Message Digests

0~1.17VM

If the size of a message digest is 40 bits

M = 240

A birthday attack would require 2%° queries

Thus to achieve 128 bit security against
collision attacks, hashes of length at-least 256

Is required

27

Comparing Security Criteria

* Finding collisions is easier than solving pre-
image or second preimage

* Do reductions exist between the three
problems?

28

collision resistance =2 second preimage

e We can reduce collision resistance to second
preimage problem

collision resitance = 2"9 preimage

—i.e. If we have an algorithm to attack the 2"d
preimage problem, then we can solve the collision
problem

findCollisions1(h, Q){
choose x randomly from X
if(Second_Prelmage_Attack(h, x, Q) == x’)
return (x,x’)
else
return FAIL

29

collision resistance = preimage

Find_Collisions2(h, Q){
choose x randomly from X
y = h(x)
x' = Prelmage_Attack(h, y, Q-1)
if (x #X)
return (x,x’)
else
return FAIL

}

Y. a® h
1 O
.
V. 0g® .
/\ "9
7 X
XL " ee ®
X, ®
VAN 4 ’
X Y
N> 2M

X=X, UX, UX,U X,

X. is an equivalence class.
Each y corresponds to a partition.
The number of partitions formed is | Y|

Assume Preimage_Attack always finds the pre-image of y in Q-1 queries to
the Oracle, then, Find_Collisions2 is a (1/2, Q) Las Vegas algorithm

30

y €Y partitions X as follows.
X, ={x&Xls.t.h(x)=y}

Number of partitionsof XislY |=M

M

(assumel X | < 7)

Prsuccess]=Pr[x = x

14233

N> 2M

s 1 X, |
12 1
=— YIX I|1-
N4 ' 1 X, |
! | X -1 1 N-M
S 20X, 1=D) == (N -M)
y
N-N
2 (useN =z2M)
N

31

Iterated Hash Functions

So far, we’ve looked at hash functions where the
message was picked from a finite set X

What if the message is of an infinite size?

— We use an iterated hash function

The core in an iterated hash function is a function
called compress ot bit
— Compress, hashes from m+t bit to m bit ——

compress : {0,177 — £0,1}"
r=1

m bit

32

Iterated Hash Function

(Principle, given m and t)

input message (x)
(may be of any length)

!

Append Pad

Pad Length

concatenate

must be at-least m+t+1 in length

Input message is padded so that its length is a multiple of t

]

Number of bits in the pad appended

Concatinate previous m bit output with next t bit block
(IV used only during initialization)
The compress function is invoked iteratively for each t

bit block in the message. For the first operation, an
initialization vector is used

After all t bit blocks are processed, there is a post
processing step, and finally the hash is obtained.

This step is optional.

33

Iterated Hash Function (Principle)

* Another perspective

IV

34

Merkle-Damgard Iterated Hash
Function

input message (x)
(may be of any length)

i {0V = £0,1}"

Append Pad
o0
Pad Length ;
X = {01

y

.) I=m+t+1
r=0 for the first iteration

else r=1

compress

ltrated hash function construction
That uses a compress function h

after k steps . o .
If h is collision resistant then the Merkle Damgard

jvL construction is collision resistant
h(y)

35

Merkle-Damgard Iterated Hash
Function

Algorithm : MERKLE-DAMGARD(z)

external compress
comment: compress: {0, 1}"+" — {0,1}™, where t > 2

n + |zl > Message length

b [n/(t " 1” > k :Num of blofks of in x. Each
g *_ ,:_(t ft(i)k_ 7-11 block has length t-1
ocll.(:y- — x; Note that t cannot be =1

(2 1
Yk ax || 04— Apply padding
Yk41 ¢« the binary representation of d —> Append d

a0 lyy o icom Amoynt of padding
g1 + compress(z;) requifed to make
fori+— 1tok message a multiple of
do {Zr‘+1 —gi || V] yip t-1
giy1 compress(2;i)
h(a:) — 9k 41

return (h(z))

36

On Merkle-Damgard Construction

Theorem: If the compress function is collision
resistant then the Merkle-Damgard
construction is collision resistant

Proof: We show the contra-positive...

