Side Channel Analysis

Chester Rebeiro IIT Madras

Side Channels

Types of Side Channel Attacks

	Passive Attacks The device is operated largely or even entirely within its specification	Active Attacks The device, its inputs, and/or its environment are manipulated in order to make the device behave abnormally
Non-Invasive Attacks Device attacked as is, only accessible interfaces exploited, relatively inexpensive	Side-channel attacks: timing attacks, power + EM attacks, cache trace	Insert fault in device without depackaging: clock glitches, power glitches, or by changing the temperature
Semi-Invasive Attacks Device is depackaged but no direct electrical contact is made to the chip surface, more expensive	Read out memory of device without probing or using the normal read-out circuits	Induce faults in depackaged devices with e.g. X-rays, electromagnetic fields, or light
Invasive Attacks No limits what is done with the device	Probing depackaged devices but only observe data signals	Depackaged devices are manipulated by probing, laser beams, focused ion beams

Fault Attacks

Fault Attacks

- Active Attacks based on induction of faults
- First conceived in 1996 by Boneh, Demillo and Lipton
- E. Biham developed Differential Fault Analysis (DFA) attacker DES
- Optical fault induction attacks : Ross Anderson, Cambridge University – CHES 2002
- Rowhammer based fault attacks (2016)

CR

A Simple AES Fault Attack

A Simple AES Fault Attack

 $k_0 = c'_0$

Requires 128 faults to recover the complete key can we do better!!

Inducing the Fault

Optical Fault Injection

Clock Glitching

Voltage Glitching

SEAL Lab, IIT Kharagpur

Inducing a Fault in AES

SEAL Lab, IIT Kharagpur

Fault Models

- Bit model : When fault is injected, exactly one bit in the state is altered
 eg. 8823124345 → 8833124345
- Byte model : exactly one byte in the state is altered

eg. 8823124345 → 88<mark>36</mark>124345

- Multiple byte model : faults affect more than one byte
 - eg. 8823124345 → 88<mark>36</mark>1243<mark>33</mark>

Fault injection is difficult.... The attacker would want to reduce the number of faults to be injected

Fault Attack on RSA

RSA decryption has the following operation

 $x = y^a \mod n$

where a is the private key y the ciphertext and x the plain text

Suppose, the attacker can inject a fault in the ith bit of a. Thus she would get two ciphertexts:

The fault free ciphertext $x = y^a \mod n$ The faulty ciphertext $\widetilde{x} = y^{\widetilde{a}} \mod n$

Fault Attack on RSA

a and \tilde{a} differ by exactly 1 bit; the *i*th bit. Thus

$$a - \widetilde{a} = \begin{cases} 2^i & \text{if } a_i = 1\\ -2^i & \text{if } a_i = 0 \end{cases}$$

Now consider the ratio $\frac{x}{\widetilde{x}} = \frac{y^{a}}{y^{\widetilde{a}}} \mod n = y^{a-\widetilde{a}} \mod n$ The attace

Thus,

$$\frac{x}{\widetilde{x}} = \begin{cases} y^{2^{i}} & \text{if } a_{i} = 1\\ y^{-2^{i}} & \text{if } a_{i} = 0 \end{cases}$$

The attacker thus gets 1 bit of a_i. Similar faults on other bits will reveal more information about the private key a_i

CIPHER TEXT

- This difference is propagated and diffused to multiple output bytes of the cipher
- The attacker thus has 2 cipertexts :

 (1) the fault free ciphertext (C)
 (2) the faulty ciphertext (C*)

ANALYSIS

FAULT FREE CIPHER TEX1

A Simple Fault Attack on AES

- Let's assume that the attacker has the capability of resetting a particular line during the AES round key addition.
 (i.e. exactly one bit is reset)
- Attack Procedure
 - 1. Put plaintext to 0s and get ciphertext C
 - Put plaintext to 0s. Inject fault in the ith bit as shown. Get the ciphertext C*
 - 3. If C=C*, we infer $K_i = 1$ If C≠C*, we infer $K_i = 0$
- This techniques requires 128 faults to be injected.
 - difficult,,,, can we do better?

Differential Fault Attack on AES

• Differential characteristics of the AES s-box

DFA on last round of AES (using a single bit fault)

 $C_0 + C_0^* = S(p) + S(p+f)$

Since it is a single bit fault, f can take on one of 8 different values: (00000001), (00000010), (000001000), (000010000),, (10000000)

The above equation on average will have around 8 different solutions for p. Each value of p would give a candidate for k. Thus, there are 8 key candidates.

