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Modular Arithmetic



Division Theorem

I Let n be a positive integer

I Let a be any integer

I a/n leaves a quotient q and remainder r such that

a = qn + r 0 ≤ r < n; q = ba/nc

I a is congruent to b modulo m, if a/m leaves a remainder b

I we write this as a ≡ b mod m

I Examples
I 13 ≡ 3 mod 5
I 7 ≡ 1 mod 3
I 23 ≡ −1 mod 12
I 20 ≡ 0 mod 10

I If b = 0, we say m divides a. This is denoted m|a
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Equivalent Statements

All these statments are equivalent

I a ≡ b mod m

I For some constant k , a = b + km

I m|(a− b)

I When divided by m, a and b leave the same remainder



Equivalence Relations

Congruence mod m is an equivalence relation on intergers

I Reflexivity : any integer is congruent to itself mod m

I Symmetry : a ≡ b( mod m) implies that b ≡ a( mod m).

I Transitivity : a ≡ b( mod m) and b ≡ a( mod m) implies
that a ≡ c( mod m)



Residue Class

It consists of all integers that leave the same remainder when
divided by m

I The residue classes mod 4 are
[0]4 = {...,−16,−12,−8,−4, 0, 4, 8, 12, 16, ...}
[1]4 = {...,−15,−11,−7,−3, 1, 5, 9, 13, 17, ...}
[2]4 = {...,−14,−10,−6,−2, 2, 6, 10, 14, 18, ...}
[3]4 = {...,−13,−9,−5,−1, 3, 7, 11, 15, 19, ...}

I The complete residue class mod 4 has one ‘representative’
from each set [0]4, [1]4, [2]4, [3]4. This is denoted Z/mZ .

I Complete residue Classes for mod 4 : {0, 1, 2, 3}



Theorem

If a ≡ b( mod m) and c ≡ d( mod m) then

I −a ≡ −b( mod m)

I a + c ≡ b + d( mod m)

I ac ≡ bd( mod m)



Problems to Solve

I Prove that 232 + 1 is divisible by 641

I Prove that if the sum of all digits in a number is divisible by
9, then the number itself is divisible by 9.



GCD

I GCD of two integers is the largest positive integer that divides
both numbers without a remainder

I Examples
I gcd(8, 12) = 4
I gcd(24, 18) = 6
I gcd(5, 8) = 1

I If gcd(a, b) = 1 and a ≥ 1 and b ≥ 2, then a and b are said
to be relatively prime



Euler-Toient Function

I φ(n)

I Counts the number of integers less than or equal to n that are
relatively prime to n

I φ(1) = 1

I example : φ(9) = 6

. . . verify !!

I example2 : φ(26) =? . . . 12

I If p is prime, then φ(p) = p − 1
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Properties of φ

I If m and n are relatively prime then φ(m× n) = φ(m)× φ(n)
I φ(77) = φ(7× 11) = 6× 10 = 60
I φ(1896) = φ(3× 8× 79) = 2× 4× 78 = 624



More Properties

If p is a prime number then,
I φ(pa) = pa − pa−1

I Evident for a = 1
I For a > 1, out of the elements 1, 2, · · · pa, the elements p,

2p, 3p · · · pa−2p are not coprime to pa

I φ(pa) = pa − pa−1 = pa(1− 1/p)



More Properties

If p is a prime number then,
I φ(pa) = pa − pa−1

I Evident for a = 1
I For a > 1, out of the elements 1, 2, · · · pa, the elements p,

2p, 3p · · · pa−2p are not coprime to pa

I φ(pa) = pa − pa−1 = pa(1− 1/p)



contd..

I Suppose n = pa11 pa22 · · · p
ak
k , where p1, p2, . . . , pk are primes

then

I φ(n) = φ(pa11 )φ(pa22 ) · · ·φ(pakk )

= n(1− 1/p1)(1− 1/p2) · · · (1− 1/pk)

I eg. Find φ(60)?
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Prove that...

For n > 2, prove that φ(n) is even.



