
CR

Cryptographic	Hash	Func2ons	

Chester	Rebeiro	
IIT	Madras	

STINSON	:	chapter4	

CR

Issues	with	Integrity	

Alice	 Bob	

Message	
“A=ack	at	Dawn!!”	

How	can	Bob	ensure	that	Alice’s	message	has	not	been	modified?	
	
Note….	We	are	not	concerned	with	confiden2ality	here	

“A=ack	at	Dusk!!”	

2	

Change	‘Dawn’	to	‘Dusk’	

unsecure	channel	

CR

Hashes	
Alice	 Bob	

Message	
“A=ack	at	Dawn!!”	

“A=ack	at	Dawn!!”	

3	

“A=ack	at	Dawn!!”	

“Message	digest”	
secure	channel	

Alice	passes	the	message	through	a	hash	func2on,	which	produces	a		
fixed	length	message	digest.		
• 	The	message	digest	is	representa2ve	of	Alice’s	message.	
• 	Even	a	small	change	in	the	message	will	result	in	a	completely	new	message	digest	
• 	Typically	of	160	bits,	irrespec2ve	of	the	message	size.	

Bob	re-computes	a	message	hash	and	verifies	the	digest	with	Alice’s	message	digest.	
	
	

y	=	h(x)	
h	

unsecure	channel	 h	

=	

CR

Integrity	with	Hashes	

4	

y	=	h(x)	
y	=	h(x’)	

Mallory	does	not	have	access	to	the	digest	y.	
Her	task	(to	modify	Alice’s	message)	is	much	
more	difficult.	
	
If	she	modifies	x	to	x’,	the	modificaUon	can	be	
detected	unless	h(x)	=	h(x’)	
	
Hash	func2ons	are	specially	designed	to	
resist	such	collisions	
	

Alice	 Bob	

Message	
“A=ack	at	Dawn!!”	

“A=ack	at	Dawn!!”	“A=ack	at	Dawn!!”	

“Message	digest”	
secure	channel	

y	=	h(x)	
h	

insecure	channel	
h	

=	

CR

Message	Authen2ca2on	Codes	
(MAC)	

Alice	 Bob	

Message	
“A=ack	at	Dawn!!”	

5	

“A=ack	at	Dawn!!”	
Message	Digest	

MACs	allow	the	message	and	the	digest	to	be	sent	over	an	insecure	channel	
	
However,	it	requires	Alice	and	Bob	to	share	a	common	key	

y	=	hK(x)	

hK	

unsecure	channel	 hK	

=	K	

K	

CR

Avalanche	Effect	

Hash	funcUons	provide	unique	digests	with	high	probability.		
Even	a	small	change	in	M	will	result	in	a	new	digest	

Message	
M	

Hash	
Func2on	

Short	
fixed	length	

digest	
also	called	
‘hash’	

CR

Hash	func2ons	in	Security	
•  Digital	signatures		
•  Random	number	generaUon	
•  Key	updates	and	derivaUons	
•  One	way	funcUons	
•  MAC	
•  Detect	malware	in	code	
•  User	authenUcaUon	(storing	passwords)	
	

7	

CR

Hash	Family	

•  The	hash	family	is	a	4-tuple	defined	by	(X,Y,K,H)	
•  X	is	a	set	of	messages		

							(may	be	infinite,	we	assume	the	minimum	size	is	at	least	2|Y|)	
•  Y	is	a	finite	set	of	message	digests	(aka	authenUcaUon	tags)	
•  K	is	a	finite	set	of	keys	
•  Each	K	Ɛ	K,	defines	a	keyed	hash	funcUon	hK	Ɛ	H

8	

X Y

hK	

CR

Hash	Family	:	some	defini2ons	

•  Valid	pair	under	K	:	(x,y)	Ɛ	Xxy	such	that,	x	=	hK(y)	
•  Size	of	the	hash	family:		

is	the	number	of	funcUons	possible	from	set	X	to	set	Y
|Y| = M		and	|X| = N		
then	the	number	of	mappings	possible	is	MN	

•  The	collecUon	of	all	such	mappings	are	termed	(N,M)-
hash	mapping.	