DFA on last round of AES (using a single bit fault)

- Each bit fault results in 8 potential key values for the byte
- There are 16 key bytes. Thus 16 faults need to be injected.
- In total key space reduces from 2¹²⁸ to 8¹⁶ (ie. 2⁴⁸)
 - A key space search of 2^{48} do-able in reasonable time

DFA on 9th Round of AES (fault in a byte)

- Fault injected after s-box operation in the 9th round.
- It is a byte level fault, thus, the fault 'f' can take on any of 256 values (0, 1, 2,, 255)
- Due to the mix-column, 4 difference equations can be derived

$$2f = S^{-1}(C_{0,0} \oplus K_{0,0}^{10}) \oplus S^{-1}(C_{0,0}^* \oplus K_{0,0}^{10})$$

$$f = S^{-1}(C_{1,3} \oplus K_{1,3}^{10}) \oplus S^{-1}(C_{1,3}^* \oplus K_{1,3}^{10})$$

$$f = S^{-1}(C_{2,2} \oplus K_{2,2}^{10}) \oplus S^{-1}(C_{2,2}^* \oplus K_{2,2}^{10})$$

$$3f = S^{-1}(C_{3,1} \oplus K_{3,1}^{10}) \oplus S^{-1}(C_{3,1}^* \oplus K_{3,1}^{10})$$

19

Solving the Difference Equations

Each equation has the form : $A = B \oplus C$

where, A, B, C are of 8 bits each.

For a uniformly random choice of A, B, and C,

the probability that the above equation is satisfied is $(1/2^8)$ $3f = S^{-1}(C_{3,1} \oplus K_{3,1}^{10}) \oplus S^{-1}(C_{3,1}^* \oplus K_{3,1}^{10})$

The maximum space of (A,B,C) is 2²⁴. Of these values, 2¹⁶ will satisfy the above equation

$$2f = S^{-1}(C_{0,0} \oplus K_{0,0}^{10}) \oplus S^{-1}(C_{0,0}^* \oplus K_{0,0}^{10})$$

$$f = S^{-1}(C_{1,3} \oplus K_{1,3}^{10}) \oplus S^{-1}(C_{1,3}^* \oplus K_{1,3}^{10})$$

$$f = S^{-1}(C_{2,2} \oplus K_{2,2}^{10}) \oplus S^{-1}(C_{2,2}^* \oplus K_{2,2}^{10})$$

Solving the Difference Equations

Each equation has the form : $A = B \oplus C$

where, A, B, C are of 8 bits each.

For a uniformly random choice of A, B, and C,

the probability that the above equation is satisfied is $(1/2^8)$

The maximum space of (A,B,C) is 2²⁴. Of these values, 2¹⁶ will satisfy the above equation

In our case, there are 5 unknowns (4 keys and f) and 4 equations. For uniformly random chosen values of the 5 unknowns, the probability that all 4 equations are satisfied is $p=(1/2^8)^4$.

The space reduction for the 5 variables is therefore from $p(2^8)^5 = 2^{8(5-4)} = 2^8$.

The key space is 2^{32} . From the above, it has reduced to just 2^8 .

Each fault reveals 32 bits of the 10th round key. Thus 4 faults are required to reveal all 128 key bits. The offline search space is 2³². Can we do better?

 $2f = S^{-1}(C_{0,0} \oplus K_{0,0}^{10}) \oplus S^{-1}(C_{0,0}^* \oplus K_{0,0}^{10})$ $f = S^{-1}(C_{1,3} \oplus K_{1,3}^{10}) \oplus S^{-1}(C_{1,3}^* \oplus K_{1,3}^{10})$ $f = S^{-1}(C_{2,2} \oplus K_{2,2}^{10}) \oplus S^{-1}(C_{2,2}^* \oplus K_{2,2}^{10})$ $3f = S^{-1}(C_{3,1} \oplus K_{3,1}^{10}) \oplus S^{-1}(C_{3,1}^* \oplus K_{3,1}^{10})$

DFA on AES with a single fault

- As mentioned previously, 4 faults are required in the 9th round to reveal the entire key
- Instead of the 9th round, suppose we inject the fault in the 8th round

bytes.

before

Remote Timing Attacks on RSA

RSA Decryption in Practice (OpenSSL crypto-lib uses CRT)

