
CR

RSA	and	Public	Key	
Cryptography	

Chester	Rebeiro	
IIT	Madras	

STINSON	:	chapter	5,	6	

CR

Ciphers	
•  Symmetric	Algorithms	

–  EncrypAon	and	DecrypAon	use	the	same	key	
–  i.e.	KE	=	KD		
–  Examples:	

•  Block	Ciphers	:	DES,	AES,	PRESENT,	etc.	
•  Stream	Ciphers	:	A5,	Grain,	etc.	

•  Asymmetric	Algorithms	
–  EncrypAon	and	DecrypAon	keys	are	different	
–  KE	≠	KD	
–  Examples:		

•  RSA	
•  ECC	

2	

CR

Asymmetric	Key	Algorithms	

Alice	 Bob	

Plaintext	
“APack	at	Dawn!!”	

untrusted	communicaAon	link	

The	Key	K	is	a	secret	

E	 D	

KE	 KD	

“APack	at	Dawn!!”	
encrypAon	 decrypAon	

#%AR3Xf34^$	
(ciphertext)	

3	

Encryp<on	Key	KE	not	same	as	decryp<on	key	KD	

KE	known	as	Bob’s	public	key;		
KD	is	Bob’s	private	key	

Advantage	:	No	need	of	secure	
key	exchange	between	Alice	and	

Bob	

Asymmetric	key	algorithms	based	on	trapdoor	one-way	func<ons	

CR

One	Way	Func<ons	
•  Easy	to	compute	in	one	direcAon		
•  Once	done,	it	is	difficult	to	inverse	

Press to lock
(can be easily done)

Once locked it is
difficult to unlock

without a key

4	

CR

Trapdoor	One	Way	Func<on	
•  One	way	funcAon	with	a	trapdoor	
•  Trapdoor	is	a	special	funcAon	that	if	possessed	can	be	used	to	

easily	invert	the	one	way	

Locked
(difficult to unlock) Easily Unlocked

trapdoor

5	

CR

Public	Key	Cryptography	
(An	Anology)	

•  Alice	puts	message	into	box	and	locks	it	
•  Only	Bob,	who	has	the	key	to	the	lock	can	open	it	and	read	

the	message	

6	

CR

Mathema<cal	Trapdoor	One	way	
func<ons	

•  Examples		
–  	Integer	FactorizaAon	(in	NP,	maybe	NP-complete)	

•  Given	P,	Q	are	two	primes	
•  and	N	=	P	*	Q	

–  It	is	easy	to	compute	N		
–  However	given	N	it	is	difficult	to	factorize	into	P	and	Q	

•  Used	in	cryptosystems	like	RSA	

–  Discrete	Log	Problem	(in	NP)	
•  Consider	b	and	g	are	elements	in	a	finite	group	and	bk	=	g,	for	some	k	
•  Given	b	and	k	it	is	easy	to	compute	g	
•  Given	b	and	g	it	is	difficult	to	determine	k	
•  Used	in	cryptosystems	like	Diffie-Hellman	
•  A	variant	used	in	ECC	based	crypto-systems	

7	

CR

Applica<ons	of	Public	key	
Cryptography	

•  Encryp<on	
•  Digital	Signature	:		

			“Is	this	message	really	from	Alice?”	
•  Alice	signs	by	‘encrypAng’	with	private	key	
•  Anyone	can	verify	signature	by	‘decrypAng’	with	Alice’s	public	key	
•  Why	it	works?	

–  Only	Alice,	who	owns	the	private	key	could	have	signed	

8	

CR

Applica<ons	of	Public	key	
Cryptography	

•  Key	Establishment	:		
	“Alice	and	Bob	want	to	use	a	block	cipher	for	encrypAon.	How	
do	they	agree	upon	the	secret	key”	

9	

Alice and Bob agree upon a prime p and a generator g.
This is public information

choose a secret a
compute A = ga mod p

choose a secret b
compute B = gb mod p

B A

Compute K = Ba mod p Compute K = Ab mod p

Ab mod p = (ga)b mod p = (gb)a mod p = Ba mod p

Diffie-Hellman	
Key	Exchange	

CR

RSA	

Shamir,	Rivest,	Adleman	(1977)	

10	

CR

More	Number	Theory	

	
	
	
	 	 	MathemaAcal	Background	

11	

CR

RSA	:	Key	Genera<on	

12	

Bob first creates a pair of keys (one public the other private)

),,('
),('

))(mod(Compute.4
1))(,gcd(and))(1(randomaChoose.3

)1)(1()(andCompute.2
)(,primeslargetwoGenerate.1

1

aqpiskeyprivatesBob
bniskeypublicsBob

nba
nbnbb

qpnqpn
qpqp

φ

φφ

φ

−=

=<<

−−=×=

≠

Given	the	private	key	it	is	easy	to	
compute	the	public	key	

	
Given	the	public	key	it	is	difficult		to	

derive	the	private	key	

CR

RSA	Encryp<on	&	Decryp<on	

13	

Encryption

n

b
K

Zxwhere
nxyxe

∈

== mod)(

Decryption

nyxd a
K mod)(=

CR

RSA	Example	

14	

12345572681 mod536754x:decryption
536754572681mod12345:

12345

571152mod13395413keyPrivate.4
1)571152,13gcd(thatnote;13bkey public Choose3.

571152876652(n)572681;877653.2
877and653pprimestwoTake1.

395413

13

1-

≡=

≡=

=

==

==

=×==×=

==

yencryption
xMessage

a

n
q

φ

CR

Correctness	

15	

Encryption

n

b
K

Zxwhere
nxyxe

∈

== mod)(
Decryption

nyxd a
K mod)(=

x
nxx
nx

nx
nxy

nt

nt

ab

aba

≡

≡

≡

≡

≡

+

mod)(
mod)(

mod)(
mod)(

)(

1)(

φ

φ

1),gcd(=∈ nxandZxwhen n

1)(
)(1
)(mod1

+=

=−

≡

ntab
ntab
nab

ϕ

ϕ

ϕ

From	Fermat’s	theorem	

CR

Correctness	

16	

1),gcd(≠∈ nxandZxwhen n

qnxorpnxpqnSince ===),gcd(),gcd(,

)(
mod
mod
mod

CRTby
nxx
qxx
pxx

If

ab

ab

ab

≡=

≡

≡

▹
0mod:

0modmod:
|

),gcd(

≡

≡≡

===

=

pxRHS
ppkpxLHS

xpkxp
pxnAssume

ab

▹▹

xqx
qxx

qx
qxqx

xqimpliesitpxp

pt

ptq

qpt

ntab

≡⋅≡

⋅≡

≡

≡

==

+

+

mod)1(
mod)(

mod
modmod

1),gcd(),gcd(

)(

)()(

1)()(

1)(

ϕ

ϕφ

φφ

φ

∵

CR

RSA	Implementa<on	

17	

nxy c mod=

c = 23 = (10111)2

i	 ei	 z	

4	 1	 12*	x	=	x	

3	 0	 x2	

2	 1	 x4	*	x	=	x5	

1	 1	 X10	*	x	=	x11	

0	 1	 x22	*	x	=	x23	

CR

RSA	Implementa<on	in	SoSware	
(Mul<-precision	Arithme<c)	

•  RSA	requires	arithmeAc	in	1024	or	2048	bit	numbers	
•  Modern	processors	have	ALUs	that	are	8,	16,	32,	64	bit	

–  Typically	can	perform	arithmeAc	on	8/16/32/64	bit	numbers	

•  soluAon:	mulA-precision	arithmeAc		
(gmp	library)	

18	

base : 2b, where b = 64/32/16/8 bits

1024 bits

CR

Mul<-precision	Addi<on	
•  ADD	:	a	=	9876543210	

											b	=	1357902468	
										base	=	8	bit	(256)	

19	

= (2, 76, 176, 22, 234)256

= (80, 239, 242, 132)256

i	 ai	 bi	 cin	 ai+bi+cin(mod	256)	 Carry?	 cout	
0	 234	 132	 0	 110	 (110	<	234)?	 1	

1	 22	 242	 1	 9	 (9	<	22)?	 1	

2	 176	 239	 1	 160	 (160	≤	176)?		 1	

3	 76	 80	 1	 157	 (157	≤	76)?	 0	

4	 2	 0	 0	 2	 (2	≤	2)?	 0	

a	+	b	=	(2,	157,	160,	9,	110)256	
										=	11234445678	
“ComputaAonal	Number	Theory”,	Abhijit	Das,	CRC	Press	

CR

Mul<-Precision	Addi<on	
Algorithm	

20	

CR

Mul<-precision	Subtrac<on	

21	

•  SUB	:	a	=	9876543210	
											b	=	1357902468	

										base	=	256	(8	bit)	

= (2, 76, 176, 22, 234)256

= (80, 239, 242, 132)256

i	 ai	 bi	 Cin	 Borrow?	 Cout	 ai-bi-cin(mod	256)	

0	 234	 132	 0	 (234	<	132)?	 0	 102	

1	 22	 242	 0	 (22	<	242)?	 1	 -220	=	36	

2	 176	 239	 1	 (176	<	239)?	 1	 -64=192	

3	 76	 80	 1	 (76	<	80)?	 1	 -5=251	

4	 2	 0	 1	 (2	<	0)?	 0	 1	

a	-	b	=	(1,	251,	192,	36,	102)256	
										=	8658640742	

CR

Mul<-Precision	Subtrac<on	
Algorithm	

22	

CR

Mul<-Precision	Mul<plica<on	

C	=	A	x	B	mod	N	
(without	Modular	operaAon)	
•  Classical	(School	book)	algorithm	
•  Karatusba	algorithm	
•  Toom-3	algorithm	
•  FFT	

23	

CR

Mul<-precision	Mul<plica<on	
(Classical	Mul<plica<on)	

24	

•  MUL	:	a	=	1234567		
												b	=	76543210	

										base	=	8	bit	(256)	

= (18, 214, 135)256

= (4, 143, 244, 234)256

a	*	b	=		
(0	85	241	247	25	195	102)256	
										=	99447721140070	

CR

Mul<-precision	Mul<plica<on	
(Karatsuba	Mul<plica<on)	

25	

()

llhllhhhlhlh

ll
m

lhlhllhh
m

hh

ll
m

hllh
m

hh

l
m

h

l
m

h

bababababbaa

baBbbaababaBba
baBbabaBbaba

bBbb
aBaa

nmLet
nba

+−−=−−

+−−+++=

+++=×

+=

+=

=

−

))((using

))(()(

)()(

2/
.wordsaryBwithintegerssionmultiprecitwobe,Let

2

2

Karatsuba multiplication converts n bit multiplications into 3 multiplications of n/2 bits
The penalty is an increased number of additions

-

CR

Mul<-precision	Mul<plica<on	
(Karatsuba	Mul<plica<on)	

26	

B = 256;
a = 123456789 = (7, 91, 205, 21)256
b = 987654321 = (58, 222, 104, 177)256

n=4; m=2
ah = (7, 91); al = (205, 21)
a = (7, 91)2562 + (205, 21)

bh = (58, 222); bl = (104, 177)
b = (58, 222)2562 + (104, 177)

ahbh = (1, 176, 254, 234)256
albl = (83, 222, 83, 133)256
ah - bh = -(197, 186)256
al - bl = -(45, 211)256
(ah - bh) (al - bl) = (35, 100, 170, 78)256
ahbl + albh
 = ahbh+ albl - (ah - bh) (al - bl)
 = (50, 42, 168, 33)256

1   176 254 234
 50 42 168 33
 83 222 83 133
1 177 49 20 251 255 83 133

CR

Performing	Modular	Reduc<on	

•  Divide	and	get	remainder	
				(repeated	subtracAon)	
	
AlternaAvely,	we	could	use	Montgomery	
mulAplicaAon	that	will	not	require	modular	
reducAon.	

27	

CR

Montgomery	Mul<plica<on	

28	

c = a x b mod m

No specific benefits this way

Select R = 2x, gcd(R,m) =1,R slightlygreater than m

Use ExtendedEuclideanAlgorithm to find R−1 and m '
s.t R ⋅R−1 −m ⋅m ' =1

Convert multiplicands to Montgomery domain

a = aRmodm

b = bRmodm Note that c = a ⋅b ⋅R−2 modm

The Montgomery multiplier computes

c = a ⋅b ⋅R−1modm

CR

Montgomery’s	Trick	

29	

Montgomery 's trick

1) t = a ⋅b
2) u= (t +((tmod r) ⋅m 'mod r) ⋅m) / r
3) if (u ≥m) return u−m; else return u.

