RSA and Public Key Cryptography

Chester Rebeiro
IIT Madras

Ciphers

- Symmetric Algorithms
- Encryption and Decryption use the same key
- i.e. $K_{E}=K_{D}$
- Examples:
- Block Ciphers : DES, AES, PRESENT, etc.
- Stream Ciphers : A5, Grain, etc.
- Asymmetric Algorithms
- Encryption and Decryption keys are different
$-K_{E} \neq K_{D}$
- Examples:
- RSA
- ECC

Asymmetric Key Algorithms

The Key K is a secret
Encryption Key K_{E} not same as decryption key K_{D}
K_{E} known as Bob's public key;
K_{D} is Bob's private key

Advantage : No need of secure key exchange between Alice and

Bob

Asymmetric key algorithms based on trapdoor one-way functions

One Way Functions

- Easy to compute in one direction
- Once done, it is difficult to inverse

Press to lock (can be easily done)

Once locked it is difficult to unlock without a key

Trapdoor One Way Function

- One way function with a trapdoor
- Trapdoor is a special function that if possessed can be used to easily invert the one way

Locked
(difficult to unlock)

Easily Unlocked

Public Key Cryptography (An Anology)

- Alice puts message into box and locks it
- Only Bob, who has the key to the lock can open it and read the message

Mathematical Trapdoor One way functions

- Examples
- Integer Factorization (in NP, maybe NP-complete)
- Given P, Q are two primes
- and $\mathrm{N}=\mathrm{P}^{*} \mathrm{Q}$
- It is easy to compute N
- However given N it is difficult to factorize into P and Q
- Used in cryptosystems like RSA
- Discrete Log Problem (in NP)
- Consider b and g are elements in a finite group and $b^{k}=g$, for some k
- Given b and k it is easy to compute g
- Given b and g it is difficult to determine k
- Used in cryptosystems like Diffie-Hellman
- A variant used in ECC based crypto-systems

Applications of Public key Cryptography

- Encryption

- Digital Signature :
"Is this message really from Alice?"
- Alice signs by 'encrypting' with private key
- Anyone can verify signature by 'decrypting' with Alice's public key
- Why it works?
- Only Alice, who owns the private key could have signed

Applications of Public key Cryptography
 - Key Establishment :

"Alice and Bob want to use a block cipher for encryption. How do they agree upon the secret key"

Alice and Bob agree upon a prime \mathbf{p} and a generator \mathbf{g}. This is public information

$A^{b} \bmod p=\left(g^{a}\right)^{b} \bmod p=\left(g^{b}\right)^{a} \bmod p=B^{a} \bmod p$

RSA

Shamir, Rivest, Adleman (1977)

More Number Theory

Mathematical Background

RSA : Key Generation

Bob first creates a pair of keys (one public the other private)

1. Generate twolarge primes $p, q(p \neq q)$

2. Compute $n=p \times q$ and $\phi(n)=(p-1)(q-1)$
3. Choose a random $b(1<b<\phi(n))$ and $\operatorname{gcd}(b, \phi(n))=1$
4. Compute $a=b^{-1} \bmod (\phi(n))$

Bob's public keyis (n, b)
Bob's private keyis (p, q, a)

Given the private key it is easy to compute the public key

Given the public key it is difficult to derive the private key

RSA Encryption \& Decryption

Encryption
Decryption
$e_{K}(x)=y=x^{b} \bmod n$
where $x \in Z_{n}$
$d_{K}(x)=y^{a} \bmod n$

RSA Example

1. Take two primes $\mathrm{p}=653$ and $q=877$
2. $n=653 \times 877=572681 ; \phi(\mathrm{n})=652 \times 876=571152$
3. Choose public keyb $=13$; note that $\operatorname{gcd}(13,571152)=1$
4. Private key $a=395413=13^{-1} \bmod 571152$

Message $x=12345$
encryption : $y=12345^{13} \bmod 572681 \equiv 536754$
decryption : $\mathrm{x}=536754^{395413} \bmod 572681 \equiv 12345$

Correctness

$$
\text { when } x \in Z_{n} \text { and } \operatorname{gcd}(x, n)=1
$$

Encryption
$e_{K}(x)=y=x^{b} \bmod n$

Decryption
where $x \in Z_{n}$

$$
d_{K}(x)=y^{a} \bmod n
$$

$$
\begin{aligned}
y^{a} & \equiv\left(x^{b}\right)^{a} \bmod n \\
& \equiv\left(x^{a b}\right) \bmod n \\
& \equiv\left(x^{t \phi(n)+1}\right) \bmod n \\
& \equiv\left(x^{t \phi(n)} x\right) \bmod n \\
& \equiv x
\end{aligned}
$$

Correctness

when $x \in Z_{n}$ and $\operatorname{gcd}(x, n) \neq 1$
Since $n=p q, \operatorname{gcd}(x, n)=p$ or $\operatorname{gcd}(x, n)=q$

If	
x	$\equiv x^{a b} \bmod p$
	$\equiv x^{a b} \bmod q$
$=\triangleright x$	$\equiv x^{a b} \bmod n$
$(b y C R T)$	

Assume $\operatorname{gcd}(n, x)=p$
$\Rightarrow p \mid x \Rightarrow p k=x$
LHS : $x \bmod p \equiv p k \bmod p \equiv 0$
$R H S: x^{a b} \bmod p \equiv 0$
$\because \operatorname{gcd}(p, x)=$ pitimplies $\operatorname{gcd}(q, x)=1$
$x^{a b} \bmod q \equiv x^{t \phi(n)+1} \bmod q$

$$
\begin{aligned}
& \equiv x^{t \phi(p) \phi(q)+1} \bmod q \\
& \equiv\left(x^{\phi(q)}\right)^{t \varphi(p)} \cdot x \bmod q \\
& \equiv(1)^{t \varphi(p)} \cdot x \bmod q \equiv x
\end{aligned}
$$

RSA Implementation

$$
\begin{aligned}
& y=x^{c} \bmod n \\
& \text { Algorithm : SQUARE-AND-MULTIPLY }(x, c, n) \\
& c=23=(10111)_{2}
\end{aligned}
$$

RSA Implementation in Software (Multi-precision Arithmetic)

- RSA requires arithmetic in 1024 or 2048 bit numbers
- Modern processors have ALUs that are 8, 16, 32, 64 bit
- Typically can perform arithmetic on 8/16/32/64 bit numbers
- solution: multi-precision arithmetic (gmp library)

```
#define NBITS xxx
#define WORDSIZE xxx
#define MAXDIGITS (NBITS/WORDSIZE)
typedef unsigned long word;
typedef struct{
    word digits[MAXDIGITS];
    int sign;
}bignum_t;
```


Multi-precision Addition

- ADD : $\mathrm{a}=9876543210=(2,76,176,22,234)_{256}$ $b=1357902468=(80,239,242,132)_{256}$
base $=8$ bit (256)

i	a_{i}	b_{i}	$c_{\text {in }}$	$a_{i}+b_{i}+c_{\text {in }}(\bmod 256)$	Carry?	$c_{\text {out }}$
0	234	132	0	110	$(110<234) ?$	1
1	22	242	1	9	$(9<22) ?$	1
2	176	239	1	160	$(160 \leq 176) ?$	1
3	76	80	1	157	$(157 \leq 76) ?$	0
4	2	0	0	2	$(2 \leq 2) ?$	0
$\mathrm{a}+\mathrm{b}$ $=(2,157,160,9,110)$ $=11234445678$						

Multi-Precision Addition Algorithm

```
Algorithm 2: Add : Multi-Precision Addition. The function performs \(r=a+b\). Each input is of size
\(n\) words.
    Input: word \(* a\), word \(* b\), int \(n\)
    Output: word *r
    begin
        carry \(\leftarrow 0\)
        for \(i \in(0,1,2, \cdots n-1)\) do
            \(t \leftarrow a[i]\)
            \(t \leftarrow t+\) carry
            carry \(\leftarrow(t<\) carry \()\)
            \(l \leftarrow t+b[i]\)
            carry \(\leftarrow\) carry \(+(l<t)\)
            \(r[i] \leftarrow l\)
        end
        return \(r\)
    end
```

- The asymptotic complexity of multi-precision addition is \mathcal{O} (MAXDIGITS).
- The algorithm requires MAXDIGITS single precision additions to be performed, where each addition is of WORDSIZE.
- This also requires $2 \times$ MAXDIGITS comparisons as carry is compared with both the operands in each iteration of the loop.