If the Merkle-Damgard construction results in
a collision then the compress function is NOT
collision resistant

37

Merkle-Damgard Construction is Collision Resistant (Proof)

 Assume we have two message x and x’ which

result in the same hash.

* Proof proceeds by considering 2 cases:

(1)

| x |=| x'| mod(# —1)

(2

b

| x |=| x'| mod(z —1)

K
@al| x =] '

=X

(2b]| x |=| x|

38

Case1 | X|#|x'|mod(f-1)

* This means that the padding (resp. d and d’) applied to x and x’ is different
(i.,e.d =d’)

\ J
Y

’

X
The last step in hashing

1 ld 1 ld'
v "
concatenate If h(X) = h(X') then
v v compress(xx||1]|d) = compress(xx||1]|d’)
[
Since d# d’, we have a collision in compress.
m m

v
h(x) h(x’)

Case 1 formally : | x |#] x'| mod(f - 1)

case 1: |z| # |2/| (mod ¢ —1).
Here d # d’ and yx 41 # y;, - We have
compress(gx || 1 || vks1) = grer
= h(z)
= h(z')
- 92+1
= compress(g; || 1 || ¥is1),

which is a collision for compress because Yk 11 # ¥, ;.

40

Case 2a:

X
A

Y

X
\Z \1'1 \Tl Vi1 \

x|=|x'|mod(t-1) and |x|=|x'|

- d In this case, padding in x and x’ are the

same. Henced =d’.
- d’ ... can’t use the old trick ®

]
y/ \l'l \I/—lYk-l

1

' These may or may not collide.

. If they collide, we are done : we have shown a collision in
\Ll v yk+1 I

i compress. If they don’t collide we look at the previous
 iteration

concatenate concatenate
compress compress
N N
concatenate concatenate
compress \compress
\|/1 v yk+1
concatenate concatenate
ompress ompress
h(x) Vh(x’

a collision here

41

Case 2a:
X
A
|
Y)
XI
]]
v \l'l \7 Yk-l \'4 ‘l'l v Yk
concatenate concatenate
compress \compress
A gV A gV
concatenate concatenate
compress compress
\|,1 v yk+1 J/l v yk+1
concatenate concatenate
ompress ompress
h(x) Vh(x’

x|=|x'|mod(t-1) and |x|=|x'|

- d In this case, padding in x and x” are the

same. Henced =d’.

- d’ ... can’t use the old trick ®

' These may or may not collide.

' If they collide, we are done :

. We have shown a collision in compress.

If they don’t collide we look at the previous iteration

. We continue this back tracking, until we find a
. collision. We will definitely find a collision at some point
\ because x # X'.

-

42

Case 2a formally : | x|=|x'|mod(z -1) and | x|=| x|

Here we have & = £ and y, 11 = ¥;,,,. We begin as in case 1:

g.
compress(gi || 1 || Yk41) = gri1 _ [Y,
concatenate
= h(z')
compress
— g;:+1
~ compress(g}, || 1 || vhs1)- Bt
If g # g;., then we find a collision for compress, so assume gx = gj.
Then we have
compress(gi—1 || L || yx) = g
= gk
~ compress(gi_, || 1 ||).
Either we find a collision for compress, or gx—1 = ¢,._, and yx = ;.
Assuming we do not find a collision, we continue working backwards, until
finally we obtain
compress(0™+! || y1) = g1 but y,=y,” implies x=x’.
; which is a contradiction.

=9

= compress(0™*! || y}). -

Case 2b: | x|=| x'| mod(¢ -1) and | x |#| x'|

X
A

Note here that d=d’ even though
lengths of the messages are not the same.

In most cases, the proof would proceed
similar to case 2a.

But there is a cornercase.

44

Case 2b: | x|=| x'| mod(¢ -1) and | x |#| x'|

X
A

’

X

 The corner case: x = (x"|x)
back tracking in such as case will not help

find a collision
e Handling this case:

the inserted bit r
(r=0 for the 1t round, else r=1)

Om

]
v PN

concatenate

compress

g

pd

concatenate

compress

;A

pd

concatenate

compress

I
\l,]- \,/_]yk+1

concatenate

ompress

45

Case 2b formally : | X |=| x'| mod(? —=1) and |x|=| x'|

case 2b: |z| # |2/|.

