RSA and Public Key
Cryptography

Chester Rebeiro
lIT Madras

STINSON : chapter 5, 6

Ciphers

 Symmetric Algorithms
— Encryption and Decryption use the same key
— L.e. Kg = K,
— Examples:

* Block Ciphers : DES, AES, PRESENT, etc.
e Stream Ciphers : A5, Grain, etc.

 Asymmetric Algorithms
— Encryption and Decryption keys are different
— K 2K,
— Examples:

* RSA
* ECC

Asymmetric Key Algorithms

H%AR3Xf3415 “Attack at Dawn!!”
Plaintext encryption (ciphertext) decryption

“Attack at Dawn!!”

Alice > Luntrusted communication Iink| IBLb

The Key K is a secret
Encryption Key K; not same as decryption key K

K. known as Bob’s bublic ke Advantage : No need of secure
KE i ’s pri ’ v key exchange between Alice and
p is Bob’s private key -
o)

Asymmetric key algorithms based on trapdoor one-way functions

One Way Functions

 Easy to compute in one direction
* Once done, it is difficult to inverse

Press to lock Once locked it is
(can be easily done) difficult to unlock
without a key

Trapdoor One Way Function

* One way function with a trapdoor

 Trapdoor is a special function that if possessed can be used to
easily invert the one way

trapdoor

Locked
(difficult to unlock) Easily Unlocked

Public Key Cryptography
(An Anology)

* Alice puts message into box and locks it

 Only Bob, who has the key to the lock can open it and read
the message

Mathematical Trapdoor One way
functions

 Examples
— Integer Factorization (in NP, maybe NP-complete)

* Given P, Q are two primes
« andN=P*Q
— Itis easy to compute N

— However given N it is difficult to factorize into P and Q

* Used in cryptosystems like RSA
— Discrete Log Problem (in NP)

* Consider b and g are elements in a finite group and b* = g, for some k
* Given b and kit is easy to compute g

* Given b and g it is difficult to determine k

* Used in cryptosystems like Diffie-Hellman

* Avariant used in ECC based crypto-systems

Applications of Public key
Cryptography

* Encryption
* Digital Signature :
“Is this message really from Alice?”

* Alice signs by ‘encrypting’ with private key

* Anyone can verify signature by ‘decrypting’ with Alice’s public key
* Why it works?

— Only Alice, who owns the private key could have signed

encrypt decrypt
with with
hash Alice’s Secret Key] [Alice’s Public Key

— 7zt i o V
J)
Hello Bob!!! <!l -
_| Message -

erify
T hash function / Bob

Applications of Public key

Cryptography
* Key Establishment : il

“Alice and Bob want to use a block cipher for encryption. How
do they agree upon the secret key”

@ Alice and Bob agree upon a prime p and a generator g.
P This is public information

choose a secret a choose a secret b

compute A =g mod p compute B = g° mod p
Compute K = B2 mod p Compute K= AP mod p

AP mod p = (g?)* mod p = (g®)? mod p = B2 mod p

RSA

Shamir, Rivest, Adleman (1977)

10

More Number Theory

Mathematical Background

11

RSA : Key Generation

Bob first creates a pair of keys (one public the other private)

1. Generatetwolargeprimes p,q (p # q)

2.Computen = pxqg and ¢(n)=(p-1)(g-1)
3. Choosearandomb (1 <b < ¢(n))and ged(b,p(n)) =1

4.Computea = b~ mod(g(n))

Bob's public keyis(n,b)
Bob's privatekeyis(p,q,a)

Given the private key it is easy to
compute the public key

Given the public key it is difficult to
derive the private key

12

RSA Encryption & Decryption

3 o

Encryption Decryption

=y =x"mod
e (x) =y =x"mod 1 d,(x)=y"modn

wherex€Z,

13

RSA Example

1. Taketwoprimesp = 653andg =877
2. n=653%x877=572681; ¢p(n) =652x876=571152
3. Choose public keyb =13; note that gcd(13,571152) =1

4. Privatekeya =395413=13"mod 571152

Message x =12345
encryption: y =12345" mod 572681 = 536754
decryption: x = 536754°*" mod 572681 = 12345

14

Correctness

g | when x€Z, and gcd(x,n) =1

Encryption

Decryption
e.(x)=y=x"mod n

wherex€Z, d.(x)= y“modn

Yy = (xb)a mod » ab = 1mod ¢(n)

. ab—-1=tp(n)
=(x")Ymod n /ab=tqp(n)+1
=(x""""*"Ymodn

t(n) From Fermat’s theorem
= (x""x)mod n /l

=X

15

Correctness

when x&Z and gcd(x,n) =1

Sincen = pq,gcd(x,n) = por gcd(x,n) =g

If

x=x"modp| —

ab
x =x""modg RHS :x”mod p =0

b
=> x =x""modn

(by CRT)

Assumeged(n,x) = p
=> p|x=>pk=x
LHS :xmod p = pkmod p=0

v ged(p, x) = pitimplies gcd(g,x) =1
tp(n)+l1

x“modg = x mod g

— xt¢(p)¢(q)+1 mod q

= (x¢(Q))t¢(p) . medq

= ()" - xmod g = x

RSA Implementation

y=x"mod n

Algorithm : SQUARE-AND-MULTIPLY(Z, ¢, 1)

2+ 1
for: + ¢ — 1 downto ()

2 —z2modn
do ife; = 1

then z «+ (2 x) mod n

return (z)
4 1 1%* x = X
3 0 X2
c =23 =(10111), 2 1 xt*x=x
1 1 X10 * x = x11
0 1 x22 * x = x23

17

RSA Implementation in Software
(Multi-precision Arithmetic)

RSA requires arithmetic in 1024 or 2048 bit numbers

Modern processors have ALUs that are 8, 16, 32, 64 bit
— Typically can perform arithmetic on 8/16/32/64 bit numbers

solution: multi-precision arithmetic #define NBITS XXX

(gmp library) #define WORDSIZE xxx
#define MAXDIGITS (NBITS/WORDSIZE)

typedef unsigned long word;
typedef struct{
word digits[MAXDIGITS];
int sign;
}bignum_t;

