Mathematical Background

Chester Rebeiro

March 7, 2017

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Modular Arithmetic

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Let n be a positive integer
- Let a be any integer
- a/n leaves a quotient q and remainder r such that

$$a = qn + r$$
 $0 \le r < n; q = \lfloor a/n \rfloor$

- a is congruent to b modulo m, if a/m leaves a remainder b
- we write this as $a \equiv b \mod m$

- Let n be a positive integer
- Let a be any integer
- a/n leaves a quotient q and remainder r such that

$$a = qn + r$$
 $0 \le r < n; q = \lfloor a/n \rfloor$

- a is congruent to b modulo m, if a/m leaves a remainder b
- we write this as $a \equiv b \mod m$
- Examples
 - ▶ $13 \equiv 3 \mod 5$

- Let n be a positive integer
- Let a be any integer
- a/n leaves a quotient q and remainder r such that

$$a = qn + r$$
 $0 \le r < n; q = \lfloor a/n \rfloor$

- a is congruent to b modulo m, if a/m leaves a remainder b
- we write this as $a \equiv b \mod m$
- Examples
 - ▶ $13 \equiv 3 \mod 5$
 - ▶ $7 \equiv 1 \mod 3$

- Let n be a positive integer
- Let a be any integer
- a/n leaves a quotient q and remainder r such that

$$a = qn + r$$
 $0 \le r < n; q = \lfloor a/n \rfloor$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- a is congruent to b modulo m, if a/m leaves a remainder b
- we write this as $a \equiv b \mod m$
- Examples
 - 13 ≡ 3 mod 5
 - ▶ $7 \equiv 1 \mod 3$
 - ▶ $23 \equiv -1 \mod 12$

- Let n be a positive integer
- Let a be any integer
- a/n leaves a quotient q and remainder r such that

$$a = qn + r$$
 $0 \le r < n; q = \lfloor a/n \rfloor$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- a is congruent to b modulo m, if a/m leaves a remainder b
- we write this as $a \equiv b \mod m$
- Examples
 - 13 ≡ 3 mod 5
 - 7 ≡ 1 mod 3
 - ▶ $23 \equiv -1 \mod 12$
 - ▶ $20 \equiv 0 \mod 10$

- Let n be a positive integer
- Let a be any integer
- a/n leaves a quotient q and remainder r such that

$$a = qn + r$$
 $0 \le r < n; q = \lfloor a/n \rfloor$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- a is congruent to b modulo m, if a/m leaves a remainder b
- we write this as $a \equiv b \mod m$
- Examples
 - 13 ≡ 3 mod 5
 - ▶ $7 \equiv 1 \mod 3$
 - ▶ $23 \equiv -1 \mod 12$
 - ▶ 20 ≡ 0 mod 10

• If b = 0, we say *m* divides *a*. This is denoted m|a|

Equivalent Statements

All these statments are equivalent

- ▶ $a \equiv b \mod m$
- For some constant k, a = b + km
- ▶ m|(a b)
- When divided by m, a and b leave the same remainder

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Congruence mod *m* is an equivalence relation on intergers

- Reflexivity : any integer is congruent to itself mod m
- Symmetry : $a \equiv b \pmod{m}$ implies that $b \equiv a \pmod{m}$.
- Transitivity : a ≡ b(mod m) and b ≡ a(mod m) implies that a ≡ c(mod m)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Residue Class

It consists of all integers that leave the same remainder when divided by \boldsymbol{m}

- $\begin{array}{l} \bullet \quad \text{The residue classes} \quad \mod 4 \text{ are} \\ [0]_4 = \{..., -16, -12, -8, -4, 0, 4, 8, 12, 16, ...\} \\ [1]_4 = \{..., -15, -11, -7, -3, 1, 5, 9, 13, 17, ...\} \\ [2]_4 = \{..., -14, -10, -6, -2, 2, 6, 10, 14, 18, ...\} \\ [3]_4 = \{..., -13, -9, -5, -1, 3, 7, 11, 15, 19, ...\} \end{array}$
- The complete residue class mod 4 has one 'representative' from each set [0]₄, [1]₄, [2]₄, [3]₄. This is denoted Z/mZ.