CR

Montgomery’s	Trick	
(why	it	works)	

30	

Montgomery 's trick

1) t = a ⋅b
2) u= (t +((tmodR) ⋅m 'modR) ⋅m) / R
3) if (u ≥m) return u−m; else return u.

• First note that R | t
• ThenR | (t ⋅m '⋅mmodR)
.... this follows because RR−1 −m 'm =1; then takemodR

• Therefore R | (t + t ⋅m '⋅mmodR)
....the division in step 2 is valid

• u ⋅R = t + t ⋅m '⋅mmodR
= t + t ⋅m '⋅m
= t + k ⋅m
= tmodm See google groups for more details

CR

Speeding	RSA	decryp<on	with	CRT	

•  DecrypAon	is	done	as	follows	:		
																							x	=	ya	mod	n	

•  Bob	can	also	decrypt	by	using	CRT	
	 								x	=	ya	mod	p	

																									x	=	ya	mod	q	
							(since	he	knows	the	factors	of	n,	i.e.	p,q)	
•  CRT	turns	out	to	be	much	faster	since	the	size	(in	
bits)	of	p	and	q	is	about	½	that	of	n	

31	

CR

Mul<-precision	libraries		

•  GMP	:	GNU	MulA-precision	library	
•  Make	use	of	Intel’s	SSE/AVX	instrucAons	

– These	are	SIMD	instrucAons	that	have	large	
registers	(128,	256,	512	bit)	

•  Crypto	libraries	
– OpenSSL,	PolarSSL,	NaCL,	etc.	

32	

CR

RSA	Speeds	

33	

CR

RSA	Speeds	

34	

32 Bit ARM Cortex

16 Bit TI Micro-controller

CR

Finding	Primes	

35	

CR

Test	for	Primes	

•  How	to	generate	large	primes?	
–  Select	a	random	large	number	
–  Test	whether	or	not	the	number	is	prime	

•  What	is	the	probability	that	the	chosen	number	is	a	
prime?	
–  Let	π(N)	be	the	number	of	primes	<	N	
–  From	number	theory,	π(N)	≈	N/ln	N	
–  Therefore	probability	of	a	random	number	(<	N)	being	a	
prime	is	1/ln	N	

•  As	N	increases,	it	becomes	increasingly	difficult	to	find	large	
primes	

36	

CR

GIMPS	

•  There	are	infinite	prime	numbers	(proved	by	Euclid)	
•  Finding	them	becomes	increasingly	difficult	as	N	
increases	

•  GIMPS	:	Great	Internet	Mersenne	Prime	Search	
– Mersenne	Prime	has	the	form	2n	–	1	
–  Largest	known	prime	(found	in	2016)	has	22	million	digits	
2274,207,281	−	1	

•  $3000	to	beat	this	J	

37	hPps://en.wikipedia.org/wiki/Largest_known_prime_number	

CR

Primality	Tests	with	Trial	Division	

•  School	book	methods	(trial	division)	
–  Find	if	N	divides	any	number	from	2	to	N-1	
–  find	if	N	divides	any	number	from	2	to	N1/2	

–  Find	if	N	divides	any	prime	number	from	2	to	N1/2	

–  Too	slow!!!		
•  Need	to	divide	by	N-1	numbers	
•  Need	to	divide	by	N1/2	numbers	
•  Need	to	divide	by	(N/lnN)1/2		primes	

–  For	example,	if	n	is	approx	21024,	then		need	to	check	around	2507	
numbers	

•  Need	something	bePer	for	large	primes	
–  Randomized	algorithms	

38	

CR

Randomized	Algorithms	for	
Primality	Tes<ng	

•  Monte-carlo	Randomized	Algorithms	
–  Always	runs	in	polynomial	Ame	
– May	produce	incorrect	results	with	bounded	probability	

–  Yes-based	Monte-carlo	method	
•  Answer	YES	is	always	correct,	but	answer	NO	may	be	wrong	

–  No-based	Monte-carlo	method	
•  Answer	NO	is	always	correct,	but	answer	YES	may	be	wrong	

39	

CR

Finding	Large	Primes	
(using	Fermat’s	Theorem)	

40	

}

)mod1(

){(_

1

FALSEreturn
else

TRUEreturn
naif

Zapick
nprimeis

n
n

≡

←
−

If n is prime, then
is true for any ‘a’

If n is composite
is false but may be true for some
values of a.

For example: n = 221 (13*17)
 and a = 38 then
 38220 mod 221 ≡ 1.

We need to increase our confidence
with more values of a

nan mod11 ≡−

nan mod11 ≡−

CR

Fermat’s	Primality	Test	

•  Increasing	confidence	with	mulAple	bases	

41	

}

}

))(_(
){;1000;0(

0
){(_

PRIMEprobablyreturn

COMPOSITEreturn
FALSEnprimeisif
iiifor

c
ntestprimality

==

++<=

=

CR

Carmichael	Number	

42	

Some composites act as primes.
 Irrespective of the ‘a’ chosen, the test

 passes.

for example Carmichael numbers are composite numbers which
satisfy Fermat’s little theorem irrespective of the value of a.

Eg. 561 = 3 x 11 x 17

nan mod11 ≡−

CR

Strong	probable-primality	test	

•  If	n	is	prime,	the	square	root	of	an-1	is	either	+1	
or	-1	

	
						

43	

b2 ≡1modn
b2 −1≡ modn
(b+1)(b−1) ≡ 0modn
either (b+1) ≡ 0modn or (b−1) ≡ 0modn

let a
n−1
2 = b

CR

Miller-Rabin	Primality	Test	

•  Yes-base	primality	test	for	composites	
•  Does	not	suffer	due	to	Carmichael	numbers	
•  Write	n-1	=	2sd		

–  where	d	is	odd	and	s	is	non-negaAve	
–  n	is	a	composite		if	

44	

ad ≠1modn and (ad)2
r

≠ −1modn
for all numbersr less thans

CR

Proof	of	Miller-Rabin	test	
•  Write	n-1	=	2sd	

	
	
•  Proof:	We	prove	the	contra-posiAve.	We	will	assume	n	to	be	

prime.	Thus,	

45	

sthanlessrnumberallfor
naandna

rdd mod1)(mod1 2 −≠≠

sthanlessrnumbersomefor
naorna

rdd mod1)(mod1 2 −≡≡

CR

Proof	of	Miller-Rabin	test	
Proof:	We	prove	the	contra-posiAve.	We	will	assume	n	to	be	

prime.	Thus	we	prove,	

	
•  Consider	the	sequence	:		 		