Fermat’s Little Theorem

I If gcd(a,m) = 1, then aφ(m) ≡ 1 mod m
I Find the remainder when 721001 is divided by 31

I 72 ≡ 10 mod 31, therefore 721001 ≡ 101001 mod 31
I Now from Fermat’s Little Theorem, 1030 ≡ 1 mod 31
I Raising both sides to the power of 33, 10990 ≡ 1 mod 31
I Thus,

101001 = 1099010810210
= 1(102)410210 by Fermat’s little theorem
= 1(7)47 ∗ 10 using 7 ≡ 102 mod 31
= 492.7.10 using 74 = (72)2

= (−13)2.7.10 using 49 ≡ −13 mod 31
= (14).7.10 using −13 = 14 mod 31
= 98.10 = 5.10 = 19 mod 31



Finite Fields

Évariste Galois
(October 25, 1811 - May 31, 1832)



Groups, Abelian Groups, and Monoids

I Consider a set S and a binary function ∗ that maps S ×S → S
ie. for every (a, b) ∈ S × S , ∗((a, b)) ∈ S . This is denoted as
a ∗ b.

I Now consider a subset H of S
I 〈H, ∗〉 forms a group if the following properties are satisfied:

I Closure : If a, b ∈ H then a ∗ b ∈ H
I Associativity : If a, b, c ∈ H, then (a ∗ b) ∗ c = a ∗ (b ∗ c)
I Identity : There exists a unique element e such that for all

a ∈ H, a ∗ e = e ∗ a = a
I Inverse : For each a ∈ H, there exists and a−1 ∈ H such that

a ∗ a−1 = e

I 〈H, ∗〉 is an abelian group if for all a, b ∈ H, a ∗ b = b ∗ a
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Examples

I 〈C,+〉 forms a group C = {u + iv : u, v ∈ R}
I Closure and Associativity is satisfied
I identity element 0
I inverse −u + i(−v)

I 〈C∗, ·〉 forms a group

I Closure and Associativity is satisfied
I Identity Element : 1
I Inverse of u + iv ∈ C∗ is

u

u2 + v2
+ i

−v
u2 + v2

I Note that 〈C, ·〉 does not form a group, as 0 has no inverse.
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Rings

A ring is defined by 〈R,+, ·〉 with the following properties

I 〈R,+〉 is an abelian group

I 〈R, ·〉 satisfies closure and associativity
I Multiplication distributes over addition

I a · (b + c) = a · b + a · c
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Fields

Definition
A field is a commutative ring with unity, in which every non-zero
element has an inverse. The field is denoted by 〈F ,+, ·〉

...in other words
A field is a set with two commutative operations (+ and ·), in
which one can add, subtract, and multiply any two elements,
divide any element by another non-zero element, and multiplication
distributes over addition.

Example

Set of real numbers, with operations addition and multiplication.

Finite Field
A field in which the set is finite
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Finite Fields

I A finite field is a field with finite number of elements.

I The number of elements in the set is called the order of the
field.

I A field with order m exists iff m is a prime power.
I i.e. m = pn, for some n and prime p
I p is the characteristic of the finite field



Prime and Galois Field

Every finite field is of size pn for some prime p and n ∈ N and is
denoted as Fq = Fpn

Prime Field (Fp)

The finite field obtained when n = 1, ie. Fq = Fp

Galois Field (Fpn)

The finite field obtained when n > 1.
This is also known as extension field



Prime Field F7

I Identities : Additive Identity is 0, Multiplicative Identity is 1

I Addition Table for mod 7

I Multiplication Table for mod 7



Another Prime Field in F2

I Identity for addition is 0 and multiplication is 1

I Addition is by ⊕
I Multiplicaiton is by ·

Binary Fields

Binary fields are extension fields of the form Fm
2 . These fields have

efficient representations in computers and are extensively used in
cryptography.



How to construct an Extension Field
Constructing Galios Field F24 from F2.