9	

X Y

hK	

CR

Unkeyed	Hash	Func2on	

•  The	hash	family	is	a	4-tuple	defined	by	(X,Y,K,H)	
•  X	is	a	set	of	messages		

							(may	be	infinite,	we	assume	the	minimum	size	is	at	least	2|Y|)	
•  Y	is	a	finite	set	of	message	digests	
•  In	an	unkeyed	hash	funcUon	:	|K	|	=	1	
•  We	thus	have	only	one	mapping	funcUon	in	the	family

10	

X Y

h	

CR

Security	Aspects	of		
Unkeyed	Hash	Func2ons	

				h	=	X	à	Y	
				y	=	h(x)	----->	no	shortcuts	in	compuUng.	The		
																												only	valid	way	if	compuUng	y	is		
																												to	invoke	the	hash	funcUon	h	on	x	
•  Three	problems	that	define	security	of	a	hash	funcUon	

*	Preimage	Resistance	
*	Second	Preimage	Resistance	
*	Collision	Resistance	

11	

CR

Hash	func2on	Requirement	1	
Preimage	Resistant	

•  Also	know	as	one-wayness	problem	
•  If	Mallory	happens	to	know	the	message	digest,	she	should	

not	be	able	to	determine	the	message	
•  Given	a	hash	funcUon	h	:	X	àY	and	an	element	y	Ɛ	Y. Find	

any	x	Ɛ	X such	that,	h(x)	=	y		

12	X Y

h	

CR

Hash	func2on	Requirement	2	
(Second	Preimage)	

•  Mallory	has	x	and	can	compute	h(x),	she	should	not	be	able	to	
find	another	message	x’	which	produces	the	same	hash.	
–  It	would	be	easy	to	forge	new	digital	signatures	from	old	signatures	if	

the	hash	funcUon	used	weren’t	second	preimage	resistant	

•  Given	a	hash	funcUon	h	:	X	àY	and	an	element	x	Ɛ	X,	find,	x’	
Ɛ	X such	that,	h(x)	=	h(x’)		

13	

X Y

h	

CR

Hash	Func2on	Requirement	
(Collision	Resistant)	

•  Mallory	should	not	be	able	to	find	two	messages	
x	and	x’	which	produce	the	same	hash	

•  Given	a	hash	funcUon	h	:	X	àY	and	an	element	x	
Ɛ	X, find,	x,	x’	Ɛ	X and	x	≠x’	such	that,	h(x)	=	h(x’)		

14	

X Y

h	 There	is	no	
collision	Free	

hash	FuncUon	but	
hash	funcUons	
can	be	designed	
so	that	collisions	
are	difficult	to	

find.	

CR

Hash	Func2on	Requirement	
(No	shortcuts)	

•  For	a	message	m,	the	only	way	to	compute	its	
hash	is	to	evaluate	the	funcUon	h(m)	

•  This	should	remain	to	irrespecUve	of	how	many	
hashes	we	compute	
–  Even	if	we	have	computed	h(m1),	h(m2),	h(m3),	…….,	h(m1000)	
There	should	not	be	a	shortcut	to	compute	h(m1001)	

–  An	example	where	this	is	not	true	:		
eg.	Consider	h(x)	=	ax	mod	n	

				If	h(x1)	and	h(x2)	are	known,	then	h(x1+x2)	can	be	calculated		

15	

CR

The	Random	Oracle	Model	
(to	capture	the	ideal	hash	func2on)	

•  The	ideal	hash	funcUon	should	be	executed	by	applying	h	on	
the	message	x.	

•  The	RO	model	was	developed	by	Bellare	and	Rogaway	for	
analysis	of	ideal	hash	funcUons	

16	

random	oracle	

O	

• 		Let	F(X,Y)	be	the	set	of	all	funcUons	mapping	
			X	to	Y	.		
• 	The	oracle	picks	a	random	funcUon	h	from	F(X,Y).		
			only	the	Oracle	has	the	capability	of	execuUng				
			the		hash	funcUon.		
• 		All	other	enUUes,	can	invoke	the	oracle	with	a		
			message	x	Ɛ	X	.	The	oracle	will	return	y	=	h(x).	
	
We	do	not	know	h.	Thus	the	only	way	to	compute	
h(x)	is	to	query	the	oracle.	
	

CR

Independence	Property	
•  Let	h	be	a	randomly	chosen	hash	funcUon	from	the	set	F(X,Y)		
•  If	x1	Ɛ	X	and	a	different	x2	Ɛ	X	then		
																						Pr[h(x1)	=	h(x2)]	=	1/M	
				where	M	=	|Y|	
				this	means,	the	hash	digests	occur	with	uniform	probability	
	 		

17	

CR

Complexity	of	Problems		
in	the	RO	model	

•  3	problems	:		First	pre-image,	Second	pre-image,	
Collision	resistance	

•  We	study	the	complexity	of	breaking	these	problems	
–  Use	Las	Vegas	randomized	algorithms	

•  A	Las-Vegas	algorithm	may	succeed	or	fail	
•  If	it	succeeds,	the	answer	returned	is	always	correct	

– Worst	case	success	probability	
–  Average	case	success	probability	(e)	

•  Probability	that	the	algorithm	returns	success,	averaged	over	all	
problem	instances	is	at	least	e	

–  (e,	Q)	Las	Vegas	algorithm:	
•  Is	an	algorithm	which	can	make	Q	queries	to	the	random	oracle	
and	have	an	average	success	probability	of	e	
e	is	the	average	across	all	MN	hash	funcUons	and	all	possible	
random	choices	of	x	or	y.	