Without loss of generality, assume |2’| > |z|, so £ > k. This case pro- -
ceeds in a similar fashion as case 2a. Assuming we find no collisions for
compress, we eventually reach the situation where

compress(0”t! || y1) = g1
— 92-k+1
= compress(g;_ || 1 || ¥r_41)-

But the (m + 1)st bit of
0m+1 ” Y1

is a 0 and the (m + 1)st bit of

gé-k || 1 || yff-k+1

isa 1. So we find a collision for compress.

46

Merkle-Damgard-2
(for the case when t=1)

Algorithm : MERKLE-DAMGARD2(z)

external compress
comment: compress : {0, 1}”+1 — {0 1}™

n « |z|
y < 11| flza) || f(z2) |- || flon)
denotey = y1 ||y || *+ - || yx, wherey; € {0,1},1 < i <k
g1 < compress(0™ || y1)
fori+— 1tok—1
do Giv1 — compress(gi || y,-+1)
return (g)

47

Hash Functions in Practice

* MD5

* NIST specified “secure hash algorithm”
— SHAO : published in 1993. 160 bit hash.

* There were unpublished weaknesses in this algorithm
* The first published weakness was in 1998, where a collision attack was discovered with
complexity 261

— SHAl published in 1995. 160 bit hash.

SHAO replaced with SHA1 which resolved several of the weaknesses

* SHA1 used in several applications until 2005, when an algorithm to find collisions with a
complexity of 2%° was developed

* In 2010, SHA1 was no longer supported. All applications that used SHA1 needed to be
migrated to SHA2

— SHAZ2 : published in 2001. Supports 6 functions: 224, 256, 384, 512, and
two truncated versions of 512 bit hashes

* No collision attacks on SHA2 as yet. The best attack so far assumes reduced rounds of the
algorithm (46 rounds)

— SHA3 : published in 2015. Also known as Kecchak

48

input message x

|

Append Pad

Pad Length

eachlimb AB CD
is of 32 bits |

Round 1

Round 2

Round 3

Round 4

L I —

32 bits x 16

32 bit
message

parts 2\

constants

(Vv VV>128 bit hash

MD5

1

Appended with 1 and then Os so that length is a multiple of 512 — 64 = 448

—
512 bits

Message length appended (in 64 bits) and split into blocks of 512 bits

Each round has 16 similar ODGWOdiﬁed Feistel form

A B (& D
4 P, S,
=
vi-»H
v
e
(<<
¥,
(N

—

round operations
round1 F(B,C,D)=(BAC)V(=BAD)
round 2 G(B,C,D)=(BAD)V(CA-D)
round 3 H(B,C,D)=B&C& D
round4 [(B,C,D)=C&(BV-D)

49

Collisions in MD5 (Timeline)

A birthday attack on MD5 has complexity of 264
Small enough to brute force collision search

1996, collisions on the inner functions of MD5 found
2004, collisions demonstrated practically

2007, chosen-prefix collisions demonstrated

Given two different prefixes pl, p2 find two appendages m1 and m2 such
that hash(pl || m1) = hash(p2 | | m2)

2008, rogue SSL certificates generated

2012, MD5 collisions used in cyberwarfare

— Flame malware uses an MD5 prefix collision to fake a Microsoft digital
code signature

MD?5 Collisions demos : http://www.mscs.dal.ca/~selinger/md5collision/ .

Collision attack on MD5
like hash functions

* Analyze differential trails
* A bit different from block ciphers

— No secret key involved
— We can choose M and N as we want

 We have a valid attack if probability of
trail is P > 2-N/2

AH

51

Collision attack on MD5
like hash functions

Wang and Yu made it possible to find two pairs
of blocks (m, m,,,) and (n,, n.,;) such that

F(F(s, m), m.,;) = F(F(s, n}), ni,,)

Where s is some state of the hash function
(can be anything)

The method makes it possible to construct two

strings

Mgy,My, M,, M, Mgy m,,

My, My, M,, ... o TN o PO m,,
AH =0

which have the same MD5 hash.