–  The	roots	of	x2	=	1	mod	n		is	either	+1	or	-1	
–  In	the	sequence,	if	ad	is	1,	then	all	elements	in	the	sequence	will	be	1	
–  If	ad	is	not	1,	then	there	should	be	some	element	in	the	sequence	

which	is	-1,	in	order	to	have	the	final	element	as	1	
		

46	

sthanlessrnumbersomefor
naorna

rdd mod1)(mod1 2 −≡≡

ad,a2
1d,a2

2 d,a2
3d,!!,a2

s−1d,a2
s d

1 (Fermat ‘s)

CR

Miller-Rabin	Algorithm	
(test	for	composites)	

47	

'compositeis'Otherwise.5
'primeis',1

modbc calculate,1,,1For.4

'primeis',1
modCompute.3

nonzeroarandomatSelect.2
21thatsuchintegeroddanFind.1

i2

nreturnT
nreturncIf

nriT

nreturnbIf
nabT

ZaT
dndT

d
n

s

−=

≡−=

±=

=

∈

=−

!

Input n

CR

Quadra<c	Residues	

•  Example	:	m=13,	square	elements	in	Z13.	
	 	1,4,9,	3,	12,	10,	10,	12,	3,	9,	4,	1	

						The	quadraAc	residues	Z13	are	therefore		
										{1,	4,	3,	9,	10,	12}	

48	

If an element is not a quadratic residue, then it is a quadratic non-residue

quadratic non-residues in Z13 are {2, 5, 6, 7, 8, 11}

a cannot be 0

CR

Legendre	Symbol	

49	

⎪
⎩

⎪
⎨

⎧

−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

pQNRaisaif
pQRaisaif
apif

p
a

mod1
mod1

|0

Given p is an odd prime

CR

Euler’s	Criteria	

50	

1
mod
mod

mod..,when

1

2
)1(2

2
1

2

≡

≡

≡=

≡∈∃

−

−−

px
pxa

pxatsZxQRaisa

p

pp

p

▹

pa
p
a p

mod2
1−

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

A result from Euler

pa

ap
p

mod0

|when

2
1

≡
−

CR

when	Quadra<c	Non	Residue	

51	

paThus

pa

paThus

paso

pasquaring
primeoddanispifevenispnotepaconsider

pxatsexistsZxsuchnoQNRaisa

p

p

p

p

p

p

p

mod1

QRanotisasince,mod1

mod1,

mod1,

1mod:
),1(mod:

mod..,when

2
1

2
1

2
1

2

2
1

1

2
1

2

−≡

≠

±≡

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

≡

−

≡∈

−

−

−

−

−

−

CR

Examples	

52	

pa
p
a p

mod2
1−

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

113mod1213mod5
13mod5

113mod413mod4

13mod4

6

62
113

−≡≡

≡≡
−

QNRais

QRais

215mod715mod7 72
115

−≡≡
−

115mod1415mod14 72
115

−≡≡
−

Euler’s Witness

Euler’s Liar

C
ongruence alw

ays holds w
hen

n is an odd prim
e

C
ongruence m

ay
 or m

ay not hold
w

hen
n is not prim

e

CR

Solovay	Strassen	Primality	Test	

53	

}

)mod(
mod

)0(

compute

11that suchintegerrandomachoose
){(

2
1

COMPOSITEreturnelse
PRIMEpossiblyreturnnyxif

naycompute

COMPOSITEreturnxif
n
ax

n-a a
nASSENSOLOVAYSTR

n

≡

=

=

⎟
⎠

⎞
⎜
⎝

⎛=

≤≤

−

error probability is at most ½

How to compute

Legendre’s symbol

CR

Jacobi	Symbol	
•  Jacobi	Symbol	is	a	generalizaAon	of	the	Legendre	symbol	
•  Let	n	be	any	posiAve	odd	integer	and	a>=0		any	integer.	The	

Jacobi	symbol		is	defined	as:	
	

54	

...ppppn

ionfactorizatprimewithintegerpositiveoddanisSuppose
4321 e
4

e
3

e
2

e
1 ×××=

n

!×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟
⎠

⎞
⎜
⎝

⎛
4321

4321

eeee

p
a

p
a

p
a

p
a

n
a

Then,

T

CR

Jacobi	Proper<es	

55	

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛

≡≡⎟
⎠

⎞
⎜
⎝

⎛−
=⎟

⎠

⎞
⎜
⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛=

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛

⎩
⎨
⎧

±≡−

±≡
=⎟

⎠

⎞
⎜
⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛≡

otherwise
a
n

anif
a
n

n
a

oddisaif
n
t

nn
ataevenisaif

n
b

n
a

n
ab

nif
nif

n

n
b

n
athennbaIf

k
k

4mod3

,.5P

2,2,.4P

.3P

8mod31
8mod112.2P

mod.1P

CR

Compu<ng	Jacobi	

56	

From the theorem

P5, P1, then P2

P5, P1, P5, P1, P3, P2

P5, P1
and 1 is a QR mod 13

CR

Factoring	Algorithms	

57	

CR

Factoriza<on	to	get	the	private	
key	

•  Public	informaAon	(n,	b)	
•  If	Mallory	can	factorize	n	into	p	and	q	then,	

•  She	can	compute	φ(n)	=	(p-1)(q-1)	
•  She	can	then	computethe	private	key	by	finding	a	≡	b-1	mod	φ(n)	

58	

How to factorize n?

CR

Trial	Division	
Fundamental	theorem	of	arithmeAc	

Any	integer	number	(greater	than	1)	is	either	prime	or	a	product	of	prime	
powers	
	
	 	 		

59	

ke
k

eee ppppn !321
321=

prime generation algorithm

Prime factors of n cannot be
greater than ⎣ ⎦n

n = n / p : remove this factor from n

Running Time of algorithm order of π(2n/2)

CR

Pollard	p-1	Factoriza<on	

60	

qpn ×= choose a random integer a(1< a < n).
If gcd(a,n) ≠1, then a is a prime factor.
However, this is most likely not the case.