	
18	

CR

Las	Vegas	Algorithm	Example	
•  Find	a	person	who	has	a	birthday	today	in	at-most	Q	queries		

19	

BirthdayToday(){	
	X	=	set	of	Q	randomly	chosen	people	

																		for	x	in	X{	
																										if	(birthday(x)	==	today)	return	x	
																		}	
																		return	FAILURE;	
}	

CR

Las	Vegas	Algorithm	Example	
•  Find	a	person	who	has	a	birthday	today	in	at-most	Q	queries	

	
•  Let	E	be	the	event	that	a	person	has	a	birthday	today	
			

20	

BirthdayToday(){	
	X	=	set	of	Q	randomly	chosen	people	from	the	universe	

																		for	x	in	X{	
																										if	(birthday(x)	==	today)	return	x	
																		}	
																		return	FAILURE;	
}	

Q

triesQinFailuretrialsQinSuccess

istodaybirthdayahavenotdoespersonathat

⎟
⎠

⎞
⎜
⎝

⎛ −−=−=

⎟
⎠

⎞
⎜
⎝

⎛ −

365
111]Pr[1]Pr[

365
11Pr

Is	this	the	average	case	success?	

CR

First	Preimage	Acack	

21	

First_PreImage_Acack(h,	y,	Q){	
					choose	Q	dis6nct	values	from	X	(say	x1,	x2,	….,	xQ)	
					for(i=1;	i<=Q;	++i){	
											if	(h(xi)	==	y)	return	xi	
					}	
					return	FAIL	
}	

Ideal	hash	funcUon	
queried	using	the	RO	access	
	
	

h	

Problem	:	Given	a	hash	y,	find	an	x	
such	that	h(x)	=	y	
	

y	
x	

|Y|	=	M	
Q

M
averageontrialsQinSuccess ⎟

⎠

⎞
⎜
⎝

⎛ −−=
111]Pr[

CR

Second	Preimage	Acack	

22	

Second_PreImage_Acack(h,	x,	Q){	
					choose	Q-1	dis6nct	values	from	X	(say	x1,	x2,	….,	xQ-1)	
					y	=	h(x)	
					for(i=1;	i<=Q-1;	++i){	
											if	(h(xi)	==	y)	return	xi	
					}	
					return	FAIL	
}	

1111]Pr[
−

⎟
⎠

⎞
⎜
⎝

⎛ −−=
Q

M
averageontrialsQinSuccess

h	

Problem	:	Given	an	x,	find	an	
x’	(≠x)	such	that	h(x’)	=	h(x)		
	

y	
x’	

x	

Extra	Oracle	
query	

CR

Finding	Collisions	

	

23	

Find_Collisions(h,		Q){	
					choose	Q	dis6nct	values	from	X	(say	x1,	x2,	….,	xQ)	
						for(i=1;	i<=Q;	++i)	yi	=	h(xi)	
						if		there	exists	(yj	==	yk)	for	j	≠k	then	return	(xj,	xk)	
					return	FAIL	
}	

∏
−

=

⎟
⎠

⎞
⎜
⎝

⎛ −−=
1

1

11)(Pr
Q

i M
iisobabilitySuccess εε

CR

Birthday	Paradox	

•  Find	the	probability	that	at-least	two	people	in	
a	room	have	the	same	birthday	

24	

∏

∏
−

=

−

=

⎟
⎠

⎞
⎜
⎝

⎛ −−=

⎟
⎠

⎞
⎜
⎝

⎛ −=

⎟
⎠

⎞
⎜
⎝

⎛ −
−⎟

⎠

⎞
⎜
⎝

⎛ −×⎟
⎠

⎞
⎜
⎝

⎛ −×⎟
⎠

⎞
⎜
⎝

⎛ −×=

−=

1

1

1

1

365
11]Pr[

365
1

365
11

365
31

365
21

365
111]'Pr[

]'Pr[1]Pr[
:'
:

Q

i

Q

i

iA

i

QA

AA
birthdaysamethehaveroomtheinpeopletwonoAEvent

birthdaysamethehaveroomtheinpeopletwoatleastAEvent

!!