Multi-precision Subtraction

- SUB : $\mathrm{a}=9876543210=(2,76,176,22,234)_{256}$

$$
b=1357902468=(80,239,242,132)_{256}
$$

base $=256$ (8 bit)

i	a_{i}	b_{i}	Cin	Borrow?	$\mathrm{c}_{\text {out }}$	$\mathrm{a}_{\mathrm{i}}-\mathrm{b}_{\mathrm{i}}-\mathrm{c}_{\mathrm{in}}(\bmod 256)$
0	234	132	0	$(234<132) ?$	0	102
1	22	242	0	$(22<242) ?$	1	$-220=36$
2	176	239	1	$(176<239) ?$	1	$-64=192$
3	76	80	1	$(76<80) ?$	1	$-5=251$
4	2	0	1	$(2<0) ?$	0	1

$$
\begin{aligned}
a-b & =(1,251,192,36,102)_{256} \\
& =8658640742
\end{aligned}
$$

Multi-Precision Subtraction Algorithm

```
Algorithm 3: Sub : Multi-Precision Subtraction. The function performs \(r=a-b\). Each input is of
size \(n\) words.
    Input: word \(* a\), word \(* b\), int \(n\)
    Output: word *r
    begin
        borrow \(\leftarrow 0\)
        for \(i \in(0,1,2, \cdots n-1)\) do
            \(r[i] \leftarrow(a[i]-b[i]-\) borrow \()\)
            if \((a[i] \neq b[i])\) then
            borrow \(=(a[i]<b[i])\)
            end
        end
        return \(r\)
end
```


Analysis of Multi-Precision Subtraction

- The asymptotic complexity of multi-precision subtraction is \mathcal{O} (MAXDIGITS).
- The algorithm requires MAXDIGITS subtractions to be performed. Each subtraction is of WORDSIZE.
- This also requires MAXDIGITS comparisons as operands are compared to know the borrow in each iteration of the loop.

Multi-Precision Multiplication

$\mathrm{C}=\mathrm{A} \times \mathrm{B} \bmod \mathrm{N}$
(without Modular operation)

- Classical (School book) algorithm
- Karatusba algorithm
- Toom-3 algorithm
- FFT

Multi-precision Multiplication (Classical Multiplication)

- MUL : a = 1234567
b $=76543210$
base $=8$ bit (256)
$\mathrm{a}^{*} \mathrm{~b}=$
(0 8524124725195 102) 256
= 99447721140070
$=(18,214,135)_{256}$
$=(4,143,244,234)_{256}$

Multi-precision Multiplication (Karatsuba Multiplication)

$$
\begin{aligned}
& \text { Let } a, b \text { be two multiprecision integers with } n \mathrm{~B} \text { - ary words. } \\
& \text { Let } m=n / 2 \\
& \begin{array}{l}
a=a_{h} B^{m}+a_{l} \\
b=b_{h} B^{m}+b_{l} \\
a \times b=\left(a_{h} b_{h}\right) B^{2 m}+\left(a_{h} b_{l}+a_{l} b_{h}\right) B^{m}+a_{l} b_{l} \\
\quad=\left(a_{h} b_{h}\right) B^{2 m}+\left(a_{h} b_{h}+a_{l} b_{l}-\left(a_{h}-a_{l}\right)\left(b_{h}-b_{l}\right)\right) B^{m}+a_{l} b_{l} \\
\operatorname{using}\left(a_{h}-a_{l}\right)\left(b_{h}-b_{l}\right)=a_{h} b_{h}-a_{h} b_{l}-a_{l} b_{h}+a_{l} b_{l}
\end{array}
\end{aligned}
$$

Karatsuba multiplication converts n bit multiplications into 3 multiplications of $n / 2$ bits
The penalty is an increased number of additions

Multi-precision Multiplication (Karatsuba Multiplication)

```
B = 256;
a=123456789=(7, 91, 205, 21)256
b=987654321=(58, 222, 104, 177) 256
```

```
n=4; m=2
a}=(7,91);\mp@subsup{a}{1}{}=(205,21
a=(7, 91)256 + (205, 21)
b
b = (58, 222)2562 + (104, 177)
```

```
a}\mp@subsup{\textrm{h}}{\textrm{h}}{}=(1,176,254,234)25
a,b}\mp@subsup{b}{1}{}=(83,222,83,133)25
ah
a
(ah.b
ahb
    = ahb}\mp@subsup{b}{h}{}+\mp@subsup{a}{1}{}\mp@subsup{b}{1}{}-(\mp@subsup{a}{h}{}-\mp@subsup{b}{h}{})(\mp@subsup{a}{1}{}-\mp@subsup{b}{1}{}
    = (50,42, 168,33)256
```

1	176	254	234				
		50	42	168	33		
				83	222	83	133
1	177	49	20	251	255	83	133

Performing Modular Reduction

- Divide and get remainder (repeated subtraction)

Alternatively, we could use Montgomery multiplication that will not require modular reduction.

Montgomery Multiplication

$$
c=a \times b \bmod m
$$

Select $R=2^{x}, \operatorname{gcd}(R, m)=1, R$ slightly greater than m
Use Extended Euclidean Algorithm to find R^{-1} and m^{\prime}
s.t $\quad R \cdot R^{-1}-m \cdot m^{\prime}=1$

Convert multiplicands to Montgomery domain
$\bar{a}=a R \bmod m$
$\bar{b}=b R \bmod m \quad$ Note that $c=\bar{a} \cdot \bar{b} \cdot R^{-2} \bmod m$
The Montgomery multiplier computes
$\bar{c}=\bar{a} \cdot \bar{b} \cdot R^{-1} \bmod m$

Montgomery's Trick

```
Montgomery's trick
1) \(t=\bar{a} \cdot \bar{b}\)
2) \(u=\left(t+\left((t \bmod r) \cdot m^{\prime} \bmod r\right) \cdot m\right) / r\)
3) if \((u \geq m)\) return \(u-m\); else return \(u\).
```


Montgomery's Trick
 (why it works) Montgomery's trick
 1) $t=\bar{a} \cdot \bar{b}$
 2) $u=\left(t+\left((t \bmod R) \cdot m^{\prime} \bmod R\right) \cdot m\right) / R$
 3) if $(u \geq m)$ return $u-m$; else return u.

- First note that $R \mid t$
- Then $R I\left(t \cdot m^{\prime} \cdot m \bmod R\right)$
....this follows because $R R^{-1}-m^{\prime} m=1$; then take $\bmod R$
- Therefore $R I\left(t+t \cdot m^{\prime} \cdot m \bmod R\right)$
....the division in step 2 is valid
- $u \cdot R=t+t \cdot m^{\prime} \cdot m \bmod R$
$=t+t \cdot m^{\prime} \cdot m$
$=t+k \cdot m$
$=t \bmod m$
See google groups for more details

Speeding RSA decryption with CRT

- Decryption is done as follows :

$$
x=y^{a} \bmod n
$$

- Bob can also decrypt by using CRT

$$
\begin{aligned}
& x=y^{a} \bmod p \\
& x=y^{a} \bmod q
\end{aligned}
$$

(since he knows the factors of n, i.e. p, q)

- CRT turns out to be much faster since the size (in bits) of p and q is about $1 / 2$ that of n

Multi-precision libraries

- GMP : GNU Multi-precision library
- Make use of Intel's SSE/AVX instructions
- These are SIMD instructions that have large registers (128, 256, 512 bit)
- Crypto libraries
- OpenSSL, PolarSSL, NaCL, etc.