1

Supposeweselectsome L and compute d=gcd(aL -1,n)
if 1< d < n then we have factored n
d | n and d | (aL −1)
d has to be the prime p or the prime q

2	

If gcd(aL −1,n) = n
This is possible only when p | n and p | aL −1 (or q | n and q | aL −1)
and aL −1> n

3
How to choose L?
No easy way, trial and
error!!
Factorials have a lot of
divisors. So that is a nice
way.
So, take L as a factorial of
some number r.

why aL -1?
since d is prime and d | (aL −1)
aL ≡1modd
ϕ(d) | L => (d −1)k=L
Thus we need to find L which
is some factor of (d −1).

CR

Pollard	p-1	Factoriza<on	

61	

done! are we; offactor prime theis
3repeat andincrement , 1

 of next value with 1 fromagain start ,
1gcdcompute 3

done. are wen, offactor prime a is gcd then this,1gcdif2
21

nelse d
Sr d ifelse

aSndif
, n)-(ad.S

(a, n) > .S
a.S

r!

=

=

←

←

Pollard p-1 factorization for n.

r = 2,3, 4, …..

1.  Will the algorithm terminate?
2.  When will we choose the next value of a? (will we get an infinite loop?)

When r = d-1 then L = r! = (d-1)! = d-1(d-2)! = (d-1)k
(d-1) | L à we will get the gcd(ak(d-1), n) = n or its prime factor.

CR

Pollard	Rho	Algorithm	
•  Form	a	sequence	S1	by	selecAng	randomly	(all	different)	from	

the	set	Zn	

•  Also	assume	we	magically	find	a	
	new	sequence	S2	comprising	of		

•  If	we	keep	adding	elements	to		
S1,	we	will	eventually	find	an	xi	and	xj	(i≠j)	such	that	
When	this	happens,		

62	

!,,,,,1 43210 xxxxxS =

!,,,,,2 43210 xxxxxS =

pxx

pxx

pxx

pxx

pxx

mod

mod

mod

mod

mod

44

33

22

11

00

≡

≡

≡

≡

≡

where

ji xx =

!!.)),gcd((,|

)(|

noffactorafoundWepisnxxalsonp
xxp

ji

ji

−

−

∵

CR

Doing	without	magic	
•  Form	a	sequence	S1	by	selecAng	randomly	(with	

replacement)	from	the	set	Zn	

•  For	every	pair	i,j	in	the	sequence	compute	

•  If	d	>	1	then	it	is	a	factor	of	n	
	

63	

!,,,,,1 43210 xxxxxS =

),gcd((nxxd ji −←

CR

Selec<ng	elements	of	S1	

To	choose	the	next	element	of	S1,	Pollard	suggests	
using		a	funcAon	

				with	requirement	that	the	output	looks	random.	
	
	

64	

nn ZZf →:

Example : nxxf mod1)(2 +=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎩
⎨
⎧

=>
=

−)(0
1

1

00

iii

n

xfxandix
Zfromrandomlychosenisxwherex

S

CR

Example	
•  N=	82123,	x0	=	631,	f(x)	=	x2	+	1	

65	

41)82123,63222gcd(),gcd(103 ==− Nxx A factor of N

Drawback…
Large number of GCD
Computations. 55 gcd
computations in this case

Can we reduce the number
of gcd computations?

This column is just
for understanding.
In reality we will not know this

Given xi mod N, we compute gcds of every pair until we find a gcd greater
than 1

CR

The	Rho	in	Pollard-Rho	
•  N=	82123,	x0	=	631,	f(x)	=	x2	+	1	

66	

pxx ltt mod+=
•  The smallest value of t and l, for which the above congruence holds is t=3, l=7
•  For l=7, all values of t > 3 satisfy the congruence
•  This leads to a cycle as shown in the figure
 (and a shape like the Greek letter rho)

16

11

40

2

5

26 21

32

0
1

3mod ≥= + tpxx ljj

CR

Reducing	gcd	computa<ons	
•  GCD	computaAons	can	be	expensive.	
•  Use	Floyd’s	cycle	detecAon	algorithm	to	reduce	the	number	

of	GCD	computaAons.	

67	

))((
)(

12

1

00

−

−

==

=

∈=

iii

ii

n

yffxy
xfx

Zyxrandomachoose

16

11

40

2

5

26 21

32

0
1

claim : The first time xi = yi mod p occurs when i ≤ t + l

dreturnNyxdIf ii ,0),gcd(>−=

lo
op

This means that we get a collision before x
completing an entire circle

CR

The	first	<me	xi	=	yi	mod	p	occurs	
is	when	i	≤	t	+	l

•  l	is	the	number	of	points	in	the	cycle	
•  t	is	the	smallest	value	of	i	such	that		

68	

xi ≡ yimod p

xi ≡ yimodN
xi ≡ x2imodN
l | (2i− i)
l | i =▹ l(k +1) = i

xi and yi meet at the same point in the cycle
Therefore, yi must have traversed (some) cycles more

consider i =(k +1)l = t + (−tmod l)
≤t + l

(−tmod l)

CR

Expected	number	of	opera<ons	
before	a	collision	

•  Can	be	obtained	from	Birthday	paradox		
				to	be	

69	

p

CR

Congruences	of	Squares	

•  Given	N=p	x	q,	we	need	to	find	p	and	q	
•  Suppose	we	find	an	x	and	y	such	that	
•  Then,	

•  This	implies,	
	

70	

Nyx mod22 ≡

))((|)(| 22 yxyxNyxN +−=− ▹

NyxNyxN factors))(,gcd(or))(,gcd(+−

CR

Example	

•  Consider	N	=	91	

71	

)137(|91
)310)(310(|91

91mod310 22

×

+−

≡

7)42,91gcd(
13)26,91gcd(

2642|91
)834)(834(|91

91mod834 22

=

=

×

−+

≡

7)7,91gcd(
13)13,91gcd(

=

=

So… we can use x and y to factorize N.

Nyx mod22 ≡
But how do we find such pairs?