52

Example of an MD5 collision

Block 1

Block 2

dl31dd02c5ebeecd693d9a0698aff95¢c2fcab58712467eab4004583eb8£fb7£89
55ad340609£f4b30283e488832571415a085125e8£7cdc99£d91dbd£280373¢c5b
dB8B823e3156348f5baebdacd436c919c6dd53e2b487da03£d02396306d248cdal
e99£33420£577eeBce54b67080aB80d1lec69821bcb6aBB839396£9652b6££72a70

dl131dd02c5ebeec4693d9a0698aff95c2fcab50712467eab4004583eb8£fb7£89
55ad340609£f4b30283e4888325£1415a085125e8£7cdc99£d91dbd7280373c5b
dB8B823e3156348f5baebdacd436c919¢c6dd53e23487da03£d02396306d248cdal
e99£33420£f577eeBce54b67080280d1ec69821bcb6aBB839396£965ab6££72a70

MDS5 hash 79054025255fb1a26e4bc422aef54ebd

53

A Visualization of the Collision

http://www.links.org/?p=6

A Visualization
(Difference in just one MSB of the two blocks)

55

input message (x)

S HA1 (may be of any length less than 2%4)

global A, ...
Y + SHA-1-PAD(z)

,Krg

denotey = M, || Mz || - - - || M»n, where each M; is a 512-bit block
| Ho + 67452301

H + EFCDAB89
Hy + 98BADCFE
Hs + 10325476
Hy + C3D2E1F0

Algorithm

comment:

{ < the binary representation of |z|, where |¢| = 64

: SHA-1-PAD()

x| < 264~ 1

d < (447 — |z|) mod 512

yea|[L]0t e

do <

lfor: + 1ton
(denote M; = Wo || Wi || - - - || Wis, where each W is a word

fort + 16 to 79

A« Hy
B(—Hl
C« Hy
D4—H3
E(—H4
fort < 0to79

E«D
do D« C

B+ A

Ho +— Ho+ A
Hl(—Hl—}—B
Hz(—Hg-}-C
Hy +— Hs+ D

return (Ho || H, || H, || HS “ H4)

\H4(—H4+E

doW, « ROTL' (W,—3®& W,_g & W,_14B Wi_16) ——

temp < ROTL?(4) + £(B,C, D)+ E + W, + K,

C « ROTL*(B)

A « temp

32*5=160 bit hash output

e myy ==

-7 each word is 32 bits (512/16=32)

(BAC)V ((=B) A D) if0<t<19
£(B,C.D) = BaCa&D if20 <t<39
> expand to 79 words fgfjﬁg‘gw)v(cw) sy
@& C @ i <t <19
1A B C E
, :
//I L/
III
;
"(I, <<<, / /
\\\ \ \
\\ W
\\ - t
\\ <<<”
\
\\ -~ Kt
\\
\
\
\
\
\\\
A B C E

56

Kacchak and the SHA3

e Uses a sponge construction
— Achieves variable length hash functions

';‘ — =
e

|
AT l M l M i M l ~il A M
|
bit rate o P P s P e I e P e P
| Y]
| |
. - - - - | - >
: —2°, i vouUu U U Uy
security parameter o _
absorbing | squeezing

sponge

Success of an attack against Kecchak < N2/2¢+!
where N is number of calls to f

Message Authentication Codes
(Keyed Hash Functions)

T “Attack at Dawn!!”
(l Message Digest N h)
Message unsecure channel K

“Attack at Dawn!!”

Provides Integrity and Authenticity

Integrity : Messages are not tampered

Authenticity : Bob can verify that the message came from Alice
(Does not provide non-repudiation)

58

How to construct MACs?
recall ... shortcuts

* For a message m, the only way to compute its
hash is to evaluate the function h (m)

* This should remain to irrespective of how many
hashes we compute

— Even if we have computed h,(m,), h(m,), h(m;), ,
hi(M1600)
It should be difficult to compute h,(x) without knowing the
value of K

59

Constructing a MAC
ey N@IVe Attempt)

(may be of any length! Won’t work if no preprocessing step

— attackers could append messages and get the
same hash

Apoe;d Pad X 9 hK(X),

X || X = compress(h(x) || x’)

Secret IV Y

compress

after k steps

v

h(y)

60

Constructing a MAC
ey N@IVe Attempt)

(may be of any lengthf Won't work if preprocessing step present

‘L suppose y = x || pad(x) where| y |=rt
Append Pad considerx'= x || pad(x)||w where|w|=¢
Pad Length y'= x' | pad('x') =X || pad(x) || W“ pad(‘x')
Secret IV 1 Y where| y'|=r't forsomeinteger r' > r