ﬂgase : 22, where b = 647/32/16/8 bits

Y
1024 bits y

Multi-precision Addition

* ADD:a=9876543210= (2,76, 176, 22, 234),54
b =1357902468= (80, 239, 242, 132),5,

base = 8 bit (256)

0 234 132 O 110 (110<234)? 1
1 22 242 1 9 (9<22)? 1
2 176 239 1 160 (160<176)? 1
3 76 8 1 157 (157<76)? O
4 2 0 0 2 (2<2)? 0

a+ b = (2, 157, 160; 91 110)256
= 11234445678

“Computational Number Theory”, Abhijit Das, CRC Press

Multi-Precision Addition
Algorithm

Algorithm 2: Add : Multi-Precision Addition. The function performs r = a + b. Each input is of size

n words.

Input: word =a, word =b, int n

Output: word »r

begin

carry « 0

forie (0,1,2,---n—1) do
t « ali]
t « t+carry
carry + (t < carry)
[« t+ b1
carry + carry+ (I < t)
rli] « 1

N0 s N -

10 end
11 return r

12 end

e The asymptotic complexity of multi-precision addition is O(MAXDIGITS).

e The algorithm requires MAXDIGITS single precision additions to be performed, where each addition is
of WORDSIZE.

e This also requires 2xMAXDIGITS comparisons as carry is compared with both the operands in each
iteration of the loop.

20

Multi-precision Subtraction

e SUB:a=9876543210 =(2, 76, 176, 22, 234),s,
b =1357902468= (80, 239, 242, 132),

base = 256 (8 bit)

0 234 132 0 (234<132)? O 102

1 22 242 0 (22<242)? 1 -220 =36
2 176 239 1 (176<239)? 1 -64=192
3 76 8 1 (76<80)? 1 -5=251
4 2 0 1 (2<0)? 0 1

a-b=(1,251,192,36, 102),
= 8658640742

Multi-Precision Subtraction
Algorithm

Algorithm 3: Sub : Multi-Precision Subtraction. The function performs r = a — b. Each input is of

size n words.
Input: word =a,word =b, int n
Output: word »r

1 begin

2 borrow « 0

3 forie (0,1,2,---n—1) do

4 rli] « (a[i] — bli] — borrow)
5 if (a[i] # bli]) then

6 | borrow = (a[i] < bli])
7 end

- end

«“ return r

10 end

Analysis of Multi-Precision Subtraction
e The asymptotic complexity of multi-precision subtraction is O(MAXDIGITS).
e The algorithm requires MAXDIGITS subtractions to be performed. Each subtraction is of WORDSIZE.

e This also requires MAXDIGITS comparisons as operands are compared to know the borrow in each
iteration of the loop.

22

Multi-Precision Multiplication

C=AxBmodN

(without Modular operation)

* Classical (School book) algorithm
e Karatusba algorithm

* Toom-3 algorithm
 FFT

23

Multi-precision Multiplication

(Classical Multiplication)

* MUL:a=1234567
b=76543210

base = 8 bit (256)

a*b-=
(0 85 241 247 25 195 102),,
=99447721140070

= (18, 214, 135),,

(4 143, 244, 234),¢;

Add 0at pos 6

{0, 85,241, 247,

a J b; aby=(hl)s Operation c
Initialization (0, 0, 0, 0, 0, 0, 0O)s
0 135 0 234 (123,102)s Add 102atpos0 (0, 0, 0, 0, 0, 0,102)5
Add 123 atpos1 (0, 0, 0, 0, 0,123,102)s
1 244 (128,172)p Add172atposi (0, 0, 0, 0, 1, 39,102)z
Add 128atpos2 (0, 0, O, 0,129, 39,102)5
2 143 (75,105)s Add 105atpos2 (0, 0, 0, 0,234, 39,102)5
Add Thatpos3 (0, 0, 0, 75,234, 39,102)5
3 4 (2, 28)g Add 28atpos3 (0, 0, 0,103,234, 39,102)g
Add 2atposd (0, O, 2,103,234, 39,102)g
1 214 0 234 (195,156)s Add 156 at pos1 (0, 0, 2, 103,234,195,102)p
Add 195 at pos 2 (0, 0, 2,104,173,195,102)p
1 244 (203,248)p Add 248 at pos2 (0, 0, 2,105, 165,195,102)p
Add 203 at pos 3 (0, 0, 3, 52,165,195,102)s
7 143 (119,138)s Add 138 at pos 3 (0, 0, 8,100,165,105,102)g
Add 119 at pos 4 (0, 0,122,190, 165, 195,102) g
3 4 (3 83)s Add BSatpos4 (0, 0,210,190,165,195,102)5
Add 3atposh (0, 3,210,190, 165, 195,102)5
2 18 0 234 (16,116)s Add 116 at pos 2 (0, 3,210,191, 25,195,102)5
Add 16 at pos 3 (0, 3,210,207, 25,195,102)8
1 244 (17, 40)s Add 40 at pos3 (0, 3,210,247, 25,195,102)5
Add 17 at pos4 (0, 3,227,247, 25,195,102)p
2 143 (10, 14)s Add 14atposd (0, 3,241,247, 25,195,102)5
Add 10at pos5 (0,13,241,247, 25,195,102)p
3 4 (0, 72)p Add T2atpos5 (0,85, 241,247, 25,195,102)p

25,195,102) p

24

Multi-precision Multiplication
(Karatsuba Multiplication)

Leta, b be twomultiprecision integers with n B — ary words.
Letm=n/?2

a=a,B" +aq,
b=b,B" +b,
axb=(a,b,)B*" +(a,b, +ab,)B" +ab,
= (a,b,)B™" + (ahbh +ab, - (a,-a,)b, _bl))Bm +ab,

using(a, —a,)(b, -b,) = a,b, —a,b, —a,b, + a)b,

Karatsuba multiplication converts n bit multiplications into 3 multiplications of n/2 bits
The penalty is an increased number of additions