(日) (同) (三) (三) (三) (○) (○)

► Complete residue Classes for mod 4 : {0,1,2,3}

Theorem

If
$$a \equiv b \pmod{m}$$
 and $c \equiv d \pmod{m}$ then
 $\bullet -a \equiv -b \pmod{m}$
 $\bullet a + c \equiv b + d \pmod{m}$
 $\bullet ac \equiv bd \pmod{m}$

Problems to Solve

- Prove that 2³² + 1 is divisible by 641
- Prove that if the sum of all digits in a number is divisible by 9, then the number itself is divisible by 9.

- GCD of two integers is the largest positive integer that divides both numbers without a remainder
- Examples
 - gcd(8, 12) = 4
 - gcd(24, 18) = 6
 - gcd(5,8) = 1
- If gcd(a, b) = 1 and a ≥ 1 and b ≥ 2, then a and b are said to be relatively prime

Euler-Toient Function

► φ(n)

Counts the number of integers less than or equal to n that are relatively prime to n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ φ(1) = 1
- example : $\phi(9) = 6$

Euler-Toient Function

► φ(n)

Counts the number of integers less than or equal to n that are relatively prime to n

- $\phi(1) = 1$
- example : $\phi(9) = 6 \dots$ verify !!
- ▶ example2 : φ(26) =?

Euler-Toient Function

► $\phi(n)$

Counts the number of integers less than or equal to n that are relatively prime to n

- $\phi(1) = 1$
- example : $\phi(9) = 6 \dots$ verify !!
- example2 : $\phi(26) = ? \dots 12$
- If p is prime, then $\phi(p) = p 1$

Properties of ϕ

▶ If *m* and *n* are relatively prime then $\phi(m \times n) = \phi(m) \times \phi(n)$

- $\phi(77) = \phi(7 \times 11) = 6 \times 10 = 60$
- $\phi(1896) = \phi(3 \times 8 \times 79) = 2 \times 4 \times 78 = 624$

More Properties

If p is a prime number then,

$$\blacktriangleright \phi(p^a) = p^a - p^{a-1}$$

- Evident for a = 1
- For a > 1, out of the elements 1, 2, · · · p^a, the elements p, 2p, 3p · · · p^{a-2}p are not coprime to p^a

More Properties

If p is a prime number then,

$$\bullet \ \phi(p^a) = p^a - p^{a-1}$$

- Evident for a = 1
- For a > 1, out of the elements 1, 2, · · · p^a, the elements p, 2p, 3p · · · p^{a-2}p are not coprime to p^a

•
$$\phi(p^a) = p^a - p^{a-1} = p^a(1 - 1/p)$$

contd..

• Suppose $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, where p_1, p_2, \ldots, p_k are primes then

•
$$\phi(n) = \phi(p_1^{a_1})\phi(p_2^{a_2})\cdots\phi(p_k^{a_k})$$

= $n(1-1/p_1)(1-1/p_2)\cdots(1-1/p_k)$

contd..

• Suppose $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, where p_1, p_2, \ldots, p_k are primes then

►
$$\phi(n) = \phi(p_1^{a_1})\phi(p_2^{a_2})\cdots\phi(p_k^{a_k})$$

= $n(1-1/p_1)(1-1/p_2)\cdots(1-1/p_k)$
► eg. Find $\phi(60)$?

Prove that...

For n > 2, prove that $\phi(n)$ is even.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Fermat's Little Theorem

• If gcd(a,m) = 1, then $a^{\phi(m)} \equiv 1 \mod m$

• Find the remainder when 72^{1001} is divided by 31

- \blacktriangleright 72 \equiv 10 \mod 31, therefore 72^{1001} \equiv 10^{1001} \mod 31
- \blacktriangleright Now from Fermat's Little Theorem, $10^{30}\equiv 1 \mod 31$
- \blacktriangleright Raising both sides to the power of 33, $10^{990}\equiv 1\mod 31$
- Thus, $10^{1001} = 10^{990}10^810^210$ $= 1(10^2)^410^210$ $= 1(7)^47 * 10$ $= 49^2.7.10$ $= (-13)^2.7.10$ = (14).7.10 $= 98.10 = 5.10 = 19 \mod 31$

by Fermat's little theorem using $7 \equiv 10^2 \mod 31$ using $7^4 = (7^2)^2$ using $49 \equiv -13 \mod 31$ using $-13 = 14 \mod 31$

Finite Fields

Évariste Galois (October 25, 1811 - May 31, 1832)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider a set S and a binary function * that maps S × S → S ie. for every (a, b) ∈ S × S, *((a, b)) ∈ S. This is denoted as a * b.