RSA Speeds

Table 1: Evaluation of RSA on Intel 64-bit System.

Input Size	Without CRT (Seconds)	With CRT (Seconds)
128	0.000074	0.000022
256	0.000523	0.000299
512	0.001707	0.001155
1024	0.012381	0.010940
2048	0.091174	0.077656

Table 2: Evaluation of RSA on Intel 32-bit System.

Input Size	Without CRT (Seconds)	With CRT (Seconds)
128	0.000730	0.000229
256	0.004576	0.002664
512	0.034216	0.026493
1024	0.278812	0.213975
2048	2.280441	1.908730

RSA Speeds

32 Bit ARM Cortex
Table 3: Evaluation of RSA on LPCXpresso 1347.

Input Size	Without CRT (Seconds)	With CRT (Seconds)
128	5.799000	2.344000
256	37.806000	24.069000
512	326.877000	231.231000

16 Bit TI Micro-controller
Table 4: Execution Time on Varying Input Size on MSP-430

Input Size	Without CRT (Seconds)	With CRT (Seconds)
128	5.06	5.029
256	36.025	33.044
512	260.007	254.13
1024	2011	2028

Finding Primes

Test for Primes

- How to generate large primes?
- Select a random large number
- Test whether or not the number is prime
- What is the probability that the chosen number is a prime?
- Let $\pi(N)$ be the number of primes $<N$
- From number theory, $\pi(N) \approx N / \ln N$
- Therefore probability of a random number (<N) being a prime is $1 / \ln N$
- As N increases, it becomes increasingly difficult to find large primes

GIMPS

- There are infinite prime numbers (proved by Euclid)
- Finding them becomes increasingly difficult as N increases
- GIMPS : Great Internet Mersenne Prime Search
- Mersenne Prime has the form $2^{n}-1$
- Largest known prime (found in 2016) has 22 million digits 2 $274,207,281$ - 1
- $\$ 3000$ to beat this $)$

Primality Tests with Trial Division

- School book methods (trial division)
- Find if N divides any number from 2 to $\mathrm{N}-1$
- find if N divides any number from 2 to $N^{1 / 2}$
- Find if N divides any prime number from 2 to $\mathrm{N}^{1 / 2}$
- Too slow!!!
- Need to divide by $\mathrm{N}-1$ numbers
- Need to divide by $\mathrm{N}^{1 / 2}$ numbers
- Need to divide by $(\mathrm{N} / \mathrm{InN})^{1 / 2}$ primes
- For example, if n is approx 2^{1024}, then need to check around 2^{507} numbers
- Need something better for large primes
- Randomized algorithms

Randomized Algorithms for Primality Testing

- Monte-carlo Randomized Algorithms
- Always runs in polynomial time
- May produce incorrect results with bounded probability
- Yes-based Monte-carlo method
- Answer YES is always correct, but answer NO may be wrong
- No-based Monte-carlo method
- Answer NO is always correct, but answer YES may be wrong

Finding Large Primes (using Fermat's Theorem)

$$
\begin{aligned}
& \text { is_prime }(n)\{ \\
& \text { pick } a \leftarrow Z_{n} \\
& \text { if }\left(a^{n-1} \equiv 1 \bmod n\right) \\
& \text { return TRUE } \\
& \text { else } \\
& \text { return } F A L S E \\
& \} \quad
\end{aligned}
$$

If n is prime, then $a^{n-1} \equiv 1 \bmod n$ is true for any ' a '

If n is composite $a^{n-1} \equiv 1 \bmod n$ is false but may be true for some values of a.

For example: $\mathrm{n}=221$ (13*17)

$$
\text { and } \mathrm{a}=38 \text { then }
$$

$$
38^{220} \bmod 221 \equiv 1
$$

We need to increase our confidence with more values of a

Fermat's Primality Test

- Increasing confidence with multiple bases

```
primality_test(n){
    c=0
    for (i=0;i< 1000;++i){
        if(is_prime(n)== FALSE)
        return COMPOSITE
    }
    return probably PRIME
}
```


Carmichael Number

Some composites act as primes.
Irrespective of the ' a ' chosen, the test $a^{n-1} \equiv 1 \bmod n$ passes.
for example Carmichael numbers are composite numbers which satisfy Fermat's little theorem irrespective of the value of a.

Eg. $561=3 \times 11 \times 17$

Strong probable-primality test

- If n is prime, the square root of $\mathrm{a}^{\mathrm{n}-1}$ is either +1 or -1

$$
\begin{aligned}
& \text { let } a^{\frac{n-1}{2}}=b \\
& b^{2} \equiv 1 \bmod n \\
& b^{2}-1 \equiv \bmod n \\
& (b+1)(b-1) \equiv 0 \bmod n \\
& \text { either }(b+1) \equiv 0 \bmod n \text { or }(b-1) \equiv 0 \bmod n
\end{aligned}
$$

Miller-Rabin Primality Test

- Yes-base primality test for composites
- Does not suffer due to Carmichael numbers
- Write $\mathrm{n}-1=2^{\mathrm{s}} \mathrm{d}$
- where d is odd and s is non-negative
-n is a composite if

$$
\begin{aligned}
& a^{d} \neq 1 \bmod n \text { and }\left(a^{d}\right)^{2^{r}} \neq-1 \bmod n \\
& \text { for all numbersrless thans }
\end{aligned}
$$

Proof of Miller-Rabin test

- Write $\mathrm{n}-1=2^{\mathrm{s}} \mathrm{d}$

$$
\begin{aligned}
& a^{d} \neq 1 \bmod n \text { and }\left(a^{d}\right)^{2^{r}} \neq-1 \bmod n \\
& \text { for all numberr less than } s
\end{aligned}
$$

- Proof: We prove the contra-positive. We will assume n to be prime. Thus,

$$
\begin{aligned}
& a^{d} \equiv 1 \bmod n \text { or }\left(a^{d}\right)^{2^{r}} \equiv-1 \bmod n \\
& \text { for somenumber r less than } s
\end{aligned}
$$

Proof of Miller-Rabin test

Proof: We prove the contra-positive. We will assume n to be prime. Thus we prove,
$a^{d} \equiv 1 \bmod n$ or $\left(a^{d}\right)^{2^{r}} \equiv-1 \bmod n$
for some number rless thans

- Consider the sequence :

$$
a^{d}, a^{2^{1} d}, a^{2^{2} d}, a^{2^{3} d}, \cdots \cdots, a^{2^{s-1} d}, a^{2^{s} d}
$$

- The roots of $x^{2}=1 \bmod n$ is either +1 or -1
- In the sequence, if a^{d} is 1 , then all elements in the sequence will be 1
- If a^{d} is not 1 , then there should be some element in the sequence which is -1 , in order to have the final element as 1

Miller-Rabin Algorithm (test for composites)

Input n
$T 1$. Find an odd integer d such that $n-1=2^{s} d$
$T 2$. Select at random a nonzero $a \in Z_{n}$
T3. Compute $b=a^{d} \bmod n$
If $b= \pm 1$, return' n is prime'
T4. For $i=1, \cdots, r-1$, calculate $\mathrm{c} \equiv \mathrm{b}^{2^{i}} \bmod n$
If $c=-1$, return ' n is prime'
T5. Otherwise return ' n is composite'

- Pr (input=composite | ans=composite)=1
- Pr (ans=prime | input=composite) $1 / 2$
- Pr (input=composite | ans=prime) $\leq 1 / 4$

Quadratic Residues

Definition. Let $a, m \in \mathbb{N}$. Then a is a quadratic residue of m iff $(a, m)=1$ and there is an $x \in \mathbb{Z}$ so that $x^{2} \equiv a(\bmod m)$.