25

Multi-precision Multiplication
(Karatsuba Multiplication)

B = 256;
a = 123456789 = (7, 91, 205, 21),,
b = 987654321 = (58, 222, 104, 177),5,

a,b, =(1,176, 254, 234),.,
ab, =(83,222, 83, 133),,
a,, - by, = -(197, 186),,

a, - b, = (45, 211),5,

n=4; m=2
a, = (7, 91); a, = (205, 21)
a=(7,91)2562 + (205, 21)

b, = (58, 222); b, = (104, 177)
b = (58, 222)2562 + (104, 177)

(a, .by) (a, . b)) =(35, 100, 170, 78),5
ayb, + aby,

=a,b,t ab, - (a, - by) (a, - b))

= (50, 42, 168, 33),,

1 176 254 234
50 42

168 33
83 222 83 133

1 177 49 20

251 255 83 133

26

Performing Modular Reduction

* Divide and get remainder
(repeated subtraction)

Alternatively, we could use Montgomery
multiplication that will not require modular
reduction.

27

Montgomery Multiplication

c=axbmodm

Select R=2", gcd(R,m)=1,R slightly greater than m

Use Extended Euclidean Algorithm to find R~ and m'
st R R'—-m-m'=1

Convert multiplicands to Montgomery domain

a =aRmodm

b=pRmodm |INotethat c= a-b-R?>modm

The Montgomery multiplier computes

c=a-b-R'modm «— NQ specific benefits this way

28

Montgomery’s Trick

Montgomery's trick
) t=a-b
2)u=(t +(tmodr)-m'modr)-m)/r

3) if (u=m) return u—m; else return u.

29

Montgomery’s Trick

(why it works)

Montgomery's trick

1) t=a-b
2D)u=(+(tmodR)-m'modR)-m)/R

3) if (u=m) return u—m; else return u.

* First note that R | ¢
* ThenRI|(z-m'-mmodR)

....this follows because RR™' —m'm =1; then take mod R
® Therefore RI(t+t-m'-mmodR)

....the division in step 2 is valid

*u-R=t+r-m"-mmodR
=rt+t-m-m
=t+k-m

=rmodm

See google groups for more details

30

Speeding RSA decryption with CRT

e Decryption is done as follows :
X =y2mod n
* Bob can also decrypt by using CRT
X=y2mod p
X =y@mod q
(since he knows the factors of n, i.e. p,q)

e CRT turns out to be much faster since the size (in
bits) of p and q is about %2 that of n

31

Multi-precision libraries

* GMP : GNU Multi-precision library

 Make use of Intel’s SSE/AVX instructions

— These are SIMD instructions that have large
registers (128, 256, 512 bit)

* Crypto libraries
— OpenSSL, PolarSSL, NaCL, etc.

32

RSA Speeds

Table 1: Evaluation of RSA on Intel 64-bit System.

Input Size | Without CRT (Seconds) | With CRT (Seconds)
128 0.000074 0.000022
256 0.000523 0.000299
512 0.001707 0.001155
1024 0.012381 0.010940
2048 0.091174 0.077656

Table 2: Evaluation of RSA on Intel 32-bit System.

Input Size | Without CRT (Seconds) | With CRT (Seconds)
128 0.000730 0.000229
256 0.004576 0.002664
512 0.034216 0.026493
1024 0.278812 0.213975
2048 2.280441 1.908730

33

RSA Speeds

32 Bit ARM Cortex

Table 3: Evaluation of RSA on LPCXpresso 1347.

Input Size | Without CRT (Seconds) | With CRT (Seconds)
128 5.799000 2.344000
256 37.806000 24.069000
512 326.877000 231.231000

16 Bit T1 Micro-controller

Table 4: Execution Time on Varying In;

put Size on MSP-430

Input Size | Without CRT (Seconds) | With CRT (Seconds)
128 5.06 5.029
256 36.025 33.044
512 260.007 254.13
1024 2011 2028

34

Finding Primes

Test for Primes

* How to generate large primes?
— Select a random large number

— Test whether or not the number is prime

 What is the probability that the chosen number is a
prime?
— Let t(N) be the number of primes < N
— From number theory, m(N) = N/In N

— Therefore probability of a random number (< N) being a
primeis 1/In N

* As N increases, it becomes increasingly difficult to find large
primes

36

GIMPS

* There are infinite prime numbers (proved by Euclid)
* Finding them becomes increasingly difficult as N

Increases

— Mersenne Prime has the form 2"—1

— Largest known prime (found in 2016) has 22 million digits

2274,207,281 -1

* S3000 to beat this ©

GIMPS : Great Internet Mersenne Prime Search

https://en.wikipedia.org/wiki/Largest_known_prime_number

37

Primality Tests with Trial Division

* School book methods (trial division)
— Find if N divides any number from 2 to N-1
— find if N divides any number from 2 to N1/2
— Find if N divides any prime number from 2 to N1/2

— Too slow!!!
* Need to divide by N-1 numbers
* Need to divide by N¥2 numbers
* Need to divide by (N/InN)¥2 primes

— For example, if n is approx 21024, then need to check around 2°%7
numbers

* Need something better for large primes
— Randomized algorithms

38

Randomized Algorithms for
Primality Testing

 Monte-carlo Randomized Algorithms
— Always runs in polynomial time
— May produce incorrect results with bounded probability

— Yes-based Monte-carlo method
* Answer YES is always correct, but answer NO may be wrong

— No-based Monte-carlo method

* Answer NO is always correct, but answer YES may be wrong

39

Finding Large Primes
(using Fermat’s Theorem)

IS prim e(n){ If nis prime, then a”"~ =1modn
. is true for any ‘@’
picka < 7,
If n is composite ¢"' = 1modn
: -1
lf (a” =] mod n) is false but may be true for some
values of a.
return TRUE
] For example: n = 221 (13*17)
eLse and a = 38 then
38220 mod 221 = 1.
return FALSE
} We need to increase our confidence
with more values of a

40

Fermat’s Primality Test

* |ncreasing confidence with multiple bases

primality test(n)4{
c=0
for(i=0;i <1000;+ +i){
if (is _ prime(n)==FALSE)
return COMPOSITE

b
return probably PRIME

;

41

Carmichael Number

Some composites act as primes.
Irrespective of the ‘a’ chosen, the testa” =1modn

passes.

for example Carmichael numbers are composite numbers which
satisfy Fermat’s little theorem irrespective of the value of a.