Consider a set S and a binary function * that maps S × S → S ie. for every (a, b) ∈ S × S, *((a, b)) ∈ S. This is denoted as a * b.

Now consider a subset H of S

- Consider a set S and a binary function * that maps S × S → S ie. for every (a, b) ∈ S × S, *((a, b)) ∈ S. This is denoted as a * b.
- Now consider a subset H of S
- $\langle H, * \rangle$ forms a **group** if the following properties are satisfied:

- Consider a set S and a binary function * that maps S × S → S ie. for every (a, b) ∈ S × S, *((a, b)) ∈ S. This is denoted as a * b.
- Now consider a subset H of S
- ⟨H,*⟩ forms a group if the following properties are satisfied:
 Closure : If a, b ∈ H then a * b ∈ H

- Consider a set S and a binary function * that maps S × S → S ie. for every (a, b) ∈ S × S, *((a, b)) ∈ S. This is denoted as a * b.
- Now consider a subset H of S
- ► $\langle H, * \rangle$ forms a **group** if the following properties are satisfied:
 - Closure : If $a, b \in H$ then $a * b \in H$
 - Associativity : If $a, b, c \in H$, then (a * b) * c = a * (b * c)

- Consider a set S and a binary function * that maps S × S → S ie. for every (a, b) ∈ S × S, *((a, b)) ∈ S. This is denoted as a * b.
- Now consider a subset H of S
- $\langle H, * \rangle$ forms a **group** if the following properties are satisfied:
 - Closure : If $a, b \in H$ then $a * b \in H$
 - Associativity : If $a, b, c \in H$, then (a * b) * c = a * (b * c)
 - ► Identity : There exists a unique element e such that for all a ∈ H, a * e = e * a = a

- Consider a set S and a binary function * that maps S × S → S ie. for every (a, b) ∈ S × S, *((a, b)) ∈ S. This is denoted as a * b.
- Now consider a subset H of S
- $\langle H, * \rangle$ forms a **group** if the following properties are satisfied:
 - Closure : If $a, b \in H$ then $a * b \in H$
 - Associativity : If $a, b, c \in H$, then (a * b) * c = a * (b * c)
 - ► Identity : There exists a unique element e such that for all a ∈ H, a * e = e * a = a
 - ▶ Inverse : For each $a \in H$, there exists and $a^{-1} \in H$ such that $a * a^{-1} = e$

- Consider a set S and a binary function * that maps S × S → S ie. for every (a, b) ∈ S × S, *((a, b)) ∈ S. This is denoted as a * b.
- Now consider a subset H of S
- $\langle H, * \rangle$ forms a **group** if the following properties are satisfied:
 - Closure : If $a, b \in H$ then $a * b \in H$
 - Associativity : If $a, b, c \in H$, then (a * b) * c = a * (b * c)
 - ► Identity : There exists a unique element e such that for all a ∈ H, a * e = e * a = a
 - Inverse : For each a ∈ H, there exists and a⁻¹ ∈ H such that a * a⁻¹ = e

▶ $\langle H, * \rangle$ is an **abelian group** if for all $a, b \in H$, a * b = b * a

Examples

• $\langle \mathbb{C}, + \rangle$ forms a group $\mathbb{C} = \{ u + iv : u, v \in \mathbb{R} \}$

- Closure and Associativity is satisfied
- identity element 0
- inverse -u + i(-v)

Examples

- $\langle \mathbb{C}, + \rangle$ forms a group $\mathbb{C} = \{ u + iv : u, v \in \mathbb{R} \}$
 - Closure and Associativity is satisfied
 - identity element 0
 - inverse -u + i(-v)
- $\langle \mathbb{C}^*, \cdot \rangle$ forms a group
 - Closure and Associativity is satisfied
 - Identity Element : 1
 - Inverse of $u + iv \in C^*$ is

$$\frac{u}{u^2+v^2}+i\frac{-v}{u^2+v^2}$$

Examples

•
$$\langle \mathbb{C}, + \rangle$$
 forms a group $\mathbb{C} = \{ u + iv : u, v \in \mathbb{R} \}$

