Side Channel Analysis

Chester Rebeiro
IIT Madras

Side Channels

Types of Side Channel Attacks

	Passive Attacks The device is operated largely or even entirely within its specification	Active Attacks The device, its inputs, and/or its environment are manipulated in order to make the device behave abnormally
Non-Invasive Attacks Device attacked as is, only accessible interfaces exploited, relatively inexpensive	Side-channel attacks: timing attacks, power + EM attacks, cache trace	Insert fault in device without depackaging: clock glitches, power glitches, or by changing the temperature
Semi-Invasive Attacks Device is depackaged but no direct electrical contact is made to the chip surface, more expensive	Read out memory of device without probing or using the normal read-out circuits	Induce faults in depackaged devices with e.g. X-rays, electromagnetic fields, or light
Invasive Attacks No limits what is done with the device	Probing depackaged devices but only observe data signals	Depackaged devices are manipulated by probing, laser beams, focused ion beams

source : Elisabeth Oswald, Univ. of Bristol

Fault Attacks

Fault Attacks

- Active Attacks based on induction of faults
- First conceived in 1996 by Boneh, Demillo and Lipton
- E. Biham developed Differential Fault Analysis (DFA) attacker DES
- Optical fault induction attacks : Ross Anderson, Cambridge University - CHES 2002
- Rowhammer based fault attacks (2016)

Fault Attacks

A Simple AES Fault Attack

A Simple AES Fault Attack

$$
k_{0}=\mathrm{c}_{0}^{\prime}
$$

Requires 128 faults to recover the complete key can we do better!!

Inducing the Fault

Optical Fault Injection

Clock glitching

Clock Glitching

Inducing a Fault in AES

An Internal state of

d55b258cb4b $2929 e 1784$ ed43.15bbf scope

Fault Models

- Bit model : When fault is injected, exactly one bit in the state is altered

$$
\text { eg. } 8823124345 \rightarrow 8833124345
$$

- Byte model : exactly one byte in the state is altered
eg. $8823124345 \rightarrow 8836124345$
- Multiple byte model : faults affect more than one byte

$$
\text { eg. } 8823124345 \rightarrow 8836124333
$$

Fault injection is difficult.... The attacker would want to reduce the number of faults to be injected

Fault Attack on RSA

RSA decryption has the following operation

$$
x=y^{a} \bmod n
$$

where a is the privatekey y the ciphertext and x the plain text

Suppose, the attacker can inject a fault in the $\mathrm{i}^{\text {th }}$ bit of a. Thus she would get two ciphertexts:

The fault free ciphertext $x=y_{\widetilde{a}}^{a} \bmod n$
The faulty ciphertext $\quad \widetilde{x}=y^{\widetilde{a}} \bmod n$

Fault Attack on RSA

a and \widetilde{a} differ by exactly 1 bit; the $i^{\text {th }}$ bit.Thus

$$
a-\widetilde{a}=\left\{\begin{array}{cl}
2^{i} & \text { if } \\
a_{i}=1 \\
-2^{i} & \text { if } a_{i}=0
\end{array}\right.
$$

Now consider the ratio

$$
\frac{x}{\tilde{x}}=\frac{y^{a}}{y^{\widetilde{a}}} \bmod n=y^{a-\widetilde{a}} \bmod n
$$

Thus,

$$
\frac{x}{\widetilde{x}}= \begin{cases}y^{2^{i}} & \text { if } a_{i}=1 \\ y^{-2^{i}} & \text { if } a_{i}=0\end{cases}
$$

The attacker thus gets 1 bit of a_{i}. Similar faults on other bits will reveal more information about the private key a_{i}

What a fault does to a block cipher?

- A fault (generally at the s-box input) creates a difference wrt the fault free encryption
- This difference is propagated and diffused to multiple output bytes of the cipher
- The attacker thus has 2 cipertexts :
(1) the fault free ciphertext (C)
(2) the faulty ciphertext (C^{*})

A Simple Fault Attack on AES

- Let's assume that the attacker has the capability of resetting a particular line during the AES round key addition. (i.e. exactly one bit is reset)
- Attack Procedure

1. Put plaintext to 0 s and get ciphertext C
2. Put plaintext to 0 s. Inject fault in the ith bit as shown. Get the ciphertext C^{*}
3. If $\mathrm{C}=\mathrm{C}^{*}$, we infer $\mathrm{K}_{\mathrm{i}}=1$ If $\mathrm{C} \neq \mathrm{C}^{*}$, we infer $\mathrm{K}_{\mathrm{i}}=0$

- This techniques requires 128 faults to be injected.
- difficult,,,, can we do better?