Eg. 561 = 3 x11x17

42

Strong probable-primality test

* If nis prime, the square root of a"*is either +1
or-1

n-1
leta? =b

b> =1modn

b>-1= modn

(b+1)(b-1)=0modn
either(b+1)=0modn or(b-1)=0modn

Miller-Rabin Primality Test

* Yes-base primality test for composites
* Does not suffer due to Carmichael numbers
 Write n-1 =25d

— where d is odd and s is non-negative

— nis a composite if

a® =1modn and (a’)* =—-1modn

forallnumbersrlessthans

44

Proof of Miller-Rabin test

* Write n-1 = 25d
a’ #1modn and (a”)’ = -1modn

for all numberr lessthan s

* Proof: We prove the contra-positive. We will assume n to be
prime. Thus,

a’ =1modn or (a’)* =-1modn

for somenumberrlessthan s

45

Proof of Miller-Rabin test

Proof: We prove the contra-positive. We will assume n to be
prime. Thus we prove,

a’ =1modn or (a’)* =-1modn

for somenumberrlessthan s

Consider the sequence :

d 2'a 2%?a 2%°d 2571g
a ,a ’a ,a AR ,a .

— The roots of x2 =1 mod n is either +1 or -1

1 (Fermat ‘s)

— In the sequence, if a% is 1, then all elements in the sequence will be 1

— Ifa%is not 1, then there should be some element in the sequence
which is -1, in order to have the final element as 1

46

Input n

Miller-Rabin Algorithm
(test for composites)

T'1. Findan oddintegerd such thatn —1=2"d
T2. Selectatrandomanonzeroa €7,
7T3. Compute b =a’ modn
If b= =1, return'nisprime'
T4.Fori=1,---,r—1,calculate c = b modn
If ¢ = -1, return'nis prime’

T5. Otherwise return'nis composite'

= Pr(input=composite | ans=composite)= 1
= Pr(ans=prime | input=composite)<1/2
= Pr(input=composite | ans=prime) < 1/4

47

Quadratic Residues

Definition. Let a.m € N. Then a is a quadratic residue of m iff
(a,m) = 1 and there is an x € Z so that x> = a (mod m).

« Example : m=13, square elements in Z,,. a cannot be 0

1,4,9,3,12,10, 10, 12,3,9,4,1
The quadratic residues Z,; are therefore
{1, 4, 3,9, 10, 12}

If an element is not a quadratic residue, then it is a quadratic non-residue

quadratic non-residues in Z,, are {2, 5, 6, 7, 8, 11}

48

Legendre Symbol

0 if pla
—)=< 1 if aisaQRmod p
—1 if aisaONRmod p

Given p is an odd prime

49

A result from Euler

when p | a

p-1

a? =0modp

Euler’s Criteria

5]

p-1

a > mod p

whenaisaQR,3xEZ s.t. a = x* mod p

p-1 2(p—l)

2 X 2

=> a mod p

x”" ' mod p

[
o

50

when Quadratic Non Residue

whenaisa ONR, nosuchxEZ jexistss.t. a = x> mod p

p-1

consider : a > mod p (note p —1 iseven,if pisanodd prime)

squaring : a”” mod p =1

a ? =1mod p, sinceaisnota QR

p-1

Thus a > =—1mod p

51

Examples

p-1
(E)Ea 2modp | 4isaQRmod13
13-1

4 2 modl3=4°modl13=1
S5isaONRmod13
5°mod13 =12mod13 = -1

|
awud ppo ue si u

uaym spjoy sAemje asuanibuo)

J\

15-1

Euler's Withess <—— | — 7
7 2 modl5S=7 modl5=-2

|
usym

15-1

Euler's Liar « | 2271
14 2 mod15=14"mod15 = -1

awid jou si u
p|oy jou Aew Jo
Aew aousnibuo)

U
N

Solovay Strassen Primality Test

SOLOVAYSTRASSEN (n) !

choosearandomintegerasuchthatl =< a< n-1

I compute x = (ﬁ)

How to compute

n

if (x=0)return COMPOSITE
Legendre’s symbol n-1

computey =a > modn
if (x = ymodn)return possiblyPRIME
elsereturn COMPOSITE

error probability is at most 7

Jacobi Symbol

e Jacobi Symbol is a generalization of the Legendre symbol

* Let nbeany positive odd integer and a>=0 any integer. The
Jacobi symbol is defined as:

Suppose n1s an odd positive integer with prime factorization

e e e e
@ " P’ XPy XP3 XPy--

54

Jacobi Properties
]faEbmodnthen(%)=(%)
@(2)={ 1 ifn==x1mod8

-1 if n=x3mod8
s
@A if aiseven, a = 2*1, (%)=(%) (%)

@ if aisodd,
[(n

- a = O
a a
(_) o n
! (_) otherwise
a

Computing Jacobi

7 11 13

907 (9907) (9907) ' From the theorem
9907 2

(5-)=-(5)=-1 P5, P1, then P2
990‘) = (l) _ (1—1) _ (3) _ 1. | P5, P1, P5, P1, P3, P2

11 11 7 7
9907) B (i) _ 1
13 - 13 A P5, P1

and 1isa QR mod 13

56

Factoring Algorithms

Factorization to get the private
key

* Public information (n, b)

* If Mallory can factorize ninto p and q then,
e She can compute ¢(n) = (p-1)(g-1)
* She can then computethe private key by finding a = b™* mod ¢(n)

How to factorize n?

