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Recall : MACs
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MACs allow Bob to be certain that
* the message has originated from Alice
* the message was not tampered during communication

MAC cannot
» prevent Bob from creating forgeries (i.e., messages in the name of Alice)

 cannot prove Authenticity to someone without sharing the secret key K

Digital Signatures solve both these problems



Digital Signatures

* Atoken sent along with the message that achieves
— Authentication
— Non-repudiation

— Integrity
* Based on public key cryptography



Public key Certificates

oTA Important application of digital signatures

Bob’s Certificate{
Bob’s public key in plaintext
Signature of the certifying authority
other information

To communicate with Bob, Alice gets his public key from a trusted authority (TA)
A trusted authority could be a Government agency, Verisign, etc.

A signature from the TA, ensures that the public key is authentic.



Digital Signature

y = digital signature

. Alice’s S Si g,
Private Key

(x,y)

f‘ Everyone Else

TRUE / FALSE

Alice’s

B unsecure channel
Message

x = “Attack at Dawn!!”

Signing Function

y = sig,(x)

Input : Message (x) and Alice’s private key
Output: Digital Signature of Message

ver, |k——

Public Key

Verifying Function

ver,(x, y)

Input : digital signature, message

Output : true or false
true if signature valid
false otherwise



Digital Signatures (Formally)

Definition : A signature scheme is a five-tuple (P, A, X, 8, V), where
the following conditions are satisfied:

1. P is a finite set of possible messages

2. A is a finite set of possible signatures

3. X, the keyspace, is a finite set of possible keys

4. For each K € X, there is a signing algorithm sigy € S and a corre-
sponding verification algorithm verg € V. Each sigg : P — A and
verg : P x A — {true, false} are functions such that the following
equation is satisfied for every message * € P and for every signature
y € A:

true ify = sigg(z)

false ify # sigg(z).
A pair (z,y) with z € P and y € A is called a signed message.

verg(z,y) = {




Forgery

- digital signature

Forgery
Algorithm (x, y)

Alice’s

— unsecure channel Public Key

If Mallory can create a valid digital signature such that ver,(x, y) = TRUE
for a message not previously signed by Alice, then the pair (x, y) forms a

forgery



Security Models for Digital Signatures

Goals of Attacker

Total break:
Mallory can determine Alice’s private key
(therefore can generate any number of signed messages)

Selective forgery:
Given a message x, Mallory can determine y, such
that (x, y) is a valid signature from Alice

|aA97 A} noyi@

Existential forgery:

Mallory is able to create y for some x, such that
(x, y) is a valid signature from Alice



Security Models for Digital Signatures

Assumptions
Weak

(needs a strong attacker)

Key-only attack :
Mallory only has Alice’s public key
(i.e. only has access to the verification function, ver)

Known-message attack :
Mallory only has a list of messages signed by Alice
(X1, Y1), (Xp, Y2)s (X3, ¥3), (Xg, V4), oo
Chosen-message attack :

Mallory chooses messages X;, X,, X3, «....... and tricks
Alice into providing the corresponding signaturesy,, y,, Y3
(resp.)

Strong



First Attempt making a digital

b,n public
a, p,q private

n=pgqg, a=b'mod¢(n)

signature (using RSA

sig(X)1
y=x‘modn

(x,)

return (x,y)

X is the message here
and (x, y) the signature

ver(x, y){
if (x = y" modn) return TRUE
else return FALSE
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A Forgery for the RSA signhature
(First Forgery)

sig(X)1
y=x‘modn

return (x,y)

b,n  public
a, p,q private
n=pq; a=b-1modgn)

(x,)

very (X, y){

Jorgery(){
select a random y

compute x = y” mod n

return (x,y)

else return FALSE

if (x = y" modn) return TRUE

Key only, existential forgery
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Second Forgery

# ‘

Suppose Alice creates signatures of two messages x, and x,

Y =sig(x)) = y, =x; modn

Y, =sig(x,) — y, =x;, modn

(X, )
(X5,¥,)

forgery

(x,x,modn,y y, modn) is a forgery

_ wa_a
Wy, =x'x; modn

Mallory can use the multiplicative property of RSA to create a

Known message, existential forgery
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RSA Digital Signatures

Incorporate a hash function in the scheme to prevent forgery

sig(x){
z = h(x)

b,n  public

a, p,q private

(x,)

y=zmodn

return (x,y)

X is the message here, (X, y) the signature

and h is a hash function

if (z= y"modn) return TRUE
else return FALSE
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How does the hash function help?