Differential Fault Attack on AES

- Differential characteristics of the AES s-box

DFA on last round of AES (using a single bit fault)

$$
C_{0}+C_{0}^{*}=S(p)+S(p+f)
$$

Since it is a single bit fault,
f can take on one of 8 different values: (00000001), (00000010), (000001000), (000010000), , (10000000)

The above equation on average will have around 8 different solutions for p. Each value of p would give a candidate for k.

DFA on last round of AES (using a single bit fault)

- Each bit fault results in 8 potential key values for the byte
- There are 16 key bytes. Thus 16 faults need to be injected.
- In total key space reduces from 2^{128} to 8^{16} (ie. 2^{48})
- A key space search of 2^{48} do-able in reasonable time

DFA on $9^{\text {th }}$ Round of AES (fault in a byte)

- Fault injected after s-box operation in the $9^{\text {th }}$ round.
- It is a byte level fault, thus, the fault ' f ' can take on any of 256 values ($0,1,2, \ldots ., 255$)
- Due to the mix-column, 4 difference equations can be derived

$$
\begin{aligned}
& 2 f=S^{-1}\left(C_{0,0} \oplus K_{0,0}^{10}\right) \oplus S^{-1}\left(C_{0,0}^{*} \oplus K_{0,0}^{10}\right) \\
& f=S^{-1}\left(C_{1,3} \oplus K_{1,3}^{10}\right) \oplus S^{-1}\left(C_{1,3}^{*} \oplus K_{1,3}^{10}\right) \\
& f=S^{-1}\left(C_{2,2} \oplus K_{2,2}^{10}\right) \oplus S^{-1}\left(C_{2,2}^{*} \oplus K_{2,2}^{10}\right) \\
& 3 f=S^{-1}\left(C_{3,1} \oplus K_{3,1}^{10}\right) \oplus S^{-1}\left(C_{3,1}^{*} \oplus K_{3,1}^{10}\right)
\end{aligned}
$$

Solving the Difference Equations

Each equation has the form : $A=B \oplus C$
where, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are of 8 bits each.

For a uniformly random choice of A, B, and C, the probability that the above equation is satisfied is $\left(1 / 2^{8}\right)$

$$
\begin{array}{r}
2 f=S^{-1}\left(C_{0,0} \oplus K_{0,0}^{10}\right) \oplus S^{-1}\left(C_{0,0}^{*} \oplus K_{0,0}^{10}\right) \\
f=S^{-1}\left(C_{1,3} \oplus K_{1,3}^{10}\right) \oplus S^{-1}\left(C_{1,3}^{*} \oplus K_{1,3}^{10}\right) \\
f
\end{array}=S^{-1}\left(C_{2,2} \oplus K_{2,2}^{10}\right) \oplus S^{-1}\left(C_{2,2}^{*} \oplus K_{2,2}^{10}\right), ~\left(3 f=S^{-1}\left(C_{3,1} \oplus K_{3,1}^{10}\right) \oplus S^{-1}\left(C_{3,1}^{*} \oplus K_{3,1}^{10}\right) ~ \$\right.
$$ The maximum space of (A, B, C) is 2^{24}. Of these values, 2^{16} will satisfy the above equation