58

Trial Division

Fundamental theorem of arithmetic

Any integer number (greater than 1) is either prime or a product of prime
powers

— N 262 2 ...
n=p p, pPs P

def trial division(n):

"""Return a list of the prime factors for a natural number."""

if n < 2: —» prime generation algorithm
return []
prime_factors = []

for p in prime_sieve(int(n**0.5) + 1):

Prime factors of n cannot be

if p*p > n: break
while n % p ==
prime factors.append(p)

n//=p
if n > 1:
prime factors.append(n)

return prime factors

~ greater than |J; |

= n=n/p:remove this factor from n

Running Time of algorithm order of 1m(2"2)

59

Pollard p-1 Factorization

n=pxq choose arandom integera(l < a < n).
If gcd(a,n) = 1,then a is a prime factor.

However, this is most likely not the case.

eSuppose weselect some Land compute d=gcd(a”-1,n) why a"-1?
if 1<d <n then we have factored n since d is prime and d | (aL ~1)
dlnand dl(a"-1) a- =1modd
d has to be the prime p or the prime g @(d)| L => (d -1)k=L

Thus we need to find L which

e 1s some factor of (d-1).
If gcd(a” -1,n)=n How to choose L?

No easy way, trial and

This is possible only when pln and pla” -1 (or glnand gla" -1)

error!!

and a“ -1>n Factorials have a lot of
divisors. So that is a nice
way.

So, take L as a factorial of
some number r.

60

—

Pollard p-1 Factorization

Pollard p-1 factorization for n.

Sl.a<2
S2.1f gcd(a, n) > 1, then this gcd is a prime factor of n, we are done.
S3.computed < ged(a”-1, n)

if d = n, start again from S1 with next value of a

else if d =1,1increment r and repeat S3

else d 1s the prime factor of n; we are done!

. Will the algorithm terminate?

When will we choose the next value of a? (will we get an infinite loop?)
When r =d-1then L =r!l = (d-1)! = d-1(d-2)! = (d-1)k
(d-1) | L > we will get the gcd(ak@-1, n) = n or its prime factor.

61

Pollard Rho Algorithm

* Form a sequence S1 by selecting randomly (all different) from

the set Z, — — q
Sl=x,,%,X,,X;, X, X0 =X MOAPp

* Also assume we magically find a x1 =x,mod p

new sequence S2 comprisingof L _ x, mod p

S?2 =Xx0.X)—C)—C)—C ... Where -
Og N1y A24A34A4, X3Ex3m0dp

* |f we keep adding elements to XA E Xy moc}p B
51, we will eventually find an x; and x; (i#j) such that x; = x;
When this happens,

P | (xi _xj)
plnalso, ged((x; —x,),n)is p.We found a factor of n!!

62

Doing without magic

Form a sequence S1 by selecting randomly (with
replacement) from the set Z_

ST=Xy,X,,X,, X5, X,

For every pair i,j in the sequence compute

d < ged((x, - x,,n)

If d > 1 thenitis a factor of n

63

Selecting elements of S1

To choose the next element of S1, Pollard suggests
using a function f:Z, = Z,

with requirement that the output looks random.

Example :f(x) = x* +1modn

X, Wherex,ischosenrandomly fromZ,
X, i>0andx, = f(x_)

64

Example

* N=82123,x,=631, f(x) =x?+1

r; mod N

~.

T; =r; mod p

1

r; mod N

0] 631
1| 69670

2| 28986
3 69907
1| 13166
5| 64027

6 40816
7 80802
8 20459
9 71874

16
11
1()
D
26
21
32
0
1

10 H685

11 14314
12 75835
13 37782
14 17539
15 65887
16 74990
17 415553
18 73969
19 50210

This column is just
for understanding.
In reality we will not know this

T; =r; modp

5}
26
Y,

BN b

e
—
-

TR

26

Drawback...

Large number of GCD
Computations. 55 gcd
computations in this case

Can we reduce the number
of gcd computations?

Given x; mod N, we compute gcds of every pair until we find a gcd greater

than 1

ged(x, —x,,, V) = gcd(63222,82123) =41 <—— A factor of N

65

The Rho in Pollard-Rho

N= 82123, x, = 631, f(x) = x2 + 1

X: =X mod p

it |r; mod N |T;=x; modp it |r; mod N |Ti=x; modp
0 631 16 10 O60685 2
1 69670 11 11 14314 5
2 28986 40 12 75835 26
3 69907 2 13 37782 21
4 13166 5 14 17539 32
5 64027 26 15 658K7 0
6 40816 21 16 74990 1
7 S0802 32 17 15553 2
8 20459 0 18 73969 5)
9 T1874 1 19 50210 26

* The smallest value of t and |, for which the above congruence holds is t=3, [=7
 For [=7, all values of t > 3 satisfy the congruence
* This leads to a cycle as shown in the figure

(and a shape like the Greek letter rho)

xj=)_cj+zmodp t=3

66

Reducing gcd computations

 GCD computations can be expensive.

* Use Floyd’s cycle detection algorithm to reduce the number
of GCD computations. 26 582

choosearandomx, = y,€Z,
x; = Jf(x;_)
V=X = (S (Vi)

Ifd =gcd(x, —y,,N)>0,returnd
- 16

—

loop
\

claim : The first time x, =y, mod p occurs whenis<t+]|

This means that we get a collision before x
completing an entire circle

67

The first time x, = y. mod p occurs
iswheni<t+]

* |isthe number of points in the cycle

e tisthe smallest value of i such that
x, =y, mod p

X; and y; meet at the same point in the cycle
Therefore, y; must have traversed (some) cycles more

x; =y, mod N . |
x, = x,, mod N consider i =(k+ 1)l =1+ (-rmod/)
1(2i - i) <t+1

i=>I(k+1)=i (~tmod1)

| I I I I |
0 1 2 v KLt (k+Dl=i

68

Expected number of operations
before a collision
* Can be obtained from Birthday paradox

tobe ./p

69

Congruences of Squares

Given N=p x g, we need to find p and q

Suppose we find an x and y such that x> = y° mod N

Then,
N|(x*=y?)=> N|(x—)(x+Y)
This implies,

ocd(N,(x—y)) or gcd(N,(x+ y)) factors N

70

Example

e Consider N =91

10> =3* mod91 34% =8*mod 91
91[(10-3)(10 +3) 91|(34 +8)(34 - 8)
91|(7x13) 91|42 %26
gcd(91,13) =13 gcd(91,26) =13
ged(®91,7) =7 gcd(91,42) =7

So... we can use x and y to factorize N.

x> =y>mod N

But how do we find such pairs?