CR

Birthday	Paradox	

•  If	there	are	23	people	in	a	room,	then	the	
probability	that	two	birthdays	collide	is	1/2	

25	

CR

Collisions	in	Birthdays		
to	Collisions	in	Hash	Func2ons	

		

26	

Find_Collisions(h,		Q){	
					choose	Q	dis6nct	values	from	X	(say	x1,	x2,	….,	xQ)	
						for(i=1;	i<=Q;	++i)	yi	=	h(xi)	
						if		there	exists	(yj	==	yk)	for	j	≠k	then	return	(xj,	xk)	
					return	FAIL	
}	

∏
−

=

⎟
⎠

⎞
⎜
⎝

⎛ −−=
1

1

11)(Pr
Q

i M
iisobabilitySuccess εε |Y|	=	M	

RelaUonship	between	Q,	M,	and	success	

MQthenIf

MQ

17.15.0
1
1ln2

≈=

−
≈

ε

ε

Q	always	proporUonal	to	square	root	
of	M.	
Ɛ	only	affects	the	constant	factor		

CR

Birthday	Acacks	and	Message	Digests	

•  If	the	size	of	a	message	digest	is	40	bits	
•  M	=	240	

•  A	birthday	a=ack	would	require	220	queries	

•  Thus	to	achieve	128	bit	security	against	
collision	a=acks,	hashes	of	length	at-least	256	
is	required		

27	

MQ 17.1≈

CR

Comparing	Security	Criteria	

•  Finding	collisions	is	easier	than	solving	pre-
image	or	second	preimage	

•  Do	reducUons	exist	between	the	three	
problems?	

28	

CR

collision	resistance	àsecond	preimage	

•  We	can	reduce	collision	resistance	to	second	
preimage	problem	
	 	 		

–  i.e.	If	we	have	an	algorithm	to	a=ack	the	2nd	
preimage	problem,	then	we	can	solve	the	collision	
problem	

29	

findCollisions1(h,		Q){	
					choose	x	randomly	from	X	
					if(Second_PreImage_A8ack(h,	x,	Q)		==	x’)	
											return	(x,x’)	
					else	
										return	FAIL	
}	

collision	resitance	à2nd	preimage	

CR

collision	resistance	à	preimage	

Assume	Preimage_A=ack	always	finds	the	pre-image	of	y	in	Q-1	queries	to	
the	Oracle,		then,	Find_Collisions2	is	a	(1/2,	Q)	Las	Vegas	algorithm	

30	

Find_Collisions2(h,		Q){	
					choose	x	randomly	from	X	
					y	=	h(x) 		
					x’	=	PreImage_A8ack(h,	y,	Q-1)	
					if	(x	≠	x’)	
											return	(x,x’)	
					else	
										return	FAIL	
}	

X= X1 U X2 U X3 U X4
Xi	is	an	equivalence	class.		
Each	y	corresponds	to	a	parUUon.	
The	number	of	parUUons	formed	is	|Y|	

CR

Proof	

31	

y ∈ Y partitions X as follows.
Xy ={x∈X |s.t.h(x) = y}
Numberof partitionsof X is |Y |=M

(assume | X | ≤ M
2
)

Pr[success]= Pr[x ≠ x ']= 1
N

1− 1
| Xy |

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Xy

∑
y
∑

=
1
N

| Xy | 1−
1
| Xy |

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

y
∑

=
1
N

(| Xy |−1)
y
∑ =

1
N
(N −M)

≥
N − N 2
N

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(useN ≥ 2M)

=
1
2

CR

Iterated	Hash	Func2ons	

•  So	far,	we’ve	looked	at	hash	funcUons	where	the	
message	was	picked	from	a	finite	set	X

•  What	if	the	message	is	of	an	infinite	size?	
– We	use	an	iterated	hash	funcUon	

•  The	core	in	an	iterated	hash	funcUon	is	a	funcUon	
called	compress	
–  Compress,	hashes	from	m+t	bit	to	m	bit	

	
32	

1
}1,0{}1,0{:

≥

→+

t
compress mtm

compress	

m+t	bit	

m	bit	

CR

Iterated	Hash	Func2on	
(Principle,	given	m	and	t)	

33	

Append	Pad	

Pad	Length	

compress	

g	

input	message	(x)	
(may	be	of	any	length)	

m	

t	

m	

•  Input	message	is	padded	so	that	its	length	is	a	mulUple	of	t	

•  Number	of	bits	in	the	pad	appended	

•  The	compress	funcUon	is	invoked	iteraUvely	for	each	t	
							bit	block	in	the	message.	For	the	first	operaUon,	an		

iniUalizaUon	vector	is	used	

•  A}er	all	t	bit	blocks	are	processed,	there	is	a	post	
processing	step,	and	finally	the	hash	is	obtained.	
This	step	is	opUonal.	