Preventing the First Forgery

Jorgery(){
select a random y

compute z'= y" modn

compute I° preimage: xst. z'= h(x)|

return (x,y)

;

Forgery becomes equivalent to the first preimage attack on the
hash function
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How does the hash function help?

Preventing the Second Forgery

(x,x, modn, y,y, modn) is difficult
V.Y, = h(x)"h(x,) modn

= x,“x, modn

creating such a forgery is unlikely



How does the hash function help?

Another Forgery prevented

forgery(x, y){
compute h(x)

compute II"" preimage: find x'st. h(x)=h(x') and x = x'

return (x',y)

;

Given a valid signature (x,y) find (x’,y)

creating such a forgery is equivalent to solving the 2" preimage problem of the hash
functionw
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ElGamal Signature Scheme

* 1985

e Variant adopted by NIST as the DSA
(DSA: standard for digital signature algorithm)

* Based on the difficult of the discrete log problem

17



E

|Gamal Signing

Initialization

Choose a large prime p

Let aEZ; bea primitive element
Choosea (O<as=p-1)
Compute £ =a“modp

Public Parameters : p, a,

Private key : a

Signing Message x

sig(x){
select a secret random k

y=a" mod p
d=(x-ay)k” modp-1

y=(7,9)
return (x,y)

st.ged(k,p-1)=1| The use of a random secret k for every
signature makes EIGamal non-deterministic
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ElIGamal Verifying

Initialization

Choose a large prime p

Let aEZ; bea primitive element
Choosea (O<as=p-1)
Compute £ =a“modp

Public Parameters : p, a,

Private key : a

Verifying Signature (x,v)

ver(x,(y,0)){
compute t, = o mod p

compute t, = 37 y° mod p

if (t1 = tz)
return TRUE
else

return FALSE
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4‘ Initialization
Choose a large prime p
_Signing Message x Let aEZ; bea primitive element
sig(x){ Choosea (0<as<p-1) ver(x,(y,0))1
select a secret random k& o
) Compute S = amodp compute t, =ca” mod p
y=a" mod p compute t, = 37y’ mod p
d=(x-ay)k"' modp-1 Public Parameters : p, a, if (t,=t,) return TRUE
y=(7,9) Private key : a else return FALSE
return (x,y) )
j
First note that
correctness ay +ko =xmod(p~1) if the signature is valid, t; = t,
t, ="y’ mod p t,=a’ modp
=(a") - (")’ mod p
= mod p
=" modp




Signature of message x = 100

k=213 (chosen randomly)
k™' mod p-1=431
y =a* mod p
=2*" mod 467
=29
d0=(x-ay)k" modp-1
=(100-2-29)43 1mod 466
=51

Example

p =467

a=2

a=127

f=a“modp
=2"""mod 467
=132

Verifying

B7y° mod p =132%29° mod 467 =189
a*mod p =2""mod p =189
TRUE
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Security of EIGamal Signature Scheme
(against Selective forgery)

Given an x, Mallory needs to find (y,0) such that ver(x,(y,0))=TRUE

Attempt 1
Choose a value for , then try to compute 8 s.t. 7y’ = mod p This is the intractable
6 =loga" p” discrete log problem
Attempt 2
Choose a value for &, then try to compute y s.t. 87y’ =" mod p

This is not related to the discrete log problem. There is no known solution for this.