- Example: $\mathrm{m}=13$, square elements in Z_{13}.

```
a cannot be 0
```

$$
1,4,9,3,12,10,10,12,3,9,4,1
$$

The quadratic residues Z_{13} are therefore

$$
\{1,4,3,9,10,12\}
$$

If an element is not a quadratic residue, then it is a quadratic non-residue quadratic non-residues in Z_{13} are $\{2,5,6,7,8,11\}$

Legendre Symbol

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{lr}
0 & \text { if } p \mid a \\
1 & \text { if a is } a Q R \bmod p \\
-1 & \text { if a is a } Q N R \bmod p
\end{array}\right.
$$

Given p is an odd prime

Euler's Criteria

A result from Euler

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p
$$

$$
\begin{aligned}
& \text { when } \text { a is } a Q R, \exists x \in Z_{p} \text { s.t. } a \equiv x^{2} \bmod p \\
& \begin{aligned}
\Rightarrow \triangleright a^{\frac{p-1}{2}} & \equiv x^{2 \frac{(p-1)}{2}} \bmod p \\
& \equiv x^{p-1} \bmod p \\
& \equiv 1
\end{aligned}
\end{aligned}
$$

when Quadratic Non Residue

when a is a $Q N R$, no such $x \in Z_{p}$ exists s.t. $a \equiv x^{2} \bmod p$
consider : $a^{\frac{p-1}{2}} \bmod p \quad$ (note $p-1$ is even, if p is an odd prime)
squaring : $a^{p-1} \bmod p \equiv 1$
so, $\left(a^{\frac{p-1}{2}}\right)^{2} \equiv 1 \bmod p$
Thus, $a^{\frac{p-1}{2}} \equiv \pm 1 \bmod p$
$a^{\frac{p-1}{2}} \neq 1 \bmod p$, since a is not a QR
Thus $a^{\frac{p-1}{2}} \equiv-1 \bmod p$

Examples

Solovay Strassen Primality Test

error probability is at most $1 / 2$

Jacobi Symbol

- Jacobi Symbol is a generalization of the Legendre symbol
- Let n be any positive odd integer and $\mathrm{a}>=0$ any integer. The Jacobi symbol is defined as:

Suppose n is an odd positive integer with prime factorization

$$
\mathrm{n}=\mathrm{p}_{1}^{\mathrm{e}_{1}} \times \mathrm{p}_{2}^{\mathrm{e}_{2}} \times \mathrm{p}_{3}^{\mathrm{e}_{3}} \times \mathrm{p}_{4}^{\mathrm{e}_{4}} \cdots
$$

Then,

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)^{e_{1}} \times\left(\frac{a}{p_{2}}\right)^{e_{2}} \times\left(\frac{a}{p_{3}}\right)^{e_{3}} \times\left(\frac{a}{p_{4}}\right)^{e_{4}} \times \cdots
$$

Jacobi Properties

(P1. If $a \equiv b \bmod n$ then $\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right)$
(P2. $\left(\frac{2}{n}\right)=\left\{\begin{aligned} 1 & \text { if } n \equiv \pm 1 \bmod 8 \\ -1 & \text { if } n \equiv \pm 3 \bmod 8\end{aligned}\right.$
(P3. $\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$
(P4) if a is even, $a=2^{k} t,\left(\frac{a}{n}\right)=\left(\frac{2}{n}\right)^{k}\left(\frac{t}{n}\right)$
(P5) if a is odd,

$$
\left(\frac{a}{n}\right)=\left\{\begin{array}{cc}
-\left(\frac{n}{a}\right) & \text { if } n \equiv a \equiv 3 \bmod 4 \\
\left(\frac{n}{a}\right) \quad \text { otherwise }
\end{array}\right.
$$

Computing Jacobi

$$
\begin{aligned}
& \left(\frac{1001}{9907}\right)=\left(\frac{7}{9907}\right)\left(\frac{11}{9907}\right)\left(\frac{13}{9907}\right) \\
& \left(\frac{7}{9907}\right)=-\left(\frac{9907}{7}\right)=-\left(\frac{2}{7}\right)=-1 \\
& \left(\frac{11}{9907}\right)=-\left(\frac{9907}{11}\right)=-\left(\frac{7}{11}\right)=\left(\frac{11}{7}\right)=\left(\frac{4}{7}\right)=1 . \\
& \left(\frac{13}{9907}\right)=\left(\frac{9907}{13}\right)=\left(\frac{1}{13}\right)=1 . \\
& \left(\frac{1001}{9907}\right)=-1
\end{aligned}
$$

From the theorem
$P 5, P 1$, then $P 2$
P5, P1, P5, P1, P3, P2

P5, P1
and 1 is a QR $\bmod 13$

Factoring Algorithms

Factorization to get the private

key

- Public information (n, b)
- If Mallory can factorize n into p and q then,
- She can compute $\phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$
- She can then computethe private key by finding $a \equiv b^{-1} \bmod \phi(n)$

How to factorize n ?

Trial Division

Fundamental theorem of arithmetic

Any integer number (greater than 1) is either prime or a product of prime powers

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots p_{k}^{e_{k}}
$$

```
def trial_division(n):
    """Re\overline{turn a list of the prime factors for a natural number."""}
    if n< 2:
        return []
    prime_factors = []
    for p - in prime_sieve(int(n**0.5) + 1):
        if p*p > n: break
        while n % p == 0:
            prime_factors.append(p)
            n //= p
    if n>1:
        prime_factors.append(n)
    return prime_factors
        prime generation algorithm
        Prime factors of n cannot be
        greater than }\\sqrt{}{n}
```

Running Time of algorithm order of $\pi\left(2^{\mathrm{n} / 2}\right)$

Pollard p-1 Factorization

$$
n=p \times q
$$

1 choose a random integer $a(1<a<n)$.
If $\operatorname{gcd}(a, n) \neq 1$, then a is a prime factor.
However, this is most likely not the case.

How to choose L?
No easy way, trial and error!!
Factorials have a lot of divisors. So that is a nice way.
So, take L as a factorial of some number r.

Pollard p-1 Factorization

Pollard p-1 factorization for n .
S1. $a \leftarrow 2$
$S 2$. if $\operatorname{gcd}(a, n)>1$, then this gcd is a prime factor of n , we are done.
$S 3$. compute $d \leftarrow \operatorname{gcd}\left(a^{r!}-1, n\right)$
if $d=n$, start again from $S 1$ with next value of a
else if $d=1$, increment r and repeat $S 3$
else d is the prime factor of n; we are done!

$$
r=2,3,4, \ldots \ldots
$$

1. Will the algorithm terminate?
2. When will we choose the next value of a? (will we get an infinite loop?)

When $r=d-1$ then $L=r!=(d-1)!=d-1(d-2)!=(d-1) k$
$(d-1) \mid L \rightarrow$ we will get the $\operatorname{gcd}\left(\mathrm{a}^{\mathrm{k}(\mathrm{d}-1)}, \mathrm{n}\right)=\mathrm{n}$ or its prime factor.