- Closure and Associativity is satisfied
- identity element 0
- inverse -u + i(-v)
- $\langle \mathbb{C}^*, \cdot \rangle$ forms a group
 - Closure and Associativity is satisfied
 - Identity Element : 1
 - Inverse of $u + iv \in C^*$ is

$$\frac{u}{u^2+v^2}+i\frac{-v}{u^2+v^2}$$

 \blacktriangleright Note that $\langle \mathbb{C}, \cdot \rangle$ does not form a group, as 0 has no inverse.
A ring is defined by $\langle R,+,\cdot\rangle$ with the following properties

・ロト・日本・モト・モート ヨー うへで

• $\langle R, + \rangle$ is an abelian group

A ring is defined by $\langle R,+,\cdot\rangle$ with the following properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $\langle R,+
 angle$ is an abelian group
- $\langle R, \cdot \rangle$ satisfies closure and associativity

A ring is defined by $\langle R,+,\cdot\rangle$ with the following properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\langle R,+
 angle$ is an abelian group
- $\langle R, \cdot \rangle$ satisfies closure and associativity
- Multiplication distributes over addition

$$\bullet \ a \cdot (b+c) = a \cdot b + a \cdot c$$

Fields

Definition

A **field** is a commutative ring with unity, in which every non-zero element has an inverse. The field is denoted by $\langle F, +, \cdot \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Fields

Definition

A **field** is a commutative ring with unity, in which every non-zero element has an inverse. The field is denoted by $\langle F, +, \cdot \rangle$

... in other words

A **field** is a set with two commutative operations $(+ \text{ and } \cdot)$, in which one can add, subtract, and multiply any two elements, divide any element by another non-zero element, and multiplication distributes over addition.

Fields

Definition

A **field** is a commutative ring with unity, in which every non-zero element has an inverse. The field is denoted by $\langle F, +, \cdot \rangle$

... in other words

A **field** is a set with two commutative operations $(+ \text{ and } \cdot)$, in which one can add, subtract, and multiply any two elements, divide any element by another non-zero element, and multiplication distributes over addition.

Example

Set of real numbers, with operations addition and multiplication.

Finite Field A field in which the set is finite

Finite Fields

- A *finite field* is a field with finite number of elements.
- The number of elements in the set is called the *order* of the field.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A field with order *m* exists iff *m* is a prime power.
 - *i.e.* $m = p^n$, for some *n* and prime *p*
 - p is the characteristic of the finite field

Every finite field is of size p^n for some prime p and $n \in \mathbb{N}$ and is denoted as $\mathbb{F}_q = \mathbb{F}_{p^n}$

Prime Field (\mathbb{F}_p)

The finite field obtained when n = 1, ie. $\mathbb{F}_q = \mathbb{F}_p$

Galois Field (\mathbb{F}_{p^n})

The finite field obtained when n > 1. This is also known as extension field

Prime Field \mathbb{F}_7

- Identities : Additive Identity is 0, Multiplicative Identity is 1
- Addition Table for mod 7

Multiplication Table for mod 7

0	1	2	3	4	5	6
0	0	0	0	0	0	0
0	1	2	3	4	5	6
0	2	4	6	1	3	5
0	3	6	2	5	1	4
0	4	1	5	2	6	3
0	5	3	1	6	4	2
0	6	5	4	3	2	1
	0 0 0 0 0 0 0 0	$\begin{array}{c cccc} 0 & 1 \\ \hline 0 & 0 \\ \hline 0 & 1 \\ \hline 0 & 2 \\ \hline 0 & 3 \\ \hline 0 & 4 \\ \hline 0 & 5 \\ \hline 0 & 6 \\ \end{array}$	0 1 2 0 0 0 0 1 2 0 2 4 0 3 6 0 4 1 0 5 3 0 6 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(b) Multiplication modulo 7

Another Prime Field in \mathbb{F}_2

- Identity for addition is 0 and multiplication is 1
- \blacktriangleright Addition is by \oplus
- Multiplication is by ·

Binary Fields

Binary fields are extension fields of the form \mathbb{F}_2^m . These fields have efficient representations in computers and are extensively used in cryptography.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constructing Galios Field \mathbb{F}_{2^4} from \mathbb{F}_2 .

1. Pick an irreducible polynomial (f(x)) of degree *n* with coefficients in $\mathbb{F}_2 = \{0, 1\}$

$$x^4 + x + 1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constructing Galios Field \mathbb{F}_{2^4} from \mathbb{F}_2 .