71

Another Example

* N=1649

2 _ 32 and 200 are not perfect squares.
417 =32 mod 1649 However (32x200 = 6400) = 802

432 =200mod 1649 is a perfect square

(41x43)* = (32x200)mod 1649
= 80” mod 1649

Thus, it is possible to combine non-squares to form
a prefect square

the examples are borrowed from Mark Stamp (http://cs.sjsu.edu/faculty/stamp/)

72

Forming Perfect Squares

Recall, Fundamental theorem of arithmetic
Any integer number (greater than 1) is either prime or a product of prime
powers

— N 2 2SB L.. NG
n=p p, pPs P

Thus, a number is a perfect square if it prime factors have even powers.
€,6,,65,... ISEVEN

Thus,
32 = 2°59 not a perfect square
200 = 2352 not a perfect square

(32x200) = 2550 x 2352 = 2852 = (2451)2 is a prefect square

73

Dixon’s Random Squares
Algorithm

Choose a set B comprising of ‘b’ smallest primes. Add -1 to
this set.

(A number is said to be b-smooth, if its factors are in this set)
Select an r at random

— Compute y=r"modN

— Test if y factors completely in the set B.

— If NO, then discard. ELSE save (y, r) (these are called B-smooth
numbers)

Repeat step 2, until we have b+1 such (y,r) pairs
Solve the system of linear congruencies

74

Example

e N=1829
* b=6 B={-1, 2,3,5,7,11,13}
 Choose random values of r, square and factorize

42 = 1764 = —65 = —1-5-13 (mod 1829)
432 =20 = 2% .5 (mod 1829)

9 9 except 60 and 75.
61“=63=3°-7 (mod 1829) Leave these and
74° = 1818 = —11 = —1-11 (mod 1829) consider all others

75° =138 = 2-3- 23 (mod 1829)
‘/ 85 = 1738 = —91 = —1-7-13 (mod 1829)
‘/ 862 = 80 = 2* . 5 (mod 1829)

75

Check Exponents

13

11

-65
20

63

-11
-91
80

76

Check Exponents

-1 2 3 5 7 11 13
-65 1 0 0 1 0 0 1
20 0 2 0 1 0 0 0
63 0 0 2 0 1 0 0
-11 1 0 0 0 0 1 0
-91 1 0 0 0 1 0 1
80 0 4 0 1 0 0 0

Find rows where exponents sum is even
-65, 20, 63, -91

sum 2 2 2 2 2 0 2

(42x43x61x85)” = (-1x2x3x5x7x13)* mod1829
1459° =901° mod 1829

77

Final Steps

(42x43%x61x85)” = (-1x2x3x5x7x13)* mod1829
1459° =901° mod 1829

1829 | (1459 +901)(1459 - 901)
—>1829(2360 gcd(1829,2360) = 59
—> 1829558 gcd(1829,558) =31

Thus 1829 =59x31

78

State of the Art
Factorization Techniques

Quadratic Sieve
— Fastest for less than 100 digits

General Number field Sieve
— Fastest techniqgue known so far for greater than 100 digits
— Open source code (google GGNFS)
RSA factoring challenge
— Best so far is 768 bit factorization
— Current challenges 896 bits (reward $75,000), 1024 bit (5100,000)

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

79

RSA Attacks

attacks that don’t require
factorization algorithms

®d(n) leaks

 |f an attacker gets ®(n) then n can be

factored

n=pq q=nlp
p(n)=(p-D(g-1)
=pqg—-(p+q)+1

pn)=n—-(p+—)+1
P

p —(n-¢gm)+D)p+n=0

Solve to get p (a factor of n)

81

square roots of
1 mod n

- - : 2
There are two trivial and two non-trivial solutions for ¥~ =1modn

The trivial solutions are +1 and -1
By CRT, these congruences

are equivalent y=1mod p
2 _ 1mod y=-1mod p
y*=lmodn (=) y2 R
y“ =1lmodgqg
\ y=1modg
y=-1modgq
To get the non-trivial solutions solve using CRT

y=+Ilmod p y=-1mod p
y=-1lmodg y=+1lmodg

82

Example

* n=403=13x31
* To get the non-trivial solutions ofy2 =1modn solve using CRT

y=+1mod p =-1mod p
=—-Ilmodg y =+lmodg

(31-31" mod 13 -13-13"" mod 31) mod 403
(31-8-13-12)mod 403 = 92
403-91=311

L0972 = 2112 =
The non-trivial solutions are 92 and 311 Note:927 =311 =1mod 403

What happens when we solve ¥ =+1mod p
y=+lmodgqg

83

Decryption exponent leaks

* If the decryption exponent ‘@’ leaks, then n can be factored

* The attacker can then compute gb
ab =1mod ¢(n) kg(n) = (ab-1)
* Now, for any message x # 0

-1
x® 1 =1modn

ab-1
* Attack Plan, take square root:y =x * modn

ie., y*=1lmodn => n|(y*-1)

However we

= nl(y -1 +1) neet
y ==l
gcd(n,y —1)isa factor of n

to have a non-
trivial result

The Attack (basic idea)