h(y)	

IV	 y	

concatenate	

compress	

•  ConcaUnate	previous	m	bit	output	with	next	t	bit	block	
(IV	used	only	during	iniUalizaUon)	

• 						must	be	at-least	m+t+1	in	length	

CR

Iterated	Hash	Func2on	(Principle)	

•  Another	perspecUve	

34	

CR

Merkle-Damgard	Iterated	Hash	
Func2on	

35	

Append	Pad	

Pad	Length	

compress	

a}er	k	steps	

input	message	(x)	
(may	be	of	any	length)	

m	

t-1	

m	

h(y)	

IV=0	 y	

concatenate	

compress	

r	
r=0	for	the	first	iteraUon	
else		r=1	

∪
∞

++=

+

=

→

1

}1,0{

}1,0{}1,0{:

tmi

i

mtm

X

h

Itrated	hash	funcUon	construcUon	
That	uses	a	compress	funcUon	h	
	
If	h	is	collision	resistant	then	the	Merkle	Damgard		
construcUon	is	collision	resistant	

CR

Merkle-Damgard	Iterated	Hash	
Func2on	

36	

Message	length	

k	:Num	of	blocks	of	in	x.	Each	
block	has	length	t-1	
Note	that	t	cannot	be	=	1	

Amount	of	padding	
required	to	make	
message		a	mulUple	of	
t-1	

Apply	padding	
Append	d		

IV	is	0m	

CR

On	Merkle-Damgard	Construc2on	

Theorem:	If	the	compress	funcUon	is	collision	
resistant	then	the	Merkle-Damgard	
construcUon	is	collision	resistant	

	
Proof:	We	show	the	contra-posiUve…	
				If	the	Merkle-Damgard	construcUon	results	in	
a	collision	then	the	compress	funcUon	is	NOT	
collision	resistant	

37	

CR

Merkle-Damgard	Construc2on	is	Collision	Resistant	(Proof)	

•  Assume	we	have	two	message	x	and	x’	which	
result	in	the	same	hash.	

•  Proof	proceeds	by	considering	2	cases:	
					
		

38	

)1mod(|'||| −≠ txx(1))1mod(|'||| −= txx(2)	

|'||| xx =(2a)	 |'||| xx ≠(2b)	

CR

Case	1	

•  This	means	that	the	padding	(resp.	d	and	d’)	applied	to	x	and	x’	is	different	
(i.e.	d	≠	d’)	

					
		

39	

)1mod(|'||| −≠ txx

d	

d’	

x’	

x	

The	last	step	in	hashing	

m	

d	

concatenate	

compress	

m	

d’	

concatenate	

compress	

h(x)	 h(x’)	

1	 1	

If	h(x)	=	h(x’)	then	
compress(xx||1||d)	=	compress(xx||1||d’)	
	
Since	d≠	d’,	we	have	a	collision	in	compress.	

CR 40	

Case	1	formally	:)1mod(|'||| −≠ txx

CR 41	

Case	2a	:	 |'|||)1mod(|'||| xxandtxx =−=

d	

d’	

x’	

x	

In	this	case,	padding	in	x	and	x’	are	the	
same.	Hence	d	=	d’.		
…	can’t	use	the	old	trick	L	

concatenate	

compress	

h(x)	

1	

concatenate	
compress	
compress	

yk+1	

1	

concatenate	
compress	
compress	

yk	

1	 Yk-1	

concatenate	

compress	

1	

concatenate	
compress	
compress	

yk+1	

1	

concatenate	
compress	
compress	

yk	

1	 Yk-1	

h(x’)	

These	may	or	may	not	collide.	
If	they	collide,	we	are	done	:		we	have	shown	a	collision	in	
compress.	If	they	don’t	collide	we	look	at	the	previous	
iteraUon	

a	collision	here	

CR 42	

Case	2a	:	 |'|||)1mod(|'||| xxandtxx =−=

d	

d’	

x’	

x	

In	this	case,	padding	in	x	and	x’	are	the	
same.	Hence	d	=	d’.		
…	can’t	use	the	old	trick	L	

concatenate	

compress	

h(x)	

1	

concatenate	
compress	
compress	

yk+1	

1	

concatenate	
compress	
compress	

yk	

1	 Yk-1	

concatenate	

compress	

1	

concatenate	
compress	
compress	

yk+1	

1	

concatenate	
compress	
compress	

yk	

1	 yk-1	

h(x’)	

These	may	or	may	not	collide.	
If	they	collide,	we	are	done	:			
We	have	shown	a	collision	in	compress.	
If	they	don’t	collide	we	look	at	the	previous	iteraUon	

We	conUnue	this	back	tracking,	unUl	we	find	a	
collision.	We	will	definitely	find	a	collision	at	some	point	
because	x	≠	x’.	