CR

Another	Example	

•  N	=	1649	

72	

1649mod80
1649mod)20032()4341(

2

2

≡

×≡×

32 and 200 are not perfect squares.
However (32x200 = 6400) = 802

is a perfect square 1649mod20043
1649mod3241

2

2

≡

≡

Thus, it is possible to combine non-squares to form
a prefect square

the examples are borrowed from Mark Stamp (http://cs.sjsu.edu/faculty/stamp/)

CR

Forming	Perfect	Squares	

73	

Recall,	Fundamental	theorem	of	arithmeAc	
Any	integer	number	(greater	than	1)	is	either	prime	or	a	product	of	prime	
powers	
	
	 	 		

ke
k

eee ppppn !321
321=

Thus,	a	number	is	a	perfect	square	if	it	prime	factors	have	even	powers.	
	 	 		 eveniseee ,...,, 321

Thus,	
											32	=	2550							not	a	perfect	square	
											200	=	2352			 not a perfect square
 (32x200) = 2550 x 2352 = 2852 = (2451)2 is a prefect square
	

																			

CR

Dixon’s	Random	Squares	
Algorithm	

1.  Choose	a	set	B	comprising	of	‘b’	smallest	primes.	Add	-1	to	
this	set.	
		(A	number	is	said	to	be	b-smooth,	if	its	factors	are	in	this	set)	

2.  Select	an	r	at	random	
–  Compute	
–  Test	if	y	factors	completely	in	the	set	B.	
–  If	NO,	then	discard.	ELSE	save	(y,	r)	(these	are	called	B-smooth	

numbers)	

3.  	Repeat	step	2,	unAl	we	have	b+1	such	(y,r)	pairs	
4.  Solve	the	system	of	linear	congruencies	

	

74	

Nry mod2=

CR

Example	
•  N	=	1829	
•  b	=	6											B	=	{-1,	2,3,5,7,11,13}	
•  Choose	random	values	of	r,	square	and	factorize	

75	

All numbers are 6-smooth
except 60 and 75.
Leave these and
consider all others

CR

Check	Exponents	
-1	 2	 3	 5	 7	 11	 13	

-65	 1	 0	 0	 1	 0	 0	 1	

20	 0	 2	 0	 1	 0	 0	 0	

63	 0	 0	 2	 0	 1	 0	 0	

-11	 1	 0	 0	 0	 0	 1	 0	

-91	 1	 0	 0	 0	 1	 0	 1	

80	 0	 4	 0	 1	 0	 0	 0	

76	

CR

Check	Exponents	
-1	 2	 3	 5	 7	 11	 13	

-65	 1	 0	 0	 1	 0	 0	 1	

20	 0	 2	 0	 1	 0	 0	 0	

63	 0	 0	 2	 0	 1	 0	 0	

-11	 1	 0	 0	 0	 0	 1	 0	

-91	 1	 0	 0	 0	 1	 0	 1	

80	 0	 4	 0	 1	 0	 0	 0	

77	

Find rows where exponents sum is even
-65, 20, 63, -91

sum	 2	 2	 2	 2	 2	 0	 2	

1829mod9011459
1829mod)1375321()85614342(

22

22

≡

×××××−≡×××

CR

Final	Steps	

78	

1829mod9011459
1829mod)1375321()85614342(

22

22

≡

×××××−≡×××

31591829

31)558,1829gcd(558|1829
59)2360,1829gcd(2360|1829

)9011459)(9011459(|1829

×=

==

==

−+

Thus

▹
▹

CR

State	of	the	Art		
Factoriza<on	Techniques	

•  QuadraAc	Sieve	
–  Fastest	for	less	than	100	digits	

•  General	Number	field	Sieve	
–  Fastest	technique	known	so	far	for	greater	than	100	digits	
–  Open	source	code	(google	GGNFS)	

•  RSA	factoring	challenge	
–  Best	so	far	is	768	bit	factorizaAon	
–  Current	challenges	896	bits	(reward	$75,000),	1024	bit	($100,000)	

79	
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

CR

RSA	Adacks	
	

adacks	that	don’t	require	
factoriza<on	algorithms	

80	

CR

Φ(n)	leaks	

•  If	an	aPacker	gets	Φ(n)		then	n	can	be	
factored	

81	

0)1)((

1)()(

1)(
)1)(1()(
/

2 =++−−

++−=

++−=

−−=

==

npnnp
p
npnn

qppq
qpn

pnqpqn

φ

φ

φ

Solve to get p (a factor of n)

CR

square	roots	of		
1	mod	n	

There	are	two	trivial	and	two	non-trivial	soluAons	for	
The	trivial	soluAons	are	+1	and	-1	

82	

ny mod12 ≡

⎩
⎨
⎧

≡

≡
〈=〉≡

qy
py

ny
mod1
mod1

mod1 2

2
2

By CRT, these congruences
 are equivalent

⎩
⎨
⎧

−≡

≡

py
py

mod1
mod1

⎩
⎨
⎧

−≡

≡

qy
qy

mod1
mod1

qy
py

mod1
mod1

−≡

+≡

qy
py

mod1
mod1

+≡

−≡

To get the non-trivial solutions solve using CRT

CR

Example	
•  n=403	=	13	x	31	
•  To	get	the	non-trivial	soluAons	of																										solve	using	CRT	

	 		

83	

qy
py

mod1
mod1

−≡

+≡

qy
py

mod1
mod1

+≡

−≡

31191403
92403mod)1213831(

403mod)31mod131313mod3131(11

=−

≡⋅−⋅

⋅−⋅ −−

403mod131192: 22 ≡≡Note

ny mod12 ≡

The non-trivial solutions are 92 and 311

What happens when we solve
qy
py

mod1
mod1

+≡

+≡

CR

Decryp<on	exponent	leaks	
•  If	the	decrypAon	exponent	‘a’	leaks,	then	n	can	be	factored	
•  The	aPacker	can	then	compute		

•  Now,	for	any	message	x	≠	0	

84	

)1()()(mod1 −=≡ abnknab φφ

nxab mod11 ≡−

•  APack	Plan,	take	square	root	:		
i.e.,	

nxy
ab

mod2
1−

≡

)1)(1(|

)1(|mod1 22

+−=

−=≡

yyn

ynny

▹

▹

noffactoraisyn)1,gcd(−

However	we	
need		
	
	

to	have	a	non-
trivial	result	

1±≠y

ab

CR

The	Adack	(basic	idea)	