1. Pick an irreducible polynomial (f (x)) of degree n with
coefficients in F2 = {0, 1}

x4 + x + 1

2. Let θ be a root of f (x).

f (θ) : θ4 + θ + 1 = 0

3. Given this equation, all other powers can be derived:

θ4 = θ + 1

θ5 = θ4 · θ
θ6 = θ5 · θ2

· · · · · · ·

closure is satisfied

4. Therefore, it is sufficient that F24 contain all polynomials of
degree < n.
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F24

I

Example : Consider the binary finite field GF (24). there are 16
polynomials in the field.
The irreducible polynomial is θ4 + θ + 1.

0 θ2 θ3 θ3 + θ2

1 θ2 + 1 θ3 + 1 θ3 + θ2 + 1
θ θ2 + θ θ3 + θ θ3 + θ2 + θ
θ + 1 θ2 + θ + 1 θ3 + θ + 1 θ3 + θ2 + θ + 1

Representation on a computer θ3 + θ + 1 → (1011)2
...Efficient !!!



Binary Field Arithmetic

Addition
Addition done by simple XOR operation.

(x3 + x2 + 1) + (x2 + x + 1) = x3 + x

Subtraction
Subtraction same as addition.

(θ3 + θ2 + 1)− (θ2 + x + 1) = θ3 + θ



Binary Field Arithmetic

Addition
Addition done by simple XOR operation.

(x3 + x2 + 1) + (x2 + x + 1) = x3 + x

Subtraction
Subtraction same as addition.

(θ3 + θ2 + 1)− (θ2 + x + 1) = θ3 + θ



Binary Field Multiplication

x3 +x2 +1
x2 +x +1

x3 +x2 +1
x4 +x3 +x

x5 +x4 +x2

x5 +x +1

I x5 + x + 1 is not in GF (24)

I Modular reduction x5 + x + 1mod(x4 + x + 1) = x2 + 1

Efficient Multiplications

Karatsuba Multiplier, Mastrovito multiplier, Sunar-Koc multiplier,
Massey-Omura multiplier, Montgomery multiplier
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Squaring

a(x)



Squaring

000000

Squaring Operation

a(x)

0



Squaring

000000

Modulo Operation

Squaring Operation

a(x)
2

a(x)

0



Inversion

I Itoh-Tsujii Algorithm : Uses Fermat’s Little Theorem
I α2m−1 = 1
I Thus, αα2m−2 = 1
I The inverse of α is α2m−2



Inversion

Determine the inverse of a ∈ GF (219) using Itoh-Tsujii Algorithm.

1. a−1 = a2
19−2

2. Thus a−1 = a2
19−1)2

3. Take βk(a) = a2
k−1 . . . therefore a−1 = βk(a)2

4. Consider the addition chain for 18 = (1,2,4,8,9,18)

5. Consider the recursion βm+n(a) = βm(a)2
n
βn(a)

6. Start from β1(a) = a and iterate the addition chain



Finite Fields and their Irreducible Polynomials

I Consider the fields in GF (24). The elements in the field are
0 x2 x3 x3 + x2

1 x2 + 1 x3 + 1 x3 + x2 + 1

x x2 + x x3 + x x3 + x2 + x

x + 1 x2 + x + 1 x3 + x + 1 x3 + x2 + x + 1

I Three irreducible polynomials of degree 4 that can generate
the fields are:

I f1(x) = x4 + x + 1 results in field F1
I f2(x) = x4 + x3 + 1 results in field F2
I f3(x) = x4 + x3 + x2 + x + 1 results in field F3

I Note,
I Each irreducible polynomial generates a different field with the

same 16 elements
I However operations within each field is different

I x · x4 is x + 1 in F1
I x · x4 is x3 + 1 in F2
I x · x4 is x3 + x2 + x + 1 in F3



Group Isomorphisms

I Given two groups (G , ◦) and (H, •)
I A group isomorphism is a bijective mapping f : G → H such

that for all u, v ∈ G ,

f (u ◦ v) = f (u) • f (v)

I If such a function f exists, G and H are said to be isomorphic.

I All finite fields of same order (number of elements) are
isomorphic.