Pollard Rho Algorithm

- Form a sequence S1 by selecting randomly (all different) from the set Z_{n}

$$
S 1=x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, \cdots \bar{x}_{0} \equiv x_{0} \bmod p
$$

- Also assume we magically find a new sequence $S 2$ comprising of

$$
S 2=x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, \cdots \text { where }
$$

- If we keep adding elements to

$$
\begin{aligned}
& \bar{x}_{1} \equiv x_{1} \bmod p \\
& \bar{x}_{2} \equiv x_{2} \bmod p \\
& \bar{x}_{3} \equiv x_{3} \bmod p \\
& \bar{x}_{4} \equiv x_{4} \bmod p
\end{aligned}
$$ S 1 , we will eventually find an x_{i} and $\mathrm{x}_{\mathrm{j}}(\mathrm{i} \neq \mathrm{j})$ such that $x_{i}=x_{j}$ When this happens,

$$
p \mid\left(x_{i}-x_{j}\right)
$$

$\because p \mid$ nalso, $\operatorname{gcd}\left(\left(x_{i}-x_{j}\right), n\right)$ is p. We found a factor of $n!!$

Doing without magic

- Form a sequence S1 by selecting randomly (with replacement) from the set Z_{n}

$$
S 1=x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, \cdots
$$

- For every pair i, j in the sequence compute

$$
d \leftarrow \operatorname{gcd}\left(\left(x_{i}-x_{j}, n\right)\right.
$$

- If $d>1$ then it is a factor of n

Selecting elements of S1

To choose the next element of S1, Pollard suggests using a function $f: Z_{n} \rightarrow Z_{n}$
with requirement that the output looks random.
Example : $f(x)=x^{2}+1 \bmod n$

$$
S 1=\left(\begin{array}{rr}
x_{0} & \text { where } x_{0} \text { is chosen randomly from } Z_{n} \\
x_{i} & i>0 \text { and } x_{i}=f\left(x_{i-1}\right)
\end{array}\right)
$$

Example

- $N=82123, x_{0}=631, f(x)=x^{2}+1$

This column is just for understanding. In reality we will not know this

i	$x_{i} \bmod N$	$\overline{x_{i}}=x_{i} \bmod p$	i	$x_{i} \bmod N$	$\overline{x_{i}}=x_{i} \bmod p$
0	631	16	11	11	14314
1	69670	40	12	75835	5
2	28986	2	13	37782	26
3	69907	5	14	17539	21
4	13166	26	15	65887	32
5	64027	21	16	74990	0
6	40816	32	17	45553	1
7	80802	0	18	73969	2
8	20459	1	19	50210	5
9	71874				26

[^0]Given x_{i} mod N, we compute gcds of every pair until we find a gcd greater than 1
$\operatorname{gcd}\left(x_{3}-x_{10}, N\right)=\operatorname{gcd}(63222,82123)=41 \longleftrightarrow \quad$ A factor of N

The Rho in Pollard-Rho

- $\mathrm{N}=82123, \mathrm{x}_{0}=631, \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+1$

i	$x_{i} \bmod N$	$\overline{x_{i}}=x_{i} \bmod p$
0	631	16
1	69670	11
2	28986	40
3	69907	2
4	13166	5
5	64027	26
6	40816	21
7	80802	32
8	20459	0
9	71874	1

i	$x_{i} \bmod N$	$\overline{x_{i}}=x_{i} \bmod p$
10	6685	2
11	14314	5
12	75835	26
13	37782	21
14	17539	32
15	65887	0
16	74990	1
17	45553	2
18	73969	5
19	50210	26

$$
\bar{x}_{t}=\bar{x}_{t+l} \bmod p
$$

- The smallest value of t and I, for which the above congruence holds is $t=3, t=7$
- For $l=7$, all values of $t>3$ satisfy the congruence
- This leads to a cycle as shown in the figure (and a shape like the Greek letter rho)

$$
\bar{x}_{j}=\bar{x}_{j+l} \bmod p \quad t \geq 3
$$

Reducing gcd computations

- GCD computations can be expensive.
- Use Floyd's cycle detection algorithm to reduce the number of GCD computations.

$$
\begin{gathered}
\text { 으 }\left\{\begin{array}{l}
\text { choose a random } x_{0}=y_{0} \in Z_{n} \\
x_{i}=f\left(x_{i-1}\right) \\
y_{i}=x_{2 i}=f\left(f\left(y_{i-1}\right)\right) \\
\text { If } d=\operatorname{gcd}\left(x_{i}-y_{i}, N\right)>0, \text { returnd }
\end{array}\right.
\end{gathered}
$$

claim : The first time $x_{i}=y_{i} \bmod p$ occurs when $i \leq t+!$
This means that we get a collision before x completing an entire circle

The first time $x_{i}=y_{i} \bmod p$ occurs is when $\mathrm{i} \leq \mathrm{t}+$!

- b is the number of points in the cycle
- t is the smallest value of i such that

$$
x_{i} \equiv y_{i} \bmod p
$$

x_{i} and y_{i} meet at the same point in the cycle
Therefore, y_{i} must have traversed (some) cycles more

$$
\begin{aligned}
& x_{i} \equiv y_{i} \bmod N \\
& x_{i} \equiv x_{2 i} \bmod N \\
& l \mid(2 i-i) \\
& l \mid i=\triangleright l(k+1)=i \\
& \text { consider } i=(k+1) l=t+(-t \bmod l) \\
& \leq t+l
\end{aligned}
$$

Expected number of operations before a collision

- Can be obtained from Birthday paradox to be \sqrt{p}

Congruences of Squares

- Given $N=p \times q$, we need to find p and q
- Suppose we find an x and y such that $x^{2} \equiv y^{2} \bmod N$
- Then,

$$
N\left|\left(x^{2}-y^{2}\right) \Rightarrow N\right|(x-y)(x+y)
$$

- This implies,

$$
\operatorname{gcd}(N,(x-y)) \text { or } \operatorname{gcd}(N,(x+y)) \text { factors } N
$$

Example

- Consider N = 91

$$
\begin{aligned}
& 10^{2} \equiv 3^{2} \bmod 91 \\
& 91 \mid(10-3)(10+3) \\
& 91 \mid(7 \times 13) \\
& \operatorname{gcd}(91,13)=13 \\
& \operatorname{gcd}(91,7)=7
\end{aligned}
$$

So... we can use x and y to factorize N .

$$
x^{2} \equiv y^{2} \bmod N
$$

But how do we find such pairs?

Another Example

- $N=1649$

$$
\left.\begin{array}{l}
41^{2} \equiv 32 \bmod 1649
\end{array} \begin{array}{ll}
42 \text { and } 200 \text { are not perfect squares } \\
43^{2} \equiv 200 \bmod 1649 & \text { However }(32 \times 200=6400)=80^{2} \\
\text { is a perfect square }
\end{array}\right] \begin{aligned}
(41 \times 43)^{2} \equiv(32 \times 200) \bmod 1649 \\
\equiv 80^{2} \bmod 1649
\end{aligned}
$$

Thus, it is possible to combine non-squares to form a prefect square

Forming Perfect Squares

Recall, Fundamental theorem of arithmetic

Any integer number (greater than 1) is either prime or a product of prime powers

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots p_{k}^{e_{k}}
$$

Thus, a number is a perfect square if it prime factors have even powers.

$$
e_{1}, e_{2}, e_{3}, \ldots \text { is even }
$$

Thus,

$$
\begin{aligned}
& 32=2^{5} 5^{0} \quad \text { not a perfect square } \\
& 200=2^{35^{2}} \quad \text { not a perfect square } \\
& (32 \times 200)=2^{5} 5^{0} \times 2^{3} 5^{2}=2^{8} 5^{2}=\left(2^{4} 5^{1}\right)^{2} \quad \text { is a prefect square }
\end{aligned}
$$

Dixon's Random Squares Algorithm

1. Choose a set B comprising of ' b ' smallest primes. Add -1 to this set.
(A number is said to be b-smooth, if its factors are in this set)
2. Select an r at random

- Compute $y=r^{2} \bmod N$
- Test if y factors completely in the set B.
- If NO, then discard. ELSE save (y, r) (these are called B-smooth numbers)

3. Repeat step 2 , until we have $b+1$ such (y, r) pairs
4. Solve the system of linear congruencies

Example

- $N=1829$
- $b=6 \quad B=\{-1,2,3,5,7,11,13\}$
- Choose random values of r, square and factorize
$42^{2}=1764=-65=-1 \cdot 5 \cdot 13(\bmod 1829)$
$43^{2}=20=2^{2} \cdot 5(\bmod 1829)$
$60^{2}=1771=-58=-1 \cdot 2 \cdot 29(\bmod 1829)$
$61^{2}=63=3^{2} \cdot 7(\bmod 1829)$
$74^{2}=1818=-11=-1 \cdot 11(\bmod 1829)$
$75^{2}=138=2 \cdot 3 \cdot 23(\bmod 1829)$
$85^{2}=1738=-91=-1 \cdot 7 \cdot 13(\bmod 1829)$
$86^{2}=80=2^{4} \cdot 5(\bmod 1829)$