CR 43	

Case	2a	formally	:	 |'|||)1mod(|'||| xxandtxx =−=

concatenate	
compress	
compress	

1	 yi	
gi	

gi+1	

but	y1=y1’	implies	x=x’.	
which	is	a	contradicUon.	

CR 44	

Case	2b	:	 |'|||)1mod(|'||| xxandtxx ≠−=

d	

d	

x’	

x	

Note	here	that	d=d’	even	though		
lengths	of	the	messages	are	not	the	same.	
	
In	most	cases,	the	proof	would	proceed	
similar	to	case	2a.		
	
But	there	is	a	cornercase.	
	

CR

•  The	corner	case:	x	=	(x’’|x’)	
									back	tracking	in	such	as	case	will	not	help	
find	a	collision	

•  Handling	this	case:	
						the	inserted	bit	r	

						(r=0	for	the	1st	round,	else	r=1)	
				

45	

Case	2b	:	 |'|||)1mod(|'||| xxandtxx ≠−=

d	

d	

x’	

x	

concatenate	

compress	

1	

concatenate	
compress	
compress	

y1	

1	

concatenate	
compress	
compress	

1	

concatenate	
compress	
compress	

0	

0m	

y2	

y3	

yk+1	

CR 46	

Case	2b	formally	:	 |'|||)1mod(|'||| xxandtxx ≠−=

CR

Merkle-Damgard-2		
(for	the	case	when	t=1)	

47	

CR

Hash	Func2ons	in	Prac2ce	
•  MD5	
•  NIST	specified	“secure	hash	algorithm”	

–  SHA0	:	published	in	1993.		160	bit	hash.	
•  There	were	unpublished	weaknesses	in	this	algorithm	
•  The	first	published	weakness	was	in	1998,	where	a	collision	a=ack	was	discovered	with	

complexity	261	

–  SHA1	:	published	in	1995.		160	bit	hash.		
•  SHA0	replaced	with	SHA1	which	resolved	several	of	the	weaknesses	
•  SHA1	used	in	several	applicaUons	unUl	2005,	when	an	algorithm	to	find	collisions	with	a	

complexity	of	269	was	developed	
•  In	2010,	SHA1	was	no	longer	supported.		All	applicaUons	that	used	SHA1	needed	to	be	

migrated	to	SHA2	
–  SHA2	:	published	in	2001.	Supports	6	funcUons:	224,	256,	384,	512,	and	

two	truncated	versions	of	512	bit	hashes	
•  No	collision	a=acks	on	SHA2	as	yet.	The	best	a=ack	so	far	assumes	reduced	rounds	of	the	

algorithm	(46	rounds)	
–  SHA3	:	published	in	2015.	Also	known	as	Kecchak	

48	

CR

MD5	

49	

Append	Pad	

Pad	Length	

input	message	x	

•  Appended	with	1	and	then	0s	so	that	length	is	a	mulUple	of	512	–	64	=	448	

•  Message	length	appended	(in	64	bits)	and	split	into	blocks	of	512	bits	

1

Round	1	

	
Round	2	

	

Round	3	

Round	4	

A	B	 C	D	
•  Each	round	has	16	similar	operaUons	of	this	modified	Feistel	form	

512	bits	

32	bits	x	16	

each	limb	
is	of	32	bits	

round	1	
round	2	
round	3	
round	4	

round	operaUons	32	bit		
message	

	parts	

constants	

128	bit	hash	

CR

Collisions	in	MD5	(Timeline)	
•  A	birthday	a=ack	on	MD5	has	complexity	of	264	

•  Small	enough	to	brute	force	collision	search	
•  1996,	collisions	on	the	inner	funcUons	of	MD5	found	
•  2004,	collisions	demonstrated	pracUcally		
•  2007,	chosen-prefix	collisions	demonstrated	

•  2008,	rogue	SSL	cerUficates	generated	
•  2012,	MD5	collisions	used	in	cyberwarfare	

–  Flame	malware	uses	an	MD5	prefix	collision	to	fake	a	Microso}	digital	
code	signature		

50	

Given two different prefixes p1, p2 find two appendages m1 and m2 such
that hash(p1 || m1) = hash(p2 || m2)