1

$$x_{1} \equiv y^{a_{1}} \mod p$$

$$x_{2} \equiv y^{a_{2}} \mod q$$

$$x_{2} \equiv y^{a_{2}} \mod q$$

$$x_{2} \equiv y^{a_{2}} \mod q$$

$$x_{2} \equiv x \mod \phi(p)$$

$$a_{2} \equiv a \mod \phi(q).$$
Compute $q' \equiv q^{-1} \mod p$

$$h = q'(x_{2} - x_{1}) \mod p$$

$$x \equiv x_{1} + h \cdot q$$

$$x_{1} \equiv y^{a_{1}} \mod p$$

$$x \equiv x_{1} + h \cdot q$$

$$x_{1} \equiv y^{a_{2}} \mod p$$

$$x \equiv x_{1} + h \cdot q$$

$$x_{1} \equiv y^{a_{1}} \mod p$$

$$x_{2} \equiv x_{1} + h \cdot q$$

$$x_{1} \equiv y^{a_{1}} \mod p$$

$$x_{2} \equiv x_{1} + h \cdot q$$

$$x_{1} \equiv y^{a_{1}} \mod p$$

$$x_{2} \equiv x_{1} + h \cdot q$$

$$x_{1} \equiv y^{a_{1}} \mod p$$

$$x_{2} \equiv x_{1} + h \cdot q$$

Crypto libraries like the OpenSSL implement multiplication using the Montgomery multiplication

1

Montgomery Multiplication

- Montgomery multiplication changes mod q operations to mod 2^k
 - This is much faster (since mod 2^k is achieved taking the last k bits)
- Computing c ≡ a*b mod q using Montgomery multiplication
 - 1. For the given q, select $R=2^k$ such (R > q) and gcd(R,q) = 1
 - Using Extended Euclidean Algorithm find two integers to compute R⁻¹ and q' such that R.R⁻¹ q.q' = 1
 - 3. Convert multiplicands to their Montgomery domain:

```
A \equiv aR \mod q \qquad B \equiv bR \mod q
```

4. Compute abR mod N using the following steps

```
S = A * B
S = S + (S * q' mod R) * q / R
If (S > q)
S = S - q
return S
```

Requires 3 integer multiplications

5. Perform **S*R⁻¹ mod q** to obtain **ab mod q**

Montgomery Multiplier in the Montgomery Ladder

The final 'if' in Montgomery Multiplication

- Observation Extra reduction step $Pr[ExtraReduction] = \frac{y \mod q}{2R}$ $S = (A * B) R^{-1} \mod q$ If (S > q) then S = S - q
- Consider y to be an integer increasing in value
- As y approaches q,
 Pr[ExtraReduction] increases
- When y is a multiple of q,
 Pr[ExtraReduction] drops
- Extra reductions causes
 execution time to increase

Another timing variation due to Integer multiplications

- 30-40% of OpenSSL RSA decryption execution time is spent on integer multiplication
- If multiplicands have the same number of words n, OpenSSL uses Karatsuba multiplication $O(n^{\log_2 3})$
- If integers have unequal number of words n and m, OpenSSL uses normal multiplication O(nm)

these further cause timing variations...

Summary of Timing Variations

	y < q	y > q
Montgomery Effect	Longer	Shorter
Multiplication Effect	Shorter	Longer

Opposite effects, but one will always dominate

g

Retrieving a bit of q

Assume the attacker has the top i-1 bits of q, High level attack to get the ith bit of q

1. Set
$$y_0 = (q_{l-1}, q_{l-2}, q_{l-3}, \cdots q_{l-i-1}, 0, 0, 0, \cdots)$$

Set $y_1 = (q_{l-1}, q_{l-2}, q_{l-3}, \cdots q_{l-i-1}, 1, 0, 0, \cdots)$

note that if $q_i = 0$, $y_0 \le q < y_1$ if $q_i = 1$, $y_0 < y_1 \le q$

2. Sample decryption time for y₀ and y₁
t₀: DecryptionTime(y₀)
t₁: DecryptionTime(y₁)

3. If
$$|t_1 - t_0|$$
 is large $\rightarrow q_i = 0$ (corresponds to $y_0 \le q < y_1$)
else $q_i = 1$ (corresponds to $y_0 < y_1 \le q$)

What's happening here?

Assume Montgomery multiplier dominates over Integer multiplication

• Case 1: t_1 $y_0 < y_1 \le q$

What's happening here?

Assume Montgomery multiplier dominates over Integer multiplication

• Case $2:t_0$ $y_0 < q \le y_1$ Due to Montgomery – – – **Decryption time** y₀ case y₁ case kq value of y

What's happening here?

Assume Montgomery multiplier dominates over Integer multiplication

• Case $2:t_0$ $y_0 < q \le y_1$ Due to Montgomery – **Decryption time** y₀ case y₁ case kq value of y

What happens when integer multiplier dominates or Montgomery multiplier?

How does this work with SSL?

How do we get the server to decrypt our y?

Normal SSL Session Startup

Result: Encrypted with computed shared master secret

Attacking Session Startup

5. Record time t_{end} Compute $t_{start} - t_{end}$