All numbers are 6-smooth except 60 and 75. Leave these and consider all others

Check Exponents

	$\mathbf{- 1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1 3}$
-65	1	0	0	1	0	0	1
20	0	2	0	1	0	0	0
63	0	0	2	0	1	0	0
-11	1	0	0	0	0	1	0
-91	1	0	0	0	1	0	1
80	0	4	0	1	0	0	0

Check Exponents

	$\mathbf{- 1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{1 1}$	$\mathbf{1 3}$
-65	1	0	0	1	0	0	1
20	0	2	0	1	0	0	0
63	0	0	2	0	1	0	0
-11	1	0	0	0	0	1	0
-91	1	0	0	0	1	0	1
80	0	4	0	1	0	0	0

Find rows where exponents sum is even
-65, 20, 63, -91

$$
\begin{aligned}
& \text { sum } \begin{array}{l|l|l|l|l|l}
\mathbf{2} & \mathbf{2} & \mathbf{2} & \mathbf{2} & \mathbf{2} & \mathbf{0} \\
\mathbf{2} & \mathbf{2} \\
(42 \times 43 \times 61 \times 85)^{2} \equiv(-1 \times 2 \times 3 \times 5 \times 7 \times 13)^{2} \bmod 1829 \\
1459^{2} \equiv 901^{2} \bmod 1829
\end{array}
\end{aligned}
$$

Final Steps

$(42 \times 43 \times 61 \times 85)^{2} \equiv(-1 \times 2 \times 3 \times 5 \times 7 \times 13)^{2} \bmod 1829$
$1459^{2} \equiv 901^{2} \bmod 1829$

$$
\begin{aligned}
& 1829 \mid(1459+901)(1459-901) \\
& \Rightarrow \triangleright 1829 \mid 2360 \\
& \Rightarrow \operatorname{gcd}(1829,2360)=59 \\
& \Rightarrow 1829 \mid 558 \quad \operatorname{gcd}(1829,558)=31
\end{aligned}
$$

Thus $1829=59 \times 31$

State of the Art Factorization Techniques

- Quadratic Sieve
- Fastest for less than 100 digits
- General Number field Sieve
- Fastest technique known so far for greater than 100 digits
- Open source code (google GGNFS)
- RSA factoring challenge
- Best so far is 768 bit factorization
- Current challenges 896 bits (reward $\$ 75,000$), 1024 bit $(\$ 100,000)$

RSA Attacks

attacks that don't require factorization algorithms

$\Phi(\mathrm{n})$ leaks

- If an attacker gets $\Phi(\mathrm{n})$ then n can be factored

$$
\begin{aligned}
& n=p q \quad q=n / p \\
& \phi(n)=(p-1)(q-1) \\
& =p q-(p+q)+1 \\
& \phi(n)=n-\left(p+\frac{n}{p}\right)+1 \\
& p^{2}-(n-\phi(n)+1) p+n=0
\end{aligned}
$$

Solve to get p (a factor of n)

square roots of $1 \bmod n$

There are two trivial and two non-trivial solutions for $y^{2} \equiv 1 \bmod n$ The trivial solutions are +1 and -1

$$
\begin{array}{cl}
\begin{array}{c}
\text { By CRT, these congruences } \\
\text { are equivalent }
\end{array} \\
y^{2} \equiv 1 \bmod n\langle=\rangle\left\{\begin{array}{l}
y^{2} \equiv 1 \bmod p \\
y^{2} \equiv 1 \bmod q
\end{array}\right. & \left\{\begin{array}{l}
y \equiv 1 \bmod p \\
y \equiv-1 \bmod p
\end{array}\right. \\
\left\{\begin{array}{c}
y \equiv 1 \bmod q \\
y \equiv-1 \bmod q
\end{array}\right.
\end{array}
$$

To get the non-trivial solutions solve using CRT

$$
\begin{array}{ll}
y \equiv+1 \bmod p & y \equiv-1 \bmod p \\
y \equiv-1 \bmod q & y \equiv+1 \bmod q
\end{array}
$$

Example

- $\mathrm{n}=403=13 \times 31$
- To get the non-trivial solutions of $y^{2} \equiv 1 \bmod n$ solve using CRT

$$
\begin{array}{ll}
y \equiv+1 \bmod p & y \equiv-1 \bmod p \\
y \equiv-1 \bmod q & y \equiv+1 \bmod q
\end{array}
$$

$\left(31 \cdot 31^{-1} \bmod 13-13 \cdot 13^{-1} \bmod 31\right) \bmod 403$
$(31 \cdot 8-13 \cdot 12) \bmod 403 \equiv 92$
$403-91=311$
The non-trivial solutions are 92 and 311

What happens when we solve $y \equiv+1 \bmod p$

$$
y \equiv+1 \bmod q
$$

Decryption exponent leaks

- If the decryption exponent ' a ' leaks, then n can be factored
- The attacker can then compute $a b$

$$
a b \equiv 1 \bmod \phi(n) \quad k \phi(n)=(a b-1)
$$

- Now, for any message $x \neq 0$

$$
x^{a b-1} \equiv 1 \bmod n
$$

- Attack Plan, take square root : $y \equiv x^{\frac{a b-1}{2}} \bmod n$

$$
\text { i.e., } \begin{aligned}
y^{2} \equiv 1 \bmod n & \Rightarrow n \mid\left(y^{2}-1\right) \\
& \Rightarrow n \mid(y-1)(y+1)
\end{aligned}
$$

$$
\operatorname{gcd}(n, y-1) \text { is a factor of } n
$$

$$
\begin{aligned}
& \text { However we } \\
& \text { need } \\
& y \neq \pm 1 \\
& \text { to have a non- } \\
& \text { trivial result }
\end{aligned}
$$

The Attack (basic idea)

Probability of success of the attack is at-least $1 / 2$

Example

- $N=403, b=23, a=47$

$$
\begin{array}{ll}
t=a b-1=1080 & x=2 \\
\text { loop } 1: t=\frac{1080}{2}=540 & y \equiv x^{t} \bmod 403=2^{540} \bmod 403 \equiv 1 \\
\text { loop } 2: t=\frac{540}{2}=270 & y \equiv x^{t} \bmod 403=2^{270} \bmod 403 \equiv 311 \\
& \operatorname{gcd}(310,403)=31(\text { a factor of } n) \\
t=a b-1=1080 & x=9 \\
\text { loop } 1: t=\frac{1080}{2}=540 & y \equiv x^{t} \bmod 403=9^{540} \bmod 403 \equiv 1 \\
\text { loop } 2: t=\frac{540}{2}=270 & y \equiv x^{t} \bmod 403=9^{270} \bmod 403 \equiv 1 \\
\text { loop } 3: t=\frac{270}{2}=135 & y \equiv x^{t} \bmod 403=9^{135} \bmod 403 \equiv 1 \\
\text { can't divide } 135 \text { further. failure }
\end{array}
$$

Small Encryption Exponent

- In order to improve efficiency of encryption, a small encryption exponent is preferred
- However, this can lead to a vulnerability

Small Encryption Exponent

Insecure channel

- Consider, Alice sending the same message \times to 3 different people.
- Each having a different N (say $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$)
- But same public key b (say 3)

Small Encryption Exponent

Insecure channel

- Consider, Alice sending the same message \times to 3 different people.
- Each having a different N (say $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$)
- But same public key b (say 3)
- This allows Mallory to snoop in and get 3 ciphertexts

Small Encryption Exponent

By CRT

$$
\left\{\begin{array}{l}
c_{1} \equiv m^{3} \bmod N_{1} \\
c_{2} \equiv m^{3} \bmod N_{2} \\
c_{3} \equiv m^{3} \bmod N_{3}
\end{array}\langle=\rangle X \equiv m^{3} \bmod \left(N_{1} \cdot N_{2} \cdot N_{3}\right)\right.
$$

- Thus, Mallory can compute X
- Since $m<N_{1}, m<N_{2}, m<N_{3}=>n<\left(N_{1} \times N_{2} \times N_{3}\right)$
- Thus, $X^{1 / 3}=m$
- i.e. The message can be decrypted

It is tempting to have small private and public keys, so that encryption or decryption may be carried out efficiently. However you would do this at the cost of security!!