1. Pick an irreducible polynomial (f(x)) of degree *n* with coefficients in $\mathbb{F}_2 = \{0, 1\}$

$$x^4 + x + 1$$

2. Let θ be a root of f(x).

$$f(\theta):\theta^4+\theta+1=0$$

Constructing Galios Field \mathbb{F}_{2^4} from \mathbb{F}_2 .

 Pick an irreducible polynomial (f(x)) of degree n with coefficients in F₂ = {0,1}

$$x^4 + x + 1$$

2. Let θ be a root of f(x).

$$f(\theta):\theta^4+\theta+1=0$$

3. Given this equation, all other powers can be derived:

$$\theta^{4} = \theta + 1$$
$$\theta^{5} = \theta^{4} \cdot \theta$$
$$\theta^{6} = \theta^{5} \cdot \theta^{2}$$

closure is satisfied

Constructing Galios Field \mathbb{F}_{2^4} from \mathbb{F}_2 .

 Pick an irreducible polynomial (f(x)) of degree n with coefficients in F₂ = {0,1}

$$x^4 + x + 1$$

2. Let θ be a root of f(x).

$$f(\theta):\theta^4+\theta+1=0$$

3. Given this equation, all other powers can be derived:

$$\theta^{4} = \theta + 1$$
$$\theta^{5} = \theta^{4} \cdot \theta$$
$$\theta^{6} = \theta^{5} \cdot \theta^{2}$$

closure is satisfied

Therefore, it is sufficient that 𝔽_{2⁴} contain all polynomials of degree < n.

Example : Consider the binary finite field $GF(2^4)$. there are 16 polynomials in the field.

The irreducible polynomial is $\theta^4 + \theta + 1$. 0 θ^2 θ^3 $\theta^3 + \theta^2$ 1 $\theta^2 + 1$ $\theta^3 + 1$ $\theta^3 + \theta^2 + 1$ θ $\theta^2 + \theta$ $\theta^3 + \theta$ $\theta^3 + \theta^2 + \theta$ $\theta + 1$ $\theta^2 + \theta + 1$ $\theta^3 + \theta + 1$ $\theta^3 + \theta^2 + \theta + 1$

Representation on a computer $\theta^3 + \theta + 1 \rightarrow (1011)_2$ Efficient !!!

Binary Field Arithmetic

Addition

Addition done by simple XOR operation.

$$(x^{3} + x^{2} + 1) + (x^{2} + x + 1) = x^{3} + x$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Binary Field Arithmetic

Addition

Addition done by simple XOR operation.

$$(x^{3} + x^{2} + 1) + (x^{2} + x + 1) = x^{3} + x$$

Subtraction

Subtraction same as addition.

$$(\theta^3 + \theta^2 + 1) - (\theta^2 + x + 1) = \theta^3 + \theta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $x^5 + x + 1$ is not in $GF(2^4)$

- $x^5 + x + 1$ is not in $GF(2^4)$
- Modular reduction $x^5 + x + 1 \mod(x^4 + x + 1) = x^2 + 1$

•
$$x^5 + x + 1$$
 is not in $GF(2^4)$

• Modular reduction $x^5 + x + 1 \mod (x^4 + x + 1) = x^2 + 1$

Efficient Multiplications

Karatsuba Multiplier, Mastrovito multiplier, Sunar-Koc multiplier, Massey-Omura multiplier, Montgomery multiplier

Squaring

Squaring

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Squaring

・ロト・4回ト・4回ト・4回ト・4回ト

Inversion

Itoh-Tsujii Algorithm : Uses Fermat's Little Theorem

・ロト・日本・モト・モート ヨー うへで

- $\blacktriangleright \ \alpha^{2^m-1} = 1$
- ▶ Thus, $\alpha \alpha^{2^m-2} = 1$
- The inverse of α is α^{2^m-2}

Inversion

Determine the inverse of $a \in GF(2^{19})$ using Itoh-Tsujii Algorithm.