Solving the Difference Equations

Each equation has the form : $A=B \oplus C$
where, A, B, C are of 8 bits each.
For a uniformly random choice of A, B, and C , the probability that the above equation is satisfied is $\left(1 / 2^{8}\right)$

$$
\begin{array}{r}
2 f=S^{-1}\left(C_{0,0} \oplus K_{0,0}^{10}\right) \oplus S^{-1}\left(C_{0,0}^{*} \oplus K_{0,0}^{10}\right) \\
f=S^{-1}\left(C_{1,3} \oplus K_{1,3}^{10}\right) \oplus S^{-1}\left(C_{1,3}^{*} \oplus K_{1,3}^{10}\right) \\
f
\end{array}=S^{-1}\left(C_{2,2} \oplus K_{2,2}^{10}\right) \oplus S^{-1}\left(C_{2,2}^{*} \oplus K_{2,2}^{10}\right), ~\left(S^{-1}\left(C_{3,1} \oplus K_{3,1}^{10}\right) \oplus S^{-1}\left(C_{3,1}^{*} \oplus K_{3,1}^{10}\right)\right.
$$ The maximum space of (A, B, C) is 2^{24}. Of these values, 2^{16} will satisfy the above equation

In our case, there are 5 unknowns (4 keys and f) and 4 equations.
For uniformly random chosen values of the 5 unknowns, the probability that all 4 equations are satisfied is $p=\left(1 / 2^{8}\right)^{4}$.
The space reduction for the 5 variables is therefore from $p\left(2^{8}\right)^{5}=2^{8(5-4)}=2^{8}$.
The key space is 2^{32}. From the above, it has reduced to just 2^{8}.
Each fault reveals 32 bits of the $10^{\text {th }}$ round key.
Thus 4 faults are required to reveal all 128 key bits. The offline search space is 2^{32}.
Can we do better?

DFA on AES with a single fault

- As mentioned previously, 4 faults are required in the $9^{\text {th }}$ round to reveal the entire key
- Instead of the $9^{\text {th }}$ round, suppose we inject the fault in the $8^{\text {th }}$ round

DFA on AES in the $8^{\text {th }}$ round

- A single fault injected in the $8^{\text {th }}$ round will spread to 4 bytes in the $9^{\text {th }}$ round.
- This is equivalent to having 4 faults in each of the 4 columns.
- A single fault can thus be used to determine all key bytes.
- The offline key space is 2^{32} as before

Remote Timing Attacks on RSA

RSA Decryption in Practice (OpenSSL crypto-lib uses CRT)

> xis the message y is the ciphertext a is the secret key $n=p q$

Garner's formula.

$$
\begin{aligned}
& x=\left(x_{1} \cdot p \cdot p^{-1} \bmod q+x_{2} \cdot q \cdot q^{-1} \bmod p\right) \bmod n \\
& \text { from EEA, } \quad p \cdot p^{-1} \bmod q+q \cdot q^{-1} \bmod p=1 \\
& \quad p \cdot p^{-1} \bmod q=1-q \cdot q^{-1} \bmod p \\
& x=x_{1}+\left(x_{2}-x_{1}\right) q \cdot q^{-1} \bmod p
\end{aligned}
$$

Crypto libraries like the OpenSSL implement multiplication using the Montgomery multiplication

Montgomery Multiplication

- Montgomery multiplication changes mod q operations to mod 2^{k}
- This is much faster (since mod 2^{k} is achieved taking the last k bits)
- Computing c $\equiv \mathrm{a} * \mathrm{~b}$ mod qusing Montgomery multiplication

1. For the given q, select $R=2^{k}$ such $(R>q)$ and $\operatorname{gcd}(R, q)=1$
2. Using Extended Euclidean Algorithm find two integers to compute R^{-1} and q^{\prime} such that R. $\mathrm{R}^{-1}-\mathrm{q} \cdot \mathrm{q}^{\prime}=1$
3. Convert multiplicands to their Montgomery domain:

$$
A \equiv a R \bmod q \quad B \equiv b R \bmod q
$$

4. Compute abR mod N using the following steps

$$
\begin{aligned}
& S=A * B \\
& S=S+\left(S * q^{\prime} \bmod R\right) * q / R \\
& \text { If }(S>q) \\
& \quad S=S-q \\
& \text { return } S
\end{aligned}
$$

5. Perform $\mathbf{S}^{*} \mathbf{R}^{\mathbf{- 1}} \bmod \mathbf{q}$ to obtain $\mathbf{a b} \bmod \mathbf{q}$
http://www.hackersdelight.org/MontgomeryMultiplication.pdf