Isomorphic Field Mappings in GF (24)

I Consider isomorphic fields
I F1 : GF (24)/(x4 + x + 1) call this IR f1
I F2 : GF (24)/(x4 + x3 + 1) call this IR f2

I To construct a mapping T : F1 → F2 find c ∈ F2 such that
f1(c) ≡ 0 mod (f2).

I This creates a mapping from x → c

I For example : take c = x2 + x ∈ F2.
I f1(c) = ((x2 + x)4 + (x2 + x) + 1)modf2 ≡ 0
I This creates a map T : x → c
I Example:

I Take e1 = x2 + x and e2 = x3 + x
I Verify T (e1 × e2 mod f1) = T (e1)× T (e2) mod f2



Composite Fields

1. Let k = n ×m, then GF (2n)m is a composite field of GF (2k)

2. For example,
I GF (24)2 is a composite fields of GF (28)
I Elements in GF (24)2 have the form A1x + A0 where a1 and

a0 ∈ GF (24)

3. The composite field GF (2n)m is isomorphic to GF (2k)
I Therefore we can define a map f : GF (2k)→ GF (2n)m

I and peform operations in the finite field
I Typically operations such as inverse are easier done in

composite fields



More Number Theory



The Multiplicative Inverse of an Element

I An element b in the ring Zn has a multiplicative inverse iff
gcd(b, n) = 1

I Finding b−1 mod n:
I using Extended Euclidan Algorithm



Euclidean Algorithm

Euclidean Algorithm to find GCD of a and b

Input: (a, b)
Output: gcd(a, b)

r0 ← a;
r1 ← b;
m← 1;
while rm 6= 0 do

find qm and rm+1 such that rm−1 = rmqm + rm+1;
m← m + 1;

end
return rm−1 = gcd(a, b);



Euclidean Algorithm (Example)

Find gcd(62, 45)

r0 ← 62
r1 ← 45

62 = 45 · 1 + 17 r2 ← 17 q1 ← 1
45 = 17 · 2 + 11 r3 ← 11 q2 ← 2
17 = 11 · 1 + 6 r4 ← 6 q3 ← 1
11 = 6 · 1 + 5 r5 ← 5 q4 ← 1
6 = 5 · 1 + 1 r6 ← 1 q5 ← 1
1 = 1 · 1 + 0 r7 ← 0 q6 ← 1

gcd(62, 45) = r6 = 1



Euclidean Algorithm Working

Let g = gcd(a, b), r0 ← a, r1 ← b

I Since r0 = q1r1 + r2, g |r0 and g |r1, we have g |r2.
I Further, g is the highest positive integer that divides both r1

and r2 (i.e. g = gcd(r1, r2)).
I If this were not the case, then let g ′ = gcd(r1, r2) and g ′ > g .
I By the same argument as above, it can easily be shown that

g ′|r0, thus g ′ = gcd(r0, r1), implies g = g ′.

I Thus, g = gcd(r0, r1) = gcd(r1, r2) = gcd(r2, r3) = · · · =
gcd(rm−1, rm) = rm−1 since rm = 0



Expressing ri (i ≥ 2) as linear combination of a and b

a = r0 ← 62
b = r1 ← 45

62 = 45 · 1 + 17 r2 ← 17 q1 ← 1 r2 = r0 − q1 · r1
45 = 17 · 2 + 11 r3 ← 11 q2 ← 2 r3 = r1 − q2 · r2

= r1 − q2(r0 − q1 · r1)
= (1− q2q1) · r1 − q2r0

17 = 11 · 1 + 6 r4 ← 6 q3 ← 1 r4 = r2 − q3 · r3
11 = 6 · 1 + 5 r5 ← 5 q4 ← 1 r5 = r3 − q4 · r4
6 = 5 · 1 + 1 r6 ← 1 q5 ← 1 r6 = r4 − q5 · r5
1 = 1 · 1 + 0 r7 ← 0 q6 ← 1

r6 = 1 = (1)6− (1)5

= (1)6− (1)(11− (1)6) = (2)6− 11

= (2)(17− (1)11)− 11 = (2)17− (3)11

= (2)17− (3)(45− (2)17) = (8)17− (3)45

= (8)(62− (1)45)− (3)45

= (8)62− (11)45



Finding the inverse

If gcd(a, b) = 1, then

I 1 = x · b + y · a
I Taking mod a on both sides

I 1 ≡ x · b mod a
I Thus, the inverse of b mod a is x

I In our example, a = 62, b = 45, and 1 = (8)62 + (−11)45
I 1 ≡ (−11)45 mod 62
I Thus the inverse of 45 mod 62 is −11 mod 62, which is 51