Attemp
Choose value for yandd simultaneously, s.. f7y7° =" mod p

No way known.
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Security of EIGamal Signature Scheme
(against Existential forgery)

Mallory needs to findan (x, (y,0d)) such that ver(x,(y,0))=TRUE

The one-parameter forgery (choose some i O<isp- 2).\
form y=a'fmodp

0 =-ymod(p-1)

x =idmod(p-1).
then, ver(x,(y,0))=TRUE
a* =y’ modp
RHS = /(¢! B)° mod p

= /3y+6ai6 mOdp

forgery

AN

\,
b

ay+ad aié

=q mod p

proof

ay-ay+io

= mod p

= o mod p

\ =o' modp=LHS y




Security of EIGamal Signature Scheme
(against Existential forgery)

Mallory needs to findan (x, (y,0d)) such that ver(x,(y,0))=TRUE

The two-parameter forgery

-
choose some i, j O=i,j=p-2;gcd(j,p-1) =ﬂ

form y=a'B’ mod p
S =-y "' mod(p-1)

forgery

x = yij " mod(p-1).
\then, ver(x,(y,0))=TRUE

Prevent Existential Forgeries by hashing the message

24



Improper use of
ElIGamal’s Signature Scheme

1. Whatif kis not a secret?

sig(x){
if gcd(y, p-1)=1 then selectka secret random &
secret a can be computed as follows 7=a modp
L d=(x—ay)k"' modp-1
a=(x-ko)y” mod(p-1). = (1.0)
return (x,y)
j

The secret key ‘@’ is retrieved and Mallory can create many forgeries

25



Improper use of
ElIGamal’s Signature Scheme

2. What if kis reused?

Lets say we have two different messages x, and x, signed with the same k

The signatures are (y,0,) and (y,0,) then, sig(x){

select a secret random k

B75° = a®' (mod p)

y=a" mod p
d=(x—ay)k" modp-1
874’ = a®* (mod p). y=(7,0)
return (x,
dividing } (o)
a2 = 4% =% (mod p).

Representing in terms of a

a1~ %2 = F(01=32) (mod p),

=>
21— 29 = k(8 — 02) (mod p— 1).
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Improper use of ElGamal’s Signature Scheme

Ty — Ty = k((‘i] — (52) (mod p— I)

Now letd = ged(d; — dy,p— ). Sinced | (p— 1) and d | (§; — d2), it follows
thatd | (z; — z2). Define

xr

;_ T1— T2 ,_51—(52 p—1
=—7 b — 3 p’::—d .

Then the congruence becomes:

&' = kd’ (mod p').
Since ged (47, p') = 1, we can compute

€= (d")"! mod p.
Then value of & is determined modulo p’ to be

k = 2'¢ mod p'.
This yields d candidate values for &:
k= z'e+ip’ mod (p—1)

for some i, 0 < i < d — 1. Of these d candidate values, the (unique) correct one
can be determined by testing the condition

v = o (mod p). 27



ElGamal Sighature Length

* Generally p is a prime of length 1024 bits
* The signature comprises of (y,6) which is of length 2048 bits

Schnorr’s Signature Scheme is a modification of the ElIGamal
signature scheme with signatures of length around 320 bits

28



Schnorr Group

Let pbealarge prime and Z; the corresponding multiplicative group
Selectanother prime g (< p) such that p =1modg

ie.ql(p-1) or p=gr+1
Choose a random 4/ in the range 1<h < p s.t.

h" =1mod p
This 4" isthe generator of asubgroup of order g

note h” =1mod p
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Schnorr Group and Discrete Log

When p is used, best known technique to solve discrete log is index-
calculus

For a 1024 bit prime, the complexity of index calculus is approx 28°

In the subgroup q, the best attack is pollard-rho which has a birthday
paradox complexity.