85	

""
4step;2/)evenis(.7
;"disnoffactora",1.6

),1gcd(compute.5
modput.4
messageanychoose.3

2
1Represent.2

1computegiven.1

failurereturnelse
gototttif

exitreturndif
nyd

nxy
x

abt

aba

t

=

≠

−←

=

−
=

−

)1)(1(|
mod0)1(,

mod1
2
1

2
1

1

−+

≡−

≡=
−

yyn
nythus

nxy
ab

1)(
)(mod1

−=

≡

abnk
nab

φ

φ

we assume we know the private
key a

This will only work if y ≠±1 mod n.
If y = ±1 mod n. then goto step 7

Probability of success of the attack is at-least 1/2

CR

Example	

•  N=403,	b=23,	a=47	

86	

)(31)403,310gcd(

311403mod2403mod270
2
540:2

1403mod2403mod540
2

1080:1

210801

270

540

noffactora

xytloop

xytloop

xabt

t

t

=

≡=≡==

≡=≡==

==−=

1403mod9403mod135
2
270:3

1403mod9403mod270
2
540:2

1403mod9403mod540
2

1080:1

910801

135

270

540

≡=≡==

≡=≡==

≡=≡==

==−=

t

t

t

xytloop

xytloop

xytloop

xabt

can’t divide 135 further. failure

CR

Small	Encryp<on	Exponent	
•  In	order	to	improve	efficiency	of	encrypAon,	a	small	

encrypAon	exponent	is	preferred	
•  However,	this	can	lead	to	a	vulnerability	

87	

CR

Small	Encryp<on	Exponent	

88	

Alice	 m3mod	N1	

m
m3mod	N2	

m3mod	N2	

•  Consider, Alice sending the same message x to 3 different people.
•  Each having a different N (say N1, N2, N3)
•  But same public key b (say 3)

Insecure channel

c1

c2

c3

CR

Small	Encryp<on	Exponent	

89	

Alice	 m3mod	N1	

m
m3mod	N2	

m3mod	N2	

•  Consider, Alice sending the same message x to 3 different people.
•  Each having a different N (say N1, N2, N3)
•  But same public key b (say 3)

•  This allows Mallory to snoop in and get 3 ciphertexts

Insecure channel

c1

c2

c3 3
3

3

2
3

2

1
3

1

mod

mod

mod

Nmc
Nmc
Nmc

≡

≡

≡

CR

Small	Encryp<on	Exponent	

•  Thus,	Mallory	can	compute	X	
•  Since	m	<	N1,	m<N2,	m<N3	=>		n	<	(N1	x	N2	x	N3)	
•  Thus,			X1/3=m	

–  i.e.	The	message	can	be	decrypted	

90	

)mod(
mod
mod
mod

321
3

3
3

3

2
3

2

1
3

1

NNNmX
Nmc
Nmc
Nmc

⋅⋅≡〈=〉
⎪
⎩

⎪
⎨

⎧

≡

≡

≡

By CRT

It	is	tempAng	to	have	small	private	and	public	keys,	so	that	encrypAon	or	
decrypAon	may	be	carried	out	efficiently.	However	you	would	do	this	at	

the	cost	of	security!!		

CR

Low	Decryp<on	Exponent	

•  The	aPack	applies	when	the	private	key	a	is	
small,	

•  In	such	a	case	‘a’	can	be	computed	efficiently	

91	

3

4 na <

CR

Par<al	Informa<on	of	Plaintexts	
CompuAng	Jacobi	of	the	plaintext	

92	

oddbemusttherefore,evenis)1)(1(
111gcd Thus,

1))(gcd(andkey public theis
messagethe;ciphertexttheismod

bqp
)))(q-(b, (p-

nb, φb
xynxy b

−−

=

=

≡

oddissince

1

b
n
x

n
x

n
y

n
y

Jacobiconsider

b

⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛

±=⎟
⎠

⎞
⎜
⎝

⎛

thus,	RSA	encrypAon	leaks	the	value	of	the	Jacobi	symbol		 ⎟
⎠

⎞
⎜
⎝

⎛
n
x

CR

Par<al	Informa<on	of	Plaintexts	
first	half	or	second	half?	

•  given	y	=	xbmod	n,		
–  is	it	possible	to	determine	if		
												(0	≤	x	<	n/2)			or	(n/2	≤	x	<	n-1)	

93	

•  We	prove	that	RSA	does	not	leak	this	informaAon	
•  If	there	exists	an	efficient	algorithm	that	can	
determine	if	x	is	in	the	first	or	second	half	then,	
the	enAre	plaintext	can	be	obtained	

first half second half

CR

Binary	Search	Trees	on	x	

94	

1)16(13mod916
1)8(13mod118
1)4(13mod124
0)2(13mod62
0)(13mod3

=≡

=≡

=≡

=≡

==

xHALFx
xHALFx
xHALFx
xHALFx
xHALFx

⎪
⎩

⎪
⎨

⎧

−<≤

<≤
=

1
2

1
2

00
)(

nxnif

nxif
xHALF

Consider this function

example

[0-6.5) [6.5,13)

[0,13)

[0,3.25)

[0,1.625)

[1.625,3.25)

0

0

1

3

CR

Par<al	Informa<on	of	Plaintexts	
(first	or	second	half	proof)	

•  Assume	a	hypotheAcal	oracle	called	HALF	as	follows	

95	

⎪
⎩

⎪
⎨

⎧

−<≤

<≤
=

1
2

1
2

00
),,(

nxnif

nxif
ybnHALF

nxy
nxy
nxy
nxy

nxy

bb

bb

bb

bb

b

mod)16(16
mod)8(8
mod)4(4
mod)2(2

mod

≡⋅

≡⋅

≡⋅

≡⋅

≡

)[
2
,00)(nxyHALF ∈== ▹

)[
2
,
4

1)2(nnxyHALF b ∈== ▹)[
4
,00)2(nxyHALF b ∈== ▹

)[
8
,00)2(2 nxyHALF b ∈== ▹)[

4
,
8

0)2(2 nnxyHALF b ∈== ▹

CR

Example	

96	

1
0
1
0
1
1
1
1
1
0
0

Thus, if we have an efficient function HALF, we can recover
the plaintext message.

hi

n=1457, b=779, y=722

CR

Man	in	the	Middle	Adack	

•  The	process	of	encrypAon	with	a	public	key	
cipher	

97	

Bob sends his public key

Alice encrypts with Bob’s public key
Bob decrypts
with his private
key

CR

Man	in	the	Middle	Adack	

•  The	process	of	encrypAon	with	a	public	key	
cipher	

98	

Bob

sends his public key

Alice encrypts with Mallory’s public key
Bob decrypts
with his private
key

Man in the middle
Intercepts messages

Mallory

sends her public key

Mallory decrypts
with her private
key and re-
encrypts
with Bob’s
public key

CR

Searching	the	Message	Space	

99	

Bob sends his public key

Alice encrypts with Bob’s public key
Bob decrypts
with his private
key

•  Suppose	message	space	is	small,	
– Mallory	can	try	all	possible	messages,	encrypt	
them	(since	she	knows	Bob’s	public	key)	and	
check	if	it	matches	Alice’s	ciphertext	