MD5	Collisions	demos	:	h=p://www.mscs.dal.ca/~selinger/md5collision/	

CR

Collision	acack	on	MD5		
like	hash	func2ons	

•  Analyze	differenUal	trails		
•  A	bit	different	from	block	ciphers	

–  No	secret	key	involved	
–  We	can	choose	M	and	N	as	we	want	

•  We	have	a	valid	a=ack	if	probability	of	
trail	is	P	>	2-N/2	

51	

M,	N	

ΔH	=	0	

CR

Collision	acack	on	MD5		
like	hash	func2ons	

Wang	and	Yu	made	it	possible	to	find	two	pairs	
of	blocks	(mi,	mi+1)	and	(ni,	ni+1)	such	that	
	
F(F(s,	mi),	mi+1)	=	F(F(s,	ni),	ni+1)	
	
Where	s	is	some	state	of	the	hash	funcUon		
(can	be	anything)	
	
The	method	makes	it	possible	to	construct	two	
strings	
m0,m1,	m2,	…..	mi,	mi+1,…......	mk,	
m0,	m1,	m2,	…..	ni,	ni+1,…......	mk,	
	
which	have	the	same	MD5	hash.	
	
	
	
	

52	

M,	N	

ΔH	=	0	

CR

Example	of	an	MD5	collision	

53	

Block	1	

Block	2	

CR

A	Visualiza2on	of	the	Collision	

h=p://www.links.org/?p=6	

CR

A	Visualiza2on	
(Difference	in	just	one	MSB	of	the	two	blocks)	

55	

CR

SHA1	

56	

input	message	(x)	
(may	be	of	any	length	less	than	264)	

IV	
each	word	is	32	bits	(512/16=32)	

expand	to	79	words	

32*5=160	bit	hash	output	

CR

Kacchak	and	the	SHA3	

•  Uses	a	sponge	construcUon	
– Achieves	variable	length	hash	funcUons	

57	

security	parameter	

bit	rate	

Success	of	an	a=ack	against	Kecchak	<	N2/2c+1	
where	N	is	number	of	calls	to	f	

CR

Message	Authen2ca2on	Codes	
(Keyed	Hash	Func2ons)	

58	

Alice	 Bob	

Message	
“A=ack	at	Dawn!!”	

“A=ack	at	Dawn!!”	
Message	Digest	

y	=	hK(x)	
hK	

unsecure	channel	 hK	

=	K	

K	

Provides	Integrity	and	AuthenUcity	
Integrity	:	Messages	are	not	tampered	
AuthenUcity	:	Bob	can	verify	that	the	message	came	from	Alice	
(Does	not	provide	non-repudiaUon)	

CR

How	to	construct	MACs?	
recall	…	shortcuts	

•  For	a	message	m,	the	only	way	to	compute	its	
hash	is	to	evaluate	the	funcUon	hK(m)	

•  This	should	remain	to	irrespecUve	of	how	many	
hashes	we	compute	
–  Even	if	we	have	computed	hK(m1),	hK(m2),	hK(m3),	…….,	
hK(m1000)	
It	should	be	difficult	to	compute	hK(x)	without	knowing	the	
value	of	K	

59	

CR

Construc2ng	a	MAC	
(Naïve	Acempt)	
•  Won’t	work	if	no	preprocessing	step	

–  a=ackers	could	append		messages	and	get	the	
same	hash	

			 	 		x	àhK(x),					
						 		x	||	x’	à	compress(hK(x)	||	x’)	

60	

Append	Pad	

Pad	Length	

compress	

a}er	k	steps	

input	message	(x)	
(may	be	of	any	length)	

m	

t-1	

m	

h(y)	

Secret	IV	 y	

concatenate	

compress	

r	

CR

Construc2ng	a	MAC	
(Naïve	Acempt)	
•  Won’t	work	if	preprocessing	step	present	

	

61	

Append	Pad	

Pad	Length	

compress	

a}er	k	steps	

input	message	(x)	
(may	be	of	any	length)	

m	

t-1	

m	

h(y)	

Secret	IV	 y	

concatenate	

compress	

r	

'

'1''

212

11

)'(

)||(

)||(

)||)((
)(Let

integer somefor'|'|where
)'(||||)(||)'(||''

||where||)(||'consider
||where)(||suppose

rK

rrr

rrr

rKr

Kr

zxhthus

yzcompressz

yzcompressz

yxhcompressz
xhz

rr'try
xpadwxpadxxpadxy

twwxpadxx
rtyxpadxy

=

←

←

←

=

>=

==

==

==

−

+++

++

!!!!