- 1. $a^{-1} = a^{2^{19}-2}$
- 2. Thus $a^{-1} = a^{2^{19}-1}^{2^{19}}$
- 3. Take $\beta_k(a) = a^{2^k-1} \dots$ therefore $a^{-1} = \beta_k(a)^2$
- 4. Consider the addition chain for 18 = (1,2,4,8,9,18)
- 5. Consider the recursion $\beta_{m+n}(a) = \beta_m(a)^{2^n} \beta_n(a)$
- 6. Start from $\beta_1(a) = a$ and iterate the addition chain

Finite Fields and their Irreducible Polynomials

- Three irreducible polynomials of degree 4 that can generate the fields are:

•
$$f_1(x) = x^4 + x + 1$$
 results in field F1

•
$$f_2(x) = x^4 + x^3 + 1$$
 results in field F2

- $f_3(x) = x^4 + x^3 + x^2 + x + 1$ results in field F3
- Note,
 - Each irreducible polynomial generates a different field with the same 16 elements

However operations within each field is different

•
$$x \cdot x^4$$
 is $x + 1$ in F1

- $x \cdot x^4$ is $x^3 + 1$ in F2
- $x \cdot x^4$ is $x^3 + x^2 + x + 1$ in F3

Group Isomorphisms

- Given two groups (G, \circ) and (H, \bullet)
- A group isomorphism is a bijective mapping f : G → H such that for all u, v ∈ G,

$$f(u \circ v) = f(u) \bullet f(v)$$

- ▶ If such a function *f* exists, *G* and *H* are said to be isomorphic.
- All finite fields of same order (number of elements) are isomorphic.

Isomorphic Field Mappings in $GF(2^4)$

Consider isomorphic fields

- $F_1: GF(2^4)/(x^4 + x + 1)$ call this IR f_1
- $F_2: GF(2^4)/(x^4 + x^3 + 1)$ call this IR f_2
- ▶ To construct a mapping $T : F_1 \to F_2$ find $c \in F_2$ such that $f_1(c) \equiv 0 \mod (f_2)$.
 - This creates a mapping from $x \rightarrow c$
- For example : take $c = x^2 + x \in F_2$.
 - $f_1(c) = ((x^2 + x)^4 + (x^2 + x) + 1) modf_2 \equiv 0$
 - This creates a map $T: x \rightarrow c$
 - Example:
 - Take $e_1 = x^2 + x$ and $e_2 = x^3 + x$
 - Verify $T(e_1 \times e_2 \mod f_1) = T(e_1) \times T(e_2) \mod f_2$

Composite Fields

- 1. Let $k = n \times m$, then $GF(2^n)^m$ is a composite field of $GF(2^k)$
- 2. For example,
 - $GF(2^4)^2$ is a composite fields of $GF(2^8)$
 - Elements in $GF(2^4)^2$ have the form $A_1x + A_0$ where a_1 and $a_0 \in GF(2^4)$
- 3. The composite field $GF(2^n)^m$ is isomorphic to $GF(2^k)$
 - Therefore we can define a map $f: GF(2^k) \to GF(2^n)^m$
 - and peform operations in the finite field
 - Typically operations such as inverse are easier done in composite fields

More Number Theory

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The Multiplicative Inverse of an Element