Montgomery Multiplier in the Montgomery Ladder

```
Input: C, Y
Output: yc mod N
exp (c,y) {
    R0=1*RmodNT
    R1 = y * R mod N
    for i=0 to n-1 do
        if ci = 0 then
            R1 = R0 * R1
            RO = RO * RO
        else
            RO = RO * R1
            R1 = R1 * R1
        return (R0 * R }\mp@subsup{}{}{-1}\mathrm{ ) }\longrightarrow\mathrm{ Return to Original domain
}
```


The final 'if' in Montgomery Multiplication

- Observation $\operatorname{Pr}\left[\right.$ ExtraReduction] $=\frac{y \bmod q}{2 R}$
- Consider y to be an integer increasing in value
- As y approaches q, $\operatorname{Pr}[$ ExtraReduction] increases
- When y is a multiple of q , $\operatorname{Pr}[E x t r a$ Reduction] drops
- Extra reductions causes execution time to increase

Another timing variation due to Integer multiplications

- 30-40\% of OpenSSL RSA decryption execution time is spent on integer multiplication
- If multiplicands have the same number of words n , OpenSSL uses Karatsuba multiplication $O\left(n^{\log _{2} 3}\right)$
- If integers have unequal number of words n and m , OpenSSL uses normal multiplication $O(\mathrm{~nm})$
these further cause timing variations...

Summary of Timing Variations

	$\mathrm{y}<\mathrm{q}$	$\mathrm{y}>\mathrm{q}$	
Montgomery Effect	Longer	Shorter	Opposite effects, but one will always dominate
Multiplication Effect	Shorter	Longer	

Retrieving a bit of q

Assume the attacker has the top i-1 bits of q, High level attack to get the $\mathrm{ith}^{\text {th }}$ bit of q

```
1. Set }\mp@subsup{y}{0}{}=(\mp@subsup{q}{l-1}{},\mp@subsup{q}{l-2}{},\mp@subsup{q}{l-3}{},\cdots\mp@subsup{q}{l-i-1}{},0,0,0,\cdots
    Set }\mp@subsup{y}{1}{}=(\mp@subsup{q}{l-1}{},\mp@subsup{q}{l-2}{},\mp@subsup{q}{l-3}{},\cdots\mp@subsup{q}{l-i-1}{},1,0,0,\cdots
    note that
    if }\mp@subsup{q}{i}{}=0,\quad\mp@subsup{y}{0}{}\leqq<\mp@subsup{y}{1}{
    if }\mp@subsup{q}{i}{}=1,\quad\mp@subsup{y}{0}{}<\mp@subsup{y}{1}{}\leq
    2. Sample decryption time for }\mp@subsup{y}{0}{}\mathrm{ and }\mp@subsup{y}{1}{
    to : DecryptionTime( }\mp@subsup{y}{0}{}\mathrm{ )
    t
    3. If }|\mp@subsup{t}{1}{}-\mp@subsup{t}{0}{}|\mathrm{ is large }->\mp@subsup{q}{i}{}=0\quad\mathrm{ (corresponds to }\mp@subsup{y}{0}{}\leqq<\mp@subsup{y}{1}{}\mathrm{ )
        else q}\mp@subsup{q}{i}{}=1\quad(\mathrm{ corresponds to }\mp@subsup{y}{0}{}<\mp@subsup{y}{1}{}\leqq
```


What's happening here?

Assume Montgomery multiplier dominates over Integer multiplication

- Case $1: \mathrm{t}_{1} \quad y_{0}<y_{1} \leq q$

What's happening here?

Assume Montgomery multiplier dominates over Integer multiplication

- Case 2: $\mathrm{t}_{0} \quad y_{0}<q \leq y_{1}$

Due to Montgomery - - -

What's happening here?

Assume Montgomery multiplier dominates over Integer multiplication

- Case 2: $\mathrm{t}_{0} \quad y_{0}<q \leq y_{1}$

Due to Montgomery - - -

What happens when integer multiplier dominates or Montgomery multiplier?

How does this work with SSL?

How do we get the server to decrypt our y?

Normal SSL Session Startup

Result: Encrypted with computed shared master secret

Slides from Boneh's talk

Attacking Session Startup