CR

Bad	Prime	Genera<on	Algorithms	

•  Suppose	the	prime	generaAon	was	faulty	
– So	that,	primes	generated	were	always	from	a	
small	subset	

– Then,	RSA	can	be	broken	
•  Pairwise	GCD	of	over	a	million	RSA	modulii	
collected	from	the	Internet	showed	that		
– 2	in	1000	have	a	common	prime	factor	
	

100	Ron	was	Wrong,	Whit	is	right,	2012	

CR

Discrete	Log	Problem,	ElGamal,		
and	Diffie	Hellman	

101	STINSON	:	chapter	6	

CR

Primi<ve	Elements	of	a	Group	

102	

Gin elements all generates1}-n i 0 : {
enelement th primitive a is If

.order hasit if a as termedis
1 = such that integer smallest theis oforder The

G,Let
.order ofgroupabeLet

i

m

≤≤=

∈

⋅

αα

α

α

αα

α

nelementprimitive
m

n)(G,

}1,2,4,8,3,6,12,11,9,5,10,7{7
,7Let

12orderofgroupaforms),(

}12,,3,2,1{

*
13

*
13

*
13

=

∈

⋅

=

Z
Z

ZConsider !

<7> has order 12
and generates all elements in Z.
Thus, 7 is a primitive element

CR

Discrete	Log	Problem	

103	

}10:{
settheDefine

orderwithgrouptheinelementprimitiveabe
),(

−≤≤=

∈

⋅

ni

nGLet
groupabeGLet

iαα

α

ββ

βα

α oflogarithmdiscretetheaslogDenote
let

),10(integeruniqueanyFor

=

=

−≤≤

a

naa
a

Given α and a, it is easy to compute β
Given α and β it is computationally difficult to determine what a was

CR

ElGamal	Public	Key	Cryptosystem	

104	

•  Fix	a	prime	p	(and	group	Zp)	
•  Let													be	a	primiAve	element	
•  Choose	a	secret	‘a’	and	compute		

pZ∈α

pa modαβ ≡

Private key : Public keys : p,,βα a

Encryption

pxy
pywhere

yyxe
Zkretrandomachoose

k

k
k

p

mod

,mod

),()(

)(sec

2

1

21

β

α

⋅=

=

=

←

Decryption

x
px
px

pyyxd

kaka

kak

a
k

≡

⋅=

⋅=

=

−

−

−

mod)(
mod)(

mod)()(

1

1

1
12

αα

αβ

CR

ElGamal	Example	
•  p	=	2579,	α	=	2		(α	is	a	primiAve	element	mod	p)	
•  Choose	a	random	a	=	765	
•  Compute	β	≡	2765	mod	2579	

105	

Encryp<on	of	message	x	=	1299	
	 	 	choose	a	random	key	k	=	853	
	 	 		y1	=	2853	mod	2579	=	435	

																												y2	=	1299	x	949853	=	2396	

Decryp<on	of	cipher	(435,	2396)	
																																				2396	x	(435765)-1	mod	p	
																																=			1299	

CR

Finding	the	Log	

•  Brute	force	(compute	intensive)	
	 	compute		

	this	would	definitely	work,	but	not	pracAcal	if	p	is	large	
	 	complexity	O(p),	space	complexity	O(1)	

•  Memory	Intensive	
	 	precompute																													(all	values).	Sort	and	store.		

	For	any	given	β	look	up	the	table	of	stored	values.	
	 	complexity	O(1)	but	space	complexity	O(n)	

	
	 106	

pa modαβ ≡
Given α and β it is computationally difficult to determine what a was

......,,, 432 αααα (until you reach β)

......,,, 432 αααα

CR

Shank’s	Algorithm	
(also	known	as	Baby-step	Giant-step)	

107	

pa modαβ ≡

⎡ ⎤pmwhere

Rewrite

=

+= rmqaasa

() p

p
rqm

rmq

mod

mod

ααβ

ααβ

≡

≡
−

We neither know q nor r, so we need to try out several
values for q and r until we find a collision

CR

Shank’s	Algorithm	
(example)	

•  p=	31	and	α=3.	Suppose	β=6.		
•  What	is	a?	

108	

31mod26319
31mod1981

27
9
3

5

4

3

2

≡⋅=

≡=

≡

≡

≡

α

α

α

α

α
⎡ ⎤ 631 ==m 231mod)3(61 =−

31mod326)(
31mod1726)(

2426)(
1226)(
626)(

446

336

226

116

006

≡⋅=

≡⋅=

=⋅=

=⋅=

=⋅=

−

−

−

−

−

αβ

αβ

αβ

αβ

αβcollision

Thus, m=6, q=4, r=1, a= mq+r = 25

Li
st

 1

Li
st

 2

CR

Shank’s	Algorithm	

109	

Create List 1

Create List 2

Find collision

CR

Complexity	of	Shank’s	Algorithm	

110	

O(m)

O(mlog m)

O(m)

O(mlog m)

O(log m)

O(mlogm) ~ O(m) = O(p1/2)

CR

Other	Discrete	Log	Algorithms	

•  Pollard-Hellman	Algorithm	
	 	used	when	n	is	a	composite	

•  Pollard-Rho	Algorithm	
	about	the	same	runAme	as	the	Shank’s	
	algorithm,	but	has	much	less	memory	
	requirements	

111	

na modαβ ≡

CR

Diffie	Hellman	Problem	

112	

	

}10:{
settheDefine

orderwithgrouptheinelementprimitiveabe
),(

−≤≤=

∈

⋅

ni

nGLet
groupabeGLet

iαα

α

abba findandgiven ααα , Computational DH (CDH)

nabcandgiven cba modifdetermine,, ≡ααα
Decision DH (DDH)

CR

Recall…	
Diffie	Hellman	Key	Exchange	

113	

Alice and Bob agree upon a prime p and a generator g.
This is public information

choose a secret a
compute A = ga mod p

choose a secret b
compute B = gb mod p

B A

Compute K = Ba mod p Compute K = Ab mod p

Ab mod p = (ga)b mod p = (gb)a mod p = Ba mod p

CR 114	