_ We assume we know the private
“key a

ab = 1mod ¢(n)

l.givena computeab —1 > kg(n)=ab-1

ab —1 ab-1
2.Represent ¢ = — y =x % =1modn
3. chooseany message x > thus,(y; —1)=0modn
4.puty = x' modn n[(y+D(y-1)

S5.computed < gcd(y-1,n)
This will only work if y #£1 mod n.
> If y = £1 mod n. then goto step 7

6.if d =1, return"afactor of nisd"; exit
7.if (t is even) t =t/ 2; goto step4

elsereturn" failure"

Probability of success of the attack is at-least 1/2

85

Example

* N=403, b=23, a=47

t=ab-1=1080 x=2

loopl : t = % =540 y=x'mod403=2"*"mod403=1

loop2:t=i20=270 y=x'mod403 =2*""mod 403 =311

gcd(310,403) =31 (a factor of n)

t=ab-1=1080 x=9

loopl : t = @ =540 y=x'mod403=9""mod403=1

loop2: t = ? =270 y=x'mod403 =9*"" mod 403 =1

loop3:t=?=l35 y=x'mod403 =9 mod403 =1

can’t divide 135 further. failure

86

Small Encryption Exponent

In order to improve efficiency of encryption, a small
encryption exponent is preferred

However, this can lead to a vulnerability

87

Alice

Small Encryption Exponent

m3mod N,

m3mod N,

m3mod N, 1
v Vv

Insecure channel

Consider, Alice sending the same message x to 3 different people.

Each having a different N (say N4, N,, Nj)
But same public key b (say 3)

88

C o <
m3mod N, : (VY

¢, =m’ mod N,

m3mod N,

m3mod N, 1
v Vv

3
¢, =m modN,

¢, =m’ mod N,

Insecure channel

« Consider, Alice sending the same message x to 3 different people.
« Each having a different N (say N4, N,, N;)
« But same public key b (say 3)

« This allows Mallory to snoop in and get 3 ciphertexts

Small Encryption Exponent

By CRT

¢, =m’ mod N,
c,=m’modN, (=)X =m’mod(N, N,"N,)

3
c; =m mod N,

* Thus, Mallory can compute X
* Sincem < N;, m<N,, m<N;=> n<(N;xN,xN;)

* Thus, XY3=m
— i.e. The message can be decrypted

It is tempting to have small private and public keys, so that encryption or
decryption may be carried out efficiently. However you would do this at
the cost of security!!

Low Decryption Exponent

* The attack applies when the private key a is

4
smal,a<@

* |n such a case ‘@’ can be computed efficiently

91

Partial Information of Plaintexts

Computing Jacobi of the plaintext
y =x" modn yistheciphertext; x the message
b1s the public key and gcd(b, p(n)) =1

Thus, gcd (b, (p-1)(g-1))=1

(p-1)(g -1) 1seven, therefore H must be odd

consider Jacobi

(Z = =1

sincebisodd

X
thus, RSA encryption leaks the value of the Jacobi symbol (—)
n

92

Partial Information of Plaintexts
first half or second half?

* giveny=x’mod n,

— is it possible to determine if
(0<x<n/2) or(n/2<x<n-1)

 We prove that RSA does not leak this information

* If there exists an efficient algorithm that can
determine if x is in the first or second half then,
the entire plaintext can be obtained

93

Binary Search Trees on x

Consider this function

0 ifOsx<E
HALF (x) = . 2
1 ifgsx<n—1

example
x=3mod13 HALF(x)=0
2x=6mod13 HALF(2x)=0
4x =12mod13 HALF(4x)=1
8x=11mod13 HALF(8x)=1
16x=9mod13 HALF(16x) =1

[0,1.625)

1.625,3.25)

Partial Information of Plaintexts
(first or second half proof)

 Assume a hypothetical oracle called HALF as follows

0 if Osx<”
HALF (n,b,y) = 2

y =x"modn 1 if%sx<n—l

2"y =(2x)" modn

4b'y5(4)€)bm0dn HALF(y)=0 - XE[O,gj
8" -y =(8x)" modn
16" -y = (16x)” mod n ‘/\
b n b nn
HALF(2'y)=0 => xE[O,ﬂ |HALF(2 D=1 = xE[Z,ﬂ

N

HALF (2’ y)=0 => xE[O,gj HALF (2’ y)=0 => xE[g,g

95

Example

n=1457, b=779, y=722

hi) lo mid hi
Algorithm : ORACLE RSA DECRYPTION(n, b, v) 10 0.00 728.50 | 1457.00
0 172850/ 1092.75 | 1457.00
external HALF 1 272850 | 910.62 | 1092.75
k ¢ |log, n] 0 3910.62]|1001.69 | 1092.75
foré«- Otok 1 4]910.62| 956.16 | 1001.69
o{h‘*‘HALQ‘Z(”"’*g) 1 595616 | 978.92 | 1001.69
o (U X mod 1 6]978.92 | 990.30 | 1001.69
O 1 71990.30 | 996.00 | 1001.69
for i ¢ 0 to k 1 8|996.00| 998.84 | 1001.69
mid « (hi + lo)/2 0 9 998.84 | 1000.26 | 1001.69
if hy = 1 0 10 | 998.84 | 999.55 | 1000.26
40 3 then lo « mid 998.84 | 999.55 | 999.55

else hi + mad
return (| hi))

Thus, if we have an efficient function HALF, we can recover

the plaintext message.