Low Decryption Exponent

- The attack applies when the private key a is small, $a<\frac{\sqrt[4]{n}}{3}$
- In such a case 'a' can be computed efficiently

Partial Information of Plaintexts

Computing Jacobi of the plaintext
$y \equiv x^{b} \bmod n \quad y$ is the ciphertext; x the message
b is the public key and $\operatorname{gcd}(b, \varphi(n))=1$
Thus, $\operatorname{gcd}(b,(p-1)(q-1))=1$
$(p-1)(q-1)$ is even, therefore b must be odd

$$
\begin{aligned}
& \text { consider Jacobi } \\
& \left(\frac{y}{n}\right)= \pm 1 \\
& \left(\frac{y}{n}\right)=\left(\frac{x}{n}\right)^{b}=\left(\frac{x}{n}\right) \\
& \text { since } b \text { is odd }
\end{aligned}
$$

thus, RSA encryption leaks the value of the Jacobi symbol $\left(\frac{x}{n}\right)$

Partial Information of Plaintexts first half or second half?

- given $y=x^{b}$ mod n,
- is it possible to determine if

$$
\underset{\text { first half }}{(0 \leq x<n / 2)} \quad \text { or }(\mathrm{n} / 2 \leq x<\mathrm{n}-1)
$$

- We prove that RSA does not leak this information
- If there exists an efficient algorithm that can determine if x is in the first or second half then, the entire plaintext can be obtained

Binary Search Trees on x

Consider this function

$$
\operatorname{HALF}(x)=\left\{\begin{array}{lr}
0 & \text { if } 0 \leq x<\frac{n}{2} \\
1 & \text { if } \frac{n}{2} \leq x<n-1
\end{array}\right.
$$

example

$$
\begin{array}{ll}
x=3 \bmod 13 & \operatorname{HALF}(x)=0 \tag{0,1.625}\\
2 x \equiv 6 \bmod 13 & \operatorname{HALF}(2 x)=0 \\
4 x \equiv 12 \bmod 13 & \operatorname{HALF}(4 x)=1 \\
8 x \equiv 11 \bmod 13 & \operatorname{HALF}(8 x)=1 \\
16 x \equiv 9 \bmod 13 & \operatorname{HALF}(16 x)=1
\end{array}
$$

Partial Information of Plaintexts (first or second half proof)

- Assume a hypothetical oracle called HALF as follows

$$
2^{b} \cdot y \equiv(2 x)^{b} \bmod n
$$

$$
\operatorname{HALF}(n, b, y)=\left\{\begin{array}{lr}
0 & \text { if } 0 \leq x<\frac{n}{2} \\
1 & \text { if } \frac{n}{2} \leq x<n-1
\end{array}\right.
$$

$$
4^{b} \cdot y \equiv(4 x)^{b} \bmod n
$$

$$
8^{b} \cdot y \equiv(8 x)^{b} \bmod n
$$

$$
16^{b} \cdot y \equiv(16 x)^{b} \bmod n
$$

Example

```
```

Algorithm : Oracle RSA DECRYPTION (n, b, y)

```
```

Algorithm : Oracle RSA DECRYPTION (n, b, y)
external Half
external Half
$k \leftarrow\left\lfloor\log _{2} n\right\rfloor$
$k \leftarrow\left\lfloor\log _{2} n\right\rfloor$
for $i \leftarrow 0$ to k
for $i \leftarrow 0$ to k
do $\left\{\begin{array}{l}h_{i} \leftarrow \operatorname{HALF}(n, b, y) \\ y \leftarrow\left(y \times 2^{b}\right) \bmod n\end{array}\right.$
do $\left\{\begin{array}{l}h_{i} \leftarrow \operatorname{HALF}(n, b, y) \\ y \leftarrow\left(y \times 2^{b}\right) \bmod n\end{array}\right.$
$l o \leftarrow 0$
$l o \leftarrow 0$
$h i \leftarrow n$
$h i \leftarrow n$
for $\boldsymbol{i} \leftarrow \mathbf{0}$ to k
for $\boldsymbol{i} \leftarrow \mathbf{0}$ to k
do $\left\{\begin{array}{l}\text { mid } \leftarrow(h i+l o) / 2 \\ \text { if } h_{i}=1 \\ \text { then } l o \leftarrow \text { mid } \\ \text { else } h i \leftarrow \text { mid }\end{array}\right.$
do $\left\{\begin{array}{l}\text { mid } \leftarrow(h i+l o) / 2 \\ \text { if } h_{i}=1 \\ \text { then } l o \leftarrow \text { mid } \\ \text { else } h i \leftarrow \text { mid }\end{array}\right.$
return ($\lfloor h i\rfloor$)

```
```

return ($\lfloor h i\rfloor$)

```
```

$$
\mathrm{n}=1457, \mathrm{~b}=779, \mathrm{y}=722
$$

h_{i}	i	$l o$	mid	$h i$
1	0	0.00	728.50	1457.00
0	1	728.50	1092.75	1457.00
1	2	728.50	910.62	1092.75
0	3	910.62	1001.69	1092.75
1	4	910.62	956.16	1001.69
1	5	956.16	978.92	1001.69
1	6	978.92	990.30	1001.69
1	7	990.30	996.00	1001.69
1	8	996.00	998.84	1001.69
0	9	998.84	1000.26	1001.69
0	10	998.84	999.55	1000.26
		998.84	999.55	999.55

Thus, if we have an efficient function HALF, we can recover the plaintext message.

Man in the Middle Attack

- The process of encryption with a public key cipher

Bob decrypts with his private key

Man in the Middle Attack

- The process of encryption with a public key cipher

Man in the middle Intercepts messages
\longleftarrow Mallory
sends her public key
Alice encrypts
with Mallory's public key

sends his public key

Mallory decrypts
with her private
key and reencrypts with Bob's public key

Bob decrypts with his private key

Searching the Message Space

- Suppose message space is small,
- Mallory can try all possible messages, encrypt them (since she knows Bob's public key) and check if it matches Alice's ciphertext

Bob sends his public key

Alice encrypts with Bob's public key
Bob decrypts with his private key

Bad Prime Generation Algorithms

- Suppose the prime generation was faulty
- So that, primes generated were always from a small subset
- Then, RSA can be broken
- Pairwise GCD of over a million RSA modulii collected from the Internet showed that
- 2 in 1000 have a common prime factor

Discrete Log Problem, ElGamal, and Diffie Hellman

Primitive Elements of a Group

Let $(G \cdot \cdot)$ be a group of order n.
Let $\alpha \in \mathrm{G}$,
The order of α is the smallest integer m such that $\alpha^{m}=1$ α is termed as a primitive element if it has order n.
If α is a primitive element then

$$
\langle\alpha\rangle=\left\{\alpha^{\mathrm{i}}: 0 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \quad \text { generates all elements in } \mathrm{G}
$$

Consider $Z_{13}^{*}=\{1,2,3, \cdots, 12\}$
$\left(Z_{13}^{*}\right.$, , forms a group of order 12
Let $7 \in Z_{13}^{*}$,
$\langle 7\rangle=\{7,10,5,9,11,12,6,3,8,4,2,1\}$
<7> has order 12
and generates all elements in Z. Thus, 7 is a primitive element

Discrete Log Problem

Let (G, \cdot) be a group
Let $\alpha \in G$ be a primitiveelement in the group with order n Define the set

$$
\langle\alpha\rangle=\left\{\alpha^{i}: 0 \leq i \leq n-1\right\}
$$

```
For any unique integer }a(0\leqa\leqn-1)
    let }\mp@subsup{\alpha}{}{a}=
Denote }a=\mp@subsup{\operatorname{log}}{\alpha}{}\beta\mathrm{ as the discrete logarithm of }
```