CR

CBC-MAC	

62	

eK	

m0	

eK	

m1	

eK	

m2	

eK	

m3	

hK(m0||m1||…||m4)	

IV	

CR

Birthday	Acack	on	CBC	MAC	

63	

By	Birthday	paradox,	in	264	steps	(assuming	a	128	bit	cipher),	a	collision	will	arise.	
Let’s	assume	that	the	collision	occurs	in	the	a-th	and	b-th	step.	

ca = cb
Ek (ma ⊕ ca−1) = Ek (mb ⊕ cb−1)
thus
ma ⊕ ca−1 =mb ⊕ cb−1
ma ⊕mb = ca−1⊕ cb−1

CR

Birthday	Acack	on	CBC	MAC	

64	

By	Birthday	paradox,	in	264	steps	(assuming	a	128	bit	cipher),	a	collision	will	arise.	
Let’s	assume	that	the	collision	occurs	in	the	a-th	and	b-th	step.	

ca = cb
Ek (ma ⊕ ca−1) = Ek (mb ⊕ cb−1)
thus
ma ⊕ ca−1 =mb ⊕ cb−1
ma ⊕mb = ca−1⊕ cb−1

M1 =m1 ||m2 || ... ||mi || ... ||mn

M2 =m1 ||m2 || ... || (mi ⊕ ca−1⊕ ca−2) || ... ||mn

CR

HMAC	
•  FIPS	standard	for	MAC	
•  Based	on	unkeyed	hash	funcUon	(SHA-1)	

65	

HMACk (x) = SHA1((K ⊕ opad) || SHA1(K ⊕ ipad) || x))

Ipad	and	opad	are	predefined	constants	

CR

Authen2cated	Encryp2on	
•  Achieves	ConfidenUality,	Integrity,	and	AuthenUcaUon	

66	

EtM	
(encrypt	then	MAC)	

E&M	

MtE	
(MAC	then	Encrypt)	

CR

Using	CBC-MAC	for	Authen2cated	
Encryp2on	

1.  Consider	p	=	(p0,	p1,	p2,	p3)	is	a	message	Alice	sends	to	Bob	
1.  She	encrypts	it	with	CBC	as	follows	

						c0	=	Ek(p0)	;	c1	=	Ek(p1	+	c0);	c2	=	Ek(p2	+	c1);	c3	=	Ek(p3	+	c2)	
2.  She	computes	mac	=	CBC-MACk(p)	

She	transmits	(c,	mac)	to	Bob	:	where	c	=	(c0,	c1,	c2,	c3)	

2.  Mallory	modifies	one	or	more	of	the	ciphertexts	(c0,	c1,	c2)	to	(c0’,	c1’,	c2’)	
3.  Bob	will	

1.  Decrypt	(c0’,	c1’,	c2’)	to	(p0’,	p1’,	p2’)	
2.  And	use	it	compute	the	MAC	mac’	
		
										We	show	that	mac’	=	c3	irrespecUve	of	how	Mallory	modifies	the	ciphertext	

	

67	

CR

Using	CBC-MAC	for	Authen2cated	
Encryp2on	

	Without	modifying	the	final	
ciphertext,	Mallory	can	change	any	
other	ciphertext	as	she	pleases.	The	
CBC-MAC	will	not	be	altered.	

	
	Moral	of	the	story:	Never	use	CBC-
MAC	with	CBC	encrypUon!!	

	

68	

3

3

'
2

'
23

'
3

''''

'
23

'
3233

'''
122

'''
011

''
00

))((
))((

)(

))))((((
)'('

)()(

)()(

)()(

)0()()(

2

0123

122

011

00

c
cDE

cccDE

cpE

pEpEpEpE
pCBCMACmac

ccDpcpEc

ccDpcpEc

ccDpcpEc

IVassumecDppEc

kk

kk

k

kkkk

kk

kk

kk

kk

=

=

⊕⊕=

⊕=

⊕⊕⊕=

=

⊕=⊕=

⊕=⊕=

⊕=⊕=

===

Alice’s	side	
(encrypUon)	

Bob’s	side	
(decrypUon)	

CR

Counter	Mode	+	CBC-MAC	for		
Authen2cated	Encryp2on	

Consider	p	=	(p0,	p1,	p2,	p3)	is	a	message	Alice	sends	to	Bob	
	

1.  She	encrypts	p	with	counter	mode	as	follows	
						c0	=	p0	+	Ek(ctr)	;					c1	=	p1	+	Ek(ctr	+	1);		
						c2	=	p2	+	Ek(ctr	+	2);	c3	=	p3+	Ek(ctr	+	3)	

	
2.  She	computes	mac	=	CBC-MACk(p)	

She	transmits	(c,	mac)	to	Bob	:	where	c	=	(c0,	c1,	c2,	c3)	

69	