An element b in the ring Z_n has a multiplicative inverse iff gcd(b, n) = 1

- Finding $b^{-1} \mod n$:
 - using Extended Euclidan Algorithm

Euclidean Algorithm

Euclidean Algorithm to find GCD of a and b

```
Input: (a, b)
Output: gcd(a, b)
r_0 \leftarrow a;
r_1 \leftarrow b:
m \leftarrow 1:
while r_m \neq 0 do
    find q_m and r_{m+1} such that r_{m-1} = r_m q_m + r_{m+1};
m \leftarrow m + 1;
end
return r_{m-1} = gcd(a, b);
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Euclidean Algorithm (Example)

Find gcd(62, 45)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $gcd(62, 45) = r_6 = 1$

Euclidean Algorithm Working

Let g = gcd(a, b), $r_0 \leftarrow a$, $r_1 \leftarrow b$

• Since $r_0 = q_1r_1 + r_2$, $g|r_0$ and $g|r_1$, we have $g|r_2$.

- ► Further, g is the highest positive integer that divides both r₁ and r₂ (i.e. g = gcd(r₁, r₂)).
 - If this were not the case, then let $g' = gcd(r_1, r_2)$ and g' > g.
 - By the same argument as above, it can easily be shown that $g'|r_0$, thus $g' = gcd(r_0, r_1)$, implies g = g'.

▶ Thus, $g = gcd(r_0, r_1) = gcd(r_1, r_2) = gcd(r_2, r_3) = \cdots = gcd(r_{m-1}, r_m) = r_{m-1}$ since $r_m = 0$

Expressing r_i ($i \ge 2$) as linear combination of a and b

	$a = r_0 \leftarrow 62$		
	$b = r_1 \leftarrow 45$		
$62 = 45 \cdot 1 + 17$	$r_2 \leftarrow 17$	$q_1 \leftarrow 1$	$r_2 = r_0 - q_1 \cdot r_1$
$45 = 17 \cdot 2 + 11$	$r_3 \leftarrow 11$	$q_2 \leftarrow 2$	$r_3 = r_1 - q_2 \cdot r_2$
			$= r_1 - q_2(r_0 - q_1 \cdot r_1)$
			$= (1 - q_2 q_1) \cdot r_1 - q_2 r_0$
$17 = 11 \cdot 1 + 6$	$r_4 \leftarrow 6$	$q_3 \leftarrow 1$	$r_4 = r_2 - q_3 \cdot r_3$
$11 = 6 \cdot 1 + 5$	$r_5 \leftarrow 5$	$q_4 \leftarrow 1$	$r_5 = r_3 - q_4 \cdot r_4$
$6 = 5 \cdot 1 + 1$	$r_6 \leftarrow 1$	$q_5 \leftarrow 1$	$r_6 = r_4 - q_5 \cdot r_5$
$1 = 1 \cdot 1 + 0$	$r_7 \leftarrow 0$	$q_6 \leftarrow 1$	

$$\begin{split} r_6 &= 1 = (1)6 - (1)5 \\ &= (1)6 - (1)(11 - (1)6) = (2)6 - 11 \\ &= (2)(17 - (1)11) - 11 = (2)17 - (3)11 \\ &= (2)17 - (3)(45 - (2)17) = (8)17 - (3)45 \\ &= (8)(62 - (1)45) - (3)45 \\ &= (8)62 - (11)45 \end{split}$$

<□ > < @ > < E > < E > E のQ @
Finding the inverse

If gcd(a, b) = 1, then

- $\blacktriangleright 1 = x \cdot b + y \cdot a$
- Taking mod a on both sides
 - $1 \equiv x \cdot b \mod a$
 - Thus, the inverse of b mod a is x
- ▶ In our example, a = 62, b = 45, and 1 = (8)62 + (-11)45
 - ▶ $1 \equiv (-11)45 \mod 62$
 - ▶ Thus the inverse of 45 mod 62 is -11 mod 62, which is 51

Recurrences

$$t_j = \begin{cases} 0 & \text{if } j = 0 \\ 1 & \text{if } j = 1 \\ t_{j-2} - q_{j-1}t_{j-1} & \text{if } j \ge 2 \end{cases} \qquad \qquad s_j = \begin{cases} 1 & \text{if } j = 0 \\ 0 & \text{if } j = 1 \\ s_{j-2} - q_{j-1}s_{j-1} & \text{if } j \ge 2. \end{cases}$$

For $0 \leq j \leq m$, we have that $r_j = s_j a + t_j b$

	$a = r_0 \leftarrow 62$	
	$b = r_1 \leftarrow 45$	
$62 = 45 \cdot 1 + 17$	$r_2 \leftarrow 17$	$q_1 \leftarrow 1$
$45 = 17 \cdot 2 + 11$	$r_3 \leftarrow 11$	$q_2 \leftarrow 2$
$17 = 11 \cdot 1 + 6$	$r_4 \leftarrow 6$	$q_3 \leftarrow 1$