Let z, = A, (x)

2,4 <= compress(hg (x)[| y,,,)

concatenate

compress Zypy < compress(z,, || ¥,,,)

Zr' < CompreSS(Zr'—l || yr')

after k steps

$ thus h.(x')=z.

h(y)

61

CBC-MAC

ml m?2 m3

nn

h(mg | [my|]...]1my)

Birthday Attack on CBC MAC

Ci—1 ¢

h)

:o=0

mi Block MAC = cp
encryption ’

TKey

By Birthday paradox, in 2%4 steps (assuming a 128 bit cipher), a collision will arise.
Let’s assume that the collision occurs in the a-th and b-th step.

Ca = Cb

E(m,®c,_)=E (m,®c,)
thus

m,®c,_ =m,dDc,,

ma @ mb = Ca—l @ Cb—l

Birthday Attack on CBC MAC

Ci—1 |€

h)

:o=0

Block MAC = c,
encryption ’

TKey

By Birthday paradox, in 2%4 steps (assuming a 128 bit cipher), a collision will arise.
Let’s assume that the collision occurs in the a-th and b-th step.

Ca = Cb

E(m ®c,)=E(m,dc,)
thus

m,®c,_ =m,dDc,,

ma @ mb = Ca—l @ Cb—l

M, =m/|lm, ... lml...1lm
M,=mIllm,l..N(m > c,_ Dc,,)..NIm

64

HMAC

FIPS standard for MAC
Based on unkeyed hash function (SHA-1)

HMAC, (x) = SHAI((K @ opad) | SHAI(K @ ipad) |l x))

Ipad and opad are predefined constants

65

Authenticated Encryption

* Achieves Confidentiality, Integrity, and Authentication

*

Encryption

Hash function

MAC

EtM
(encrypt then MAC)

!

!

Encryption < Key > Hash function

MAC

Key

Hash function

Encryption ™

oo

E&M

MtE

(MAC then Encrypt)

66

1.

2.
3.

Using CBC-MAC for Authenticated
Encryption

Consider p = (py, P1, Py, P3) is @ message Alice sends to Bob

1. She encrypts it with CBC as follows
Co = ElPo) 5 €1 = Exlpy + ¢o); €, = Eylp, + ¢41); €3 = Ey(p3 + C,)
2. She computes mac = CBC-MAC,(p)
She transmits (¢, mac) to Bob : where ¢ = (c,, c,, ¢,, ¢;5)

Mallory modifies one or more of the ciphertexts (c,, ¢,, ¢,) to (c,’, ¢,’, ¢,’)
Bob will

1. Decrypt(c,’, c,’, c,’) to (py, P{) Py’)
2. And use it compute the MAC mac’

We show that mac’ = c; irrespective of how Mallory modifies the ciphertext

67

Using CBC-MAC for Authenticated
Encryption

Alice’s side
(encryption)
¢o = E.(po)

¢ =E(p ®cy)
¢, =E(p,®¢q)
c;=E (p,®c,)

mac'= CBCMAC(p")

Bob’s side
(decryption)

p, =D.(c)

p'1 =Dk(c'l)®c;
p'2 =Dk(c'2)@c'1
p; =Dy(c;)®c,

= E(p. ®E,(p. ®E(p DE,(p))))

=E,(p; ®c,)

= E (D (c;)® ¢, Dcy)

= E, (D (c;))

=C3

(assumelV =0)

Without modifying the final
ciphertext, Mallory can change any
other ciphertext as she pleases. The
CBC-MAC will not be altered.

Moral of the story: Never use CBC-
MAC with CBC encryption!!

Counter Mode + CBC-MAC for
Authenticated Encryption

Consider p = (py, Py, Py, P3) is @ message Alice sends to Bob

1. She encrypts p with counter mode as follows
Co=Po + Eilctr); ¢y =p, +Efctr+1);
c, = p, + E (ctr + 2); c; = p;+ E (ctr + 3)

2. She computes mac = CBC-MAC,(p)
She transmits (¢, mac) to Bob : where ¢ = (c,, c,, ¢,, ¢;)

69