Thus a subgroup of size 22160 will provide the same level of security

30



DSA (Digital Signature Standard)

Initialization
Choose a large prime p (1024 bit)

Choose another prime ¢ (160 bit) st. g | p -1
Find « of order g (« creates a subgroup of order q)

Choosea (0<a=g-1)
Compute S =a“modp

aP-1Yamod o)
Public Parameters : p, g, a,

Private key : a




DSA (Signhing Function)

Initialization
Choose a large prime p (1024 bit)

Choose another prime g (160 bit) s.t. q| p -1
Find « of order g (« creates a subgroup of order q)

Choosea (0<a=g-1)
Compute S =a“modp

Public Parameters : p, g, a,

Private key : a

Signing Message x

sig(x){
select a secret random £k s.t. gcd(k,q) =1 The use of a random secret k for every
y = (" mod p)modgq signature makes EIGamal non-deterministic
O = (SHA(x) + ay)k™ mod g

y=(7,9)
return (x,y)
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DSA (Verifying Function)

Initialization

Choose a large prime p (1024 bit)

Choosea (0<a=g-1)
Compute S =a“modp

Choose another prime g (160 bit) st. g | p -1

Find « of order g (« creates a subgroup of order q)

Public Parameters : p, g, a,
Private key : a

Signing Message x

sig(0){
select a secret random k s.t. gcd(k,q) =1

y =(a* mod p)modg
O = (SHA(x) + ay)k™ mod g

y=(7,9)
return (x,y)

Verifying Signature

ver(x,(y,0)){
compute w= 03" modg
compute t, =w-SHA(x)mod g
compute t, = w+y mod g
compute v =(a" - B mod p)mod g
if wv=ymodq) return TRUE
else return FALSE
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DSA (Correctness)

Initialization
Public Parameters : p, g, a, S (f = a“ mod p)

Private key : a o _
Verifying Signature

Signing Message x ver(x,(y,0))1

sig(xX){ compute w= 03" modgq

select a secret random £ s.t. gcd(k,q) =1 compute t, = w-SHA(x)mod g

y =(a"* mod p)modg
O = (SHA(x) + ay)k™ mod g

compute t, = w+y mod g

compute v =(a" - B mod p)mod g

y=(7,9) if v=ymodq) return TRUE
return (X, y) else return FALSE
} )
0 = (SHA(x)+ay)k™ mod g —> g’ =" ™ mod p
k = (SHA(x)+ay)d " modgq a' =a" " mod p
=(WSHA(x) + way)mod g Take modq on both sides
k=(t +at,)modq y =(a" " mod p)mod g
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Security of DSA

* There are two ways to attack the DSA
(attempt to recover the secret a)

— Target the large cyclic group Z,

— Target the smaller group Z,

Could you techniques such as
Index Calculus. For a 1024 bit p,
this method offers security of 80 bits

Cannot apply Index Calculus relies on Pollard rho for solving the discrete log,
For 160 bit q, this offers security of 80 bits

35



Security of DSA

* There are two ways to attack the DSA
(attempt to recover the secret a)

— Target the large cyclic group Z,

— Target the smaller group Z, \

Could you techniques such as
Index Calculus. For a 1024 bit p,
this method offers security of 80 bits

For 160 bit q, this offers security of 80 bits

Cannot apply Index Calculus relies on Pollard rho for solving the discrete log,

p | g |Signature

Thus the size of p dictates the size of q.

1024160 320
2048|224 448
3072{256( 512
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Schnorr Signature Scheme
(uses a hash function to get smaller signatures)

Initialization

Choose a large prime p (of size 1024 bits)

Let o, EZ; bea primitive element

then a = (""" mod p is the q" root of Imod p

Choose a randomly from (0<a <q)

Compute £ =a“ modg

Choose a smaller prime g (of size 160 bits) and q|(p-1)

Private: a

Private: a, S, p,q

Signing Message x

sig(x0){
select a secret random £ st. 1<k <qg-1.

y =h(x| a" mod p)
0 =k+aymod p
y=(7,9)

return (x,))

Verifying Signature (x,y)

ver(x,(7,0)){
compute t, = h(x ||’ 7 mod p)
if (t,=y) return TRUE
else return FALSE
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