$11=6\cdot 1+5$	$r_5 \leftarrow 5$	$q_4 \leftarrow 1$
$6 = 5 \cdot 1 + 1$	$r_6 \leftarrow 1$	$q_5 \leftarrow 1$
$1=1\cdot 1+0$	$r_7 \leftarrow 0$	$q_6 \leftarrow 1$

i	r _i	qi	si	ti	
0	62	-	1	0	
1	45	1	0	1	
2	17	2	1	-1	$17 = 1 \cdot 62 - 1 \cdot 45$
3	11	1	-2	3	$11 = -2 \cdot 62 + 3 \cdot 45$
4	6	1	3	-4	$6 = 3 \cdot 62 - 4 \cdot 45$
5	5	1	-5	7	$5 = -5 \cdot 62 + 7 \cdot 45$
6	1	1	8	11	$1=8\cdot 62-11\cdot 45$

Extended Euclidean Algorithm

Algorithm : EXTENDED EUCLIDEAN ALGORITHM(a, b) $a_0 \leftarrow a \\ b_0 \leftarrow b \\ t_0 \leftarrow 0 \\ t \leftarrow 1 \\ s_0 \leftarrow 1 \\ s \leftarrow 0$ $q \leftarrow \lfloor \frac{a_0}{b_0} \rfloor$ $r \leftarrow a_0 - qb_0$ while r > 0 $do \begin{cases} temp \leftarrow c_0 \\ t_0 \leftarrow t \\ t \leftarrow temp \\ temp \leftarrow s_0 - qs \\ s_0 \leftarrow s \\ s \leftarrow temp \\ a_0 \leftarrow b_0 \\ b_0 \leftarrow r \\ q \leftarrow \left\lfloor \frac{a_n}{b_0} \right\rfloor \\ r \leftarrow a_0 - qb_0 \end{cases}$ $temp \leftarrow t_0 - qt$ $r \leftarrow b_0$ return (r, s, t)**comment:** $r = \gcd(a, b)$ and sa + tb = r

A Small Improvement

If finding the inverse is the goal, then we could take mod 62 in each step.

We would not need the s_i recurrence in this case.

i	ri	qi	ti	
0	62	-	0	
1	45	1	1	
2	17	2	-1	$17 \equiv -1 \cdot 45 \mod 62$
3	11	1	3	$11 \equiv 3 \cdot 45 \mod 62$
4	6	1	-4	$6 \equiv -4 \cdot 45 \mod 62$
5	5	1	7	$5 \equiv 7 \cdot 45 \mod 62$
6	1	1	11	$1 \equiv -11 \cdot 45 \mod 62$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Chinese Remainder Theorem (CRT)

Theorem.

Let m_1, m_2, \dots, m_r be pairwise coprime. Let $M = m_1 \times m_2 \times m_3 \times \dots \times m_r$. Then, $f(x)(\mod M) \equiv 0$ if $f(x)(\mod m_i) \equiv 0$ for $1 \le i \le r$.

٠

Proof.
$$M|f(x)
ightarrow f(x) = Mk$$
 for some constant k
Thus, $f(x) = km_1m_2m_3\cdots m_r
ightarrow m_i|f(x)$
for any i

Chinese Remainder Theorem

Chinese Remainder Theorem

Let m_1, m_2, \dots, m_r be pairwise coprime and $M = m_1 \times m_2 \times m_3 \times \dots \times m_r$. Then the following system of congruences has a unique solution mod M.

$$x \equiv a_i (\mod m_i)$$
 $(1 \le i \le r)$

Proof

- Let $M_i = M/m_i$ and $y_i \equiv M_i^{-1} (\mod m_i)$ for $1 \le i \le r$
- Note that gcd(M_i, m_i) = 1 for 1 ≤ i ≤ r. Therefore the inverse y_i exists.
- Now notice, that M_iy_i ≡ 1(mod m_i), therefore a_iM_iy_i ≡ a_i(mod m_i)
- ▶ On the other hand, $M_i | m_j$ for $i \neq j$, thus $a_i M_i y_i \equiv 0 \pmod{m_j}$.

• Thus
$$x \equiv \sum_{i=1}^{r} a_i M_i y_i \pmod{m_j} \equiv a_j \pmod{m_j}$$

CRT Example

Find x

$$x \equiv 2(\mod 3)$$

$$x \equiv 2(\mod 4),$$

$$x \equiv 1(\mod 5)$$

Let :
$$m_1 = 3$$
, $m_2 = 4$, and $m_3 = 5$. $M = 3 \cdot 4 \cdot 5 = 60$
 Let : $M_1 = \frac{60}{3} = 20$ $y_1 = 20^{-1} (\mod 3) = 2$
 $M_2 = \frac{60}{4} = 15$ $y_2 = 15^{-1} (\mod 4) = 3$
 $M_3 = \frac{60}{5} = 12$ $y_3 = 12^{-1} (\mod 5) = 3$

$$x = ((2 \cdot 20 \cdot 2) + (2 \cdot 15 \cdot 3) + (1 \cdot 12 \cdot 3)) \mod 60$$

= 206 mod 60 \equiv 26

<□ > < @ > < E > < E > E のQ @