Recurrences

For 0 ≤ j ≤ m, we have that rj = sja + tjb

a = r0 ← 62
b = r1 ← 45

62 = 45 · 1 + 17 r2 ← 17 q1 ← 1
45 = 17 · 2 + 11 r3 ← 11 q2 ← 2
17 = 11 · 1 + 6 r4 ← 6 q3 ← 1
11 = 6 · 1 + 5 r5 ← 5 q4 ← 1
6 = 5 · 1 + 1 r6 ← 1 q5 ← 1
1 = 1 · 1 + 0 r7 ← 0 q6 ← 1

i ri qi si ti
0 62 - 1 0
1 45 1 0 1
2 17 2 1 -1 17 = 1 · 62− 1 · 45
3 11 1 -2 3 11 = −2 · 62 + 3 · 45
4 6 1 3 -4 6 = 3 · 62− 4 · 45
5 5 1 -5 7 5 = −5 · 62 + 7 · 45
6 1 1 8 11 1 = 8 · 62− 11 · 45



Extended Euclidean Algorithm



A Small Improvement

If finding the inverse is the goal, then we could take mod 62 in
each step.
We would not need the si recurrence in this case.

i ri qi ti
0 62 - 0
1 45 1 1
2 17 2 -1 17 ≡ −1 · 45 mod 62
3 11 1 3 11 ≡ 3 · 45 mod 62
4 6 1 -4 6 ≡ −4 · 45 mod 62
5 5 1 7 5 ≡ 7 · 45 mod 62
6 1 1 11 1 ≡ −11 · 45 mod 62



Chinese Remainder Theorem (CRT)

Theorem.
Let m1, m2, · · · , mr be pairwise coprime. Let
M = m1×m2×m3× · · · ×mr . Then, f (x)( mod M) ≡ 0 if f (x)(
mod mi ) ≡ 0 for 1 ≤ i ≤ r .

Proof.
M|f (x)→ f (x) = Mk for some constant k.
Thus, f (x) = km1m2m3 · · ·mr → mi |f (x)
for any i



Chinese Remainder Theorem

Chinese Remainder Theorem
Let m1, m2, · · · , mr be pairwise coprime and
M = m1 ×m2 ×m3 × · · · ×mr . Then the following system of
congruences has a unique solution mod M.

x ≡ ai ( mod mi ) (1 ≤ i ≤ r)

Proof

I Let Mi = M/mi and yi ≡ M−1i ( mod mi ) for 1 ≤ i ≤ r

I Note that gcd(Mi ,mi ) = 1 for 1 ≤ i ≤ r . Therefore the inverse yi
exists.

I Now notice, that Miyi ≡ 1( mod mi ), therefore aiMiyi ≡ ai (
mod mi )

I On the other hand, Mi |mj for i 6= j , thus aiMiyi ≡ 0( mod mj).

I Thus x ≡
∑r

i=1 aiMiyi ( mod mj) ≡ aj( mod mj)



CRT Example

Find x

x ≡2( mod 3)

x ≡2( mod 4)

x ≡1( mod 5)

,

I Let : m1 = 3, m2 = 4, and m3 = 5. M = 3 · 4 · 5 = 60

I Let : M1 = 60
3 = 20 y1 = 20−1( mod 3) = 2

I M2 = 60
4 = 15 y2 = 15−1( mod 4) = 3

I M3 = 60
5 = 12 y3 = 12−1( mod 5) = 3

x = ((2 · 20 · 2) + (2 · 15 · 3) + (1 · 12 · 3)) mod 60

= 206 mod 60 ≡ 26
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