Given α and a, it is easy to compute β Given α and β it is computationally difficult to determine what a was

ElGamal Public Key Cryptosystem

- Fix a prime p (and group Z_{p})
- Let $\alpha \in Z_{p}$ be a primitive element
- Choose a secret ' a ' and compute $\beta \equiv \alpha^{a} \bmod p$

```
Public keys : }\alpha,\beta,
```

Private key : a

Encryption
choose a random $(\sec r e t) k \leftarrow Z_{p}$
$e_{k}(x)=\left(y_{1}, y_{2}\right)$
where $y_{1}=\alpha^{k} \bmod p$,

$$
y_{2}=x \cdot \beta^{k} \bmod p
$$

Decryption

$$
\begin{aligned}
d_{k}(x) & =y_{2}\left(y_{1}^{a}\right)^{-1} \bmod p \\
& =x \cdot \beta^{k}\left(\alpha^{k a}\right)^{-1} \bmod p \\
& =x \cdot \alpha^{k a}\left(\alpha^{k a}\right)^{-1} \bmod p \\
& \equiv x
\end{aligned}
$$

ElGamal Example

- $p=2579, \alpha=2(\alpha$ is a primitive element $\bmod p)$
- Choose a random a = 765
- Compute $\beta \equiv 2^{765} \bmod 2579$

Encryption of message $x=1299$
choose a random key k=853
$\mathrm{y}_{1}=2^{853} \bmod 2579=435$
$\mathrm{y}_{2}=1299 \times 949^{853}=2396$
Decryption of cipher $(435,2396)$

$$
\begin{aligned}
& 2396 \times\left(435^{765}\right)^{-1} \bmod p \\
= & 1299
\end{aligned}
$$

Finding the Log

$$
\beta \equiv \alpha^{a} \bmod p
$$

Given α and β it is computationally difficult to determine what a was

- Brute force (compute intensive)
compute $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4} \ldots \ldots$ (until you reach β) this would definitely work, but not practical if p is large complexity $\mathrm{O}(\mathrm{p})$, space complexity $\mathrm{O}(1)$
- Memory Intensive
precompute $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4} \ldots \ldots$ (all values). Sort and store. For any given β look up the table of stored values.
complexity $\mathrm{O}(1)$ but space complexity $\mathrm{O}(\mathrm{n})$

Shank's Algorithm (also known as Baby-step Giant-step)

$$
\begin{aligned}
& \beta \equiv \alpha^{a} \bmod p \\
& \text { Rewrite } a \text { as } a=m q+r \\
& \text { where } \mathrm{m}=\lceil\sqrt{\mathrm{p}}\rceil \\
& \beta \equiv \alpha^{m q} \alpha^{r} \bmod p \\
& \beta\left(\alpha^{-m}\right)^{q} \equiv \alpha^{r} \bmod p
\end{aligned}
$$

We neither know q nor r, so we need to try out several values for q and r until we find a collision

Shank's Algorithm (example)

- $p=31$ and $\alpha=3$. Suppose $\beta=6$.
- What is a?

$$
\begin{aligned}
& m=\lceil\sqrt{31}\rceil=6 \\
& \alpha \equiv 3 \longleftarrow \text { collision } \\
& \alpha^{2} \equiv 9 \\
& \stackrel{-}{\square} \alpha^{3} \equiv 27 \\
& \alpha^{4}=81 \equiv 19 \bmod 31 \\
& \alpha^{5}=19 \cdot 3 \equiv 26 \bmod 31 \\
& \left(3^{-1}\right)^{6} \bmod 31=2 \\
& \beta\left(\alpha^{-6}\right)^{0}=6 \cdot 2^{0}=6 \\
& \beta\left(\alpha^{-6}\right)^{1}=6 \cdot 2^{1}=12 \\
& \stackrel{\sim}{\sim} \\
& \beta\left(\alpha^{-6}\right)^{3}=6 \cdot 2^{3} \equiv 17 \bmod 31 \\
& \beta\left(\alpha^{-6}\right)^{4}=6 \cdot 2^{4} \equiv 3 \bmod 31
\end{aligned}
$$

$$
\text { Thus, } m=6, q=4, r=1, \quad a=m q+r=25
$$

Shank's Algorithm

```
Algorithm 6.1: \(\operatorname{SHANKS}(G, n, \alpha, \beta)\)
1. \(m \leftarrow\lceil\sqrt{n}\rceil\)
2. for \(j \leftarrow 0\) to \(m-1\)
    do compute \(\alpha^{m j}\)
3. Sort the \(m\) ordered pairs \(\left(j, \alpha^{m j}\right)\) with respect to their second coordinates,
    obtaining a list \(L_{1}\)
4. for \(i \leftarrow 0\) to \(m-1\)
    do compute \(\beta \alpha^{-i}\)
5. Sort the \(m\) ordered pairs \(\left(i, \beta \alpha^{-i}\right)\) with respect to their second coordi-
    nates, obtaining a list \(L_{2}\)
6. Find a pair \((j, y) \in L_{1}\) and a pair \((i, y) \in L_{2}\) (i.e., find two pairs having
    identical second coordinates)
7. \(\log _{\alpha} \beta \leftarrow(m j+i) \bmod n\)
```

Create List 1

Create List 2

Find collision

```
7. \(\log _{\alpha} \beta \leftarrow(m j+i) \bmod n\)
```


Complexity of Shank's Algorithm

```
Algorithm 6.1: \(\operatorname{SHANKS}(G, n, \alpha, \beta)\)
1. \(m \leftarrow\lceil\sqrt{n}\rceil\)
2. for \(j \leftarrow 0\) to \(m-1\)
    do compute \(\alpha^{m j}\)
3. Sort the \(m\) ordered pairs \(\left(j, \alpha^{m j}\right)\) with respect to their second coordinates, \(\mathrm{O}(\mathrm{mlog} \mathrm{m})\)
    obtaining a list \(L_{1}\)
4. for \(i \leftarrow 0\) to \(m-1\)
        do compute \(\beta \alpha^{-i}\)
```



```
    \(O(m)\)
    \(\mathrm{O}(\mathrm{m})\)
5. Sort the \(m\) ordered pairs \(\left(i, \beta \alpha^{-i}\right)\) with respect to their second coordi-
    nates, obtaining a list \(L_{2}\)
6. Find a pair \((j, y) \in L_{1}\) and a pair \((i, y) \in L_{2}\) (i.e., find two pairs having
    identical second coordinates)
                                    \(O(\log m)\)
7. \(\log _{\alpha} \beta \leftarrow(m j+i) \bmod n\)
\[
O(m \log m) \sim O(m)=O\left(p^{1 / 2}\right)
\]
```


Other Discrete Log Algorithms

$$
\beta \equiv \alpha^{a} \bmod n
$$

- Pollard-Hellman Algorithm
used when n is a composite
- Pollard-Rho Algorithm about the same runtime as the Shank's algorithm, but has much less memory requirements

Diffie Hellman Problem

Let (G,) be a group

Let $\alpha \in G$ be a primitive element in the group with order n
Define the set

$$
\langle\alpha\rangle=\left\{\alpha^{i}: 0 \leq i \leq n-1\right\}
$$

given α^{a} and α^{b}, find $\alpha^{a b}$
Computational DH (CDH)
given α^{a}, α^{b} and α^{c}, determineif $c \equiv a b \bmod n$
Decision DH (DDH)

Recall...
 Diffie Hellman Key Exchange

Alice and Bob agree upon a prime \mathbf{p} and a generator \mathbf{g}. This is public information

$A^{b} \bmod p=\left(g^{a}\right)^{b} \bmod p=\left(g^{b}\right)^{a} \bmod p=B^{a} \bmod p$

[^0]: Drawback...
 Large number of GCD
 Computations. 55 gcd computations in this case

 Can we reduce the number of gcd computations?