96

Man in the Middle Attack

* The process of encryption with a public key
cipher

<¢ '
Bob sends his public key
A”Ce enc
ob’s publjc key

Bob decrypts
with his private
key

97

Man in the Middle Attack

* The process of encryption with a public key
cipher Man in the middle

@ Intercepts messages
«

e yaloy

ds her public k&Y

sen
A”Ceenc\> Mallory decrypts
with I\/Iauoryets with her private
'Y'S public key keyandre- ~ ——
encrypts Bob decrypts
with Bob’s with his private

public key key

98

Searching the Message Space

* Suppose message space is small,

— Mallory can try all possible messages, encrypt
them (since she knows Bob’s public key) and
check if it matches Alice’s ciphertext

- Bob sends his public k&Y p

_ Bob decrypts
ICe encrypts with Bop’s public key

with his private
key

99

Bad Prime Generation Algorithms

* Suppose the prime generation was faulty

— So that, primes generated were always from a
small subset

— Then, RSA can be broken

 Pairwise GCD of over a million RSA modulii
collected from the Internet showed that

— 2 in 1000 have a common prime factor

Ron was Wrong, Whit is right, 2012 100

Discrete Log Problem, EIGamal,
and Diffie Hellman

STINSON : chapter 6 101

Primitive Elements of a Group

Let (G,)bea group of order n.
LetaEQG,

If o 1s a primitive element then

The order of « is the smallest integer m such that ™ =1

a is termed as a primitive element if it has order n.

<a> ={a':0=i=n-1} generatesall elementsin G

Consider Z" ={1,2,3,---,12}
(Z,,,)) formsa groupof order12

Let7€Z,,,
(7)=17, 10, 5,9,11,12,6,3,8,4,2,1}

<7> has order 12
and generates all elements in Z.
Thus, 7 is a primitive element

102

Discrete Log Problem

Let(G,)be a group
Let a € G beaprimitiveelement in the group with order n
Define the set

<a>={ai:05isn—l}

Foranyuniqueintegera(0<a <n-1),
let @ =
Denote a =log, # asthediscretelogarithmof £

Given a and a, it is easy to compute [3
Given a and f it is computationally difficult to determine what a was

103

ElIGamal Public Key Cryptosystem

* Fixa prime p (and group Z,)
* Let a€Z, be a primitive element
 Choose a secret ‘@’ and computeff =a“ mod p

Public keys :«, 8, p Private key :a
choose arandom (secret) k < Z d,(x)=y, (yla)_1 mod p
&, ()= (7,,7,) — x5 (@*) " mod p

where y, =" mod p, B
1) = x-a"“(a") " 'mod p
y, =x*"mod p

= X 104

ElIGamal Example

e p=2579,a=2 (aisa primitive element mod p)
* Choose arandom a =765
 Compute B =27 mod 2579

Encryption of message x = 1299
choose a random key k = 853
Y, =283 mod 2579 =435
Yy, = 1299 x 949%>3 = 2396

Decryption of cipher (435, 2396)
2396 x (4357%°)1 mod p
= 1299

105

Finding the Log

L =a“modp

Given a and [3 it is computationally difficult to determine what a was

* Brute force (compute intensive)

compute 0{,0{2,0(3,054 (until you reach B)
this would definitely work, but not practical if p is large

complexity O(p), space complexity O(1)
* Memory Intensive

precompute a,a’,a’,a"...... (all values). Sort and store.
For any given B look up the table of stored values.

complexity O(1) but space complexity O(n)

106

Shank’s Algorithm

(also known as Baby-step Giant-step)

P=a‘modp

Rewrite a as a=mqg+r

where m = [\/5]
p=a™a modp

/))(Cl_my =o' mod p

We neither know q nor r, so we need to try out several
values for q and r until we find a collision

107

Shank’s Algorithm

(example)
* p=31and a=3. Suppose B=6.
e Whatisa?
-1\6
m=|-\/i-‘=6 (37)"mod31=2
=3+ collision. B(a) =6-2°=6
a’=9 Ba™®) =6-2"' =12
g @ =2 5 fla) =627 =24
a* =81=19mod31 B(a™®) =6-2° =17mod 31
o’ =19-3=26mod31

»B(a™®)* =6-2* =3mod31

Thus, m=6, q=4, r=1,

a= mqg+r =25

108

Shank’s Algorithm

Algorithm 6.1: SHANKS(G,n,a, 3)

1. m+ [y/n]

(2. forj«—0tom—1)
do compute o™

3. Sort the m ordered pairs (j, @™’) with respect to their second coordinates,

___Obtaininga list L, Y,

4. fori—O0tom — 1)
do compute Ba~!

5. Sort the m ordered pairs (¢, 3a~") with respect to their second coordi-

_ _ hates, obtaining a list Lo)

6. Finda pair (j,y) € L, and a pair (,y) € L2 (i.e., find two pairs having

identical second coordinates)
7. log, 8 « (mj +i) mod n

Create List 1

Create List 2

Find collision

109

Complexity of Shank’s Algorithm

Algorithm 6.1: SHANKS(G,n,a, 3)

1. m« [{/n]
2. forj < O0tom—1
do compute o™ O(m)
3. Sort the m ordered pairs (j, @™) with respect to their second coordinates O(mlog m)

___Obtaininga list L,
4. fori—O0tom — 1
do compute Ba~! O(m)

5. Sort the m ordered pairs (¢, 3a~") with respect to their second coordi- O(mlog m)
_ _ hates, obtaining a list L,
6. Finda pair (j,y) € L, and a pair (¢,y) € L2 (i.e., find two pairs having

identical second coordinates) O(log m)
7. log, 8 < (mj +1) mo=d n =

O(mlogm) ~ O(m) = O(p™?)

110

Other Discrete Log Algorithms

P =amodn

* Pollard-Hellman Algorithm
used when n is a composite

* Pollard-Rho Algorithm
about the same runtime as the Shank’s
algorithm, but has much less memory
requirements

111

Diffie Hellman Problem

Let(G,)be a group
Let a € G beaprimitiveelement in the group with order n
Define the set

(a)={a':0<isn-1}

. b b
given a’ and o . ﬁnd a’ Computational DH (CDH)

given a’,a’ and af, determineif ¢ =abmodn
Decision DH (DDH)

112

Recall...
Diffie Hellman Key

Alice and Bob agree upon a prime p and a generator g.
This is public information

i

choose a secret a choose a secret b

compute A =g@mod p compute B = g° mod p
Compute K = B2 mod p Compute K= AP mod p

AP mod p = (g?)* mod p = (g®)? mod p = B2 mod p

113

114

