
Access Control 

Chester Rebeiro 
 

Indian Institute of Technology Madras 



Access	Control	
(the	tao	of	achieving	confiden5ality	and	integrity)	

2	

Who	can	access	What	

Subjects	:		
User/	process/	applica5on	 Read/Write/	

Execute/Share	

Objects	:	
Files/	Programs/	Sockets/	
Hardware/	



Access	Control	
(number	of	levels)	

3	

Hardware	

OS	

Middleware	

Applica5on	

Elaborate	and	complex.	Many	people	may	be	involved	
Mul5ple	roles.	Hundreds	of	transac5ons	feasible	

Eg.	DBMS.	Who	gets	to	access	what	fields	in	the	DB	

Moving	from	Hardware	to	Applica5on	
	
•  More	aspects	to	control	

•  More	subjects	and	objects	involved	
•  Inter-rela5onship	becomes	increasingly	difficult	

•  Complexity	increases	
•  Reliability	Decreases	

•  More	prone	to	loopholes	that	can	be	exploited	



Hardware	Access	Control	
•  Policies	

–  Must	protect	OS	from	applica5ons	
–  Must	protect	applica5ons	from	others	
–  Must	prevent	one	applica5on	hogging	the	system	
		(first	two	ensure	confiden5ality	and	integrity,	the	third	ensures	
availability)	

•  Mechanisms	
–  Paging	unit	
–  Privilege	rings	
–  Interrupts	

4	



Access	Control	at	OS	Level	
Policies	
•  Only	authen5cated	users	should	be	able	to	use	the	system	
•  One	user’s	files	should	be	protected	from	other	users	

		(not	present	in	older	versions	of	Windows)		
•  A	Process	should	be	protected	from	others	
•  Fair	alloca5on	of	resources	(CPU,	disk,	RAM,	network)	without	starva5on	

Mechanisms	
•  User	authen5ca5on		
•  Access	Control	Mechanisms	for	Files	(and	other	objects)	
•  For	process	protec5on	leverage	hardware	features	(paging	etc.)	
•  Scheduling,	deadlock	detec5on	/	preven5on	to	prevent	starva5on	
	

5	



Access	Control	for	Objects	in	the	OS	

•  Discre5onary	(DAC)	
–  Access	based	on	

•  Iden5ty	of	requestor		
•  Access	rules	state	what	requestors	are	(or	are	not)	allowed	to	do	

–  Privileges	granted	or	revoked	by	an	administrator	
–  Users	can	pass	on	their	privileges	to	other	users	
–  The	earliest	form	called	Access	Matrix	Model	

6	



Access	Matrix	Model	
•  By	Butler	Lampson,	1971	(Earliest	Form)	
•  Subjects	:	ac5ve	elements	reques5ng	informa5on	
•  Objects	:	passive	elements	storing	informa5on	

–  Subjects	can	also	be	objects	

7	

objects	

subjects	

Other	ac5ons	:	ownership	(property	of	objects	by	a	subject),		
																									control	(father-children	rela5onships	between	processes)	

rights	

Butler	Lampson,	“Protec5on”,	1971	



A	Formal	Representa5on	of		
Access	Matrix	

•  Define	an	access		matrix	:		
•  Protec5on	System	consists	of		

–  Generic	rights	:																																																thus	
–  Primi@ve	Opera@ons	

		

8	

subjects	

generic	rights	

objects	

Michael	A.	Harrison,	Walter	L.	Ruzzo,	Jeffrey	D.	Ullman,	Protec5on	in	Opera5ng	Systems,	1974	



A	formal	representa5on	of	Access	Matrix	Model	

•  Commands	:	condi5onal	changes	to	ACM	

9	

access		matrix		

Generic	rights		

Primi5ve		
opera5ons	



Example	Commands	

10	

Create	an	object	

Confer	‘r’	right		
to	a	friend	for	the		
object	

Owner	can	revoke		
Right	from	an	‘ex’friend	



States	of	Access	Matrix	
•  A	protec5on	system	is	a	state	transi@on	system	

	

11	

command	1	 command	2	



Safety	

•  Suppose	a	subject	s	plans	to	give	subjects	s’	
right	r	to	object	o.		
– with	r	entered	into	A[s’,o],	is	such	that	r	could	
subsequently	be	entered	somewhere	new.	

–  If	this	is	possible,	then	the	system	is	unsafe	

12	



Unsafe	State	(Example)	
•  Consider	a	protec5on	system	with	two	commands	

•  Scenario:	Bob	creates	an	applica5on	(object).	He	wants	it	to	
be	executed	by	all	others	but	not	modified	by	them	

•  The	system	is	unsafe	due	to	the	presence	of	MODIFY_RIGHT	
in	the	protec5on	system.		
–  Alice	could	invoke	MODIFY_RIGHT	to	get	modifica5on	rights	for	the	

applica5on	

13	



Safety	Theorem	

•  Given	an	ini5al	state	of	the	matrix	(say	A0)	and	a	
right	‘r’,	we	say	that	the	state	A0	is	unsafe	if	there	
exists	a	state	Ai	such	that,	
1.   Ai	is	reachable	from	A0	

•  There	are	a	sequence	of	transi5ons	(commands)	that	would	take	
the	state	from	A0	to	Ai	

2.   Ai	leaks	‘r’	

	
Determining	if	a	system	is	safe	is	undecidable	

14	



Implementa5on	Aspects	
Capabili5es	

15	

Access	Control	List	

Capabili5es	:	5cket	
ACL	:	My	name	is	in	the	list	

Railway	Reserva5on	



Capability	vs	ACL	
•  Delega5on	

	CAP:	easily	achieved	
	For	example	“Ann”	can	create	a	cer5ficate	sta5ng	that	she	delegates	to	“
	Ted”	all	her	ac5vi5es	from	4:00PM	to	10:00PM	
	ACL:	The	owner	of	the	file	should	add	permissions	to	ensure	deliga5on	

	
•  Revoca5on	
					ACL:	Easily	done,	parse	list	for	file,	remove	user	/	group	from	list	
							CAP:		Get	capability	back	from	process	
																		If	one	capability	is	used	for	mul5ple	files,	then	revoke	all		or	nothing	

16	



Unix	Security	Mechanism	
•  Subject:	process	
•  Objects:	files,	directories,	sockets,	process,	process	memory,	

file	descriptors	

•  Each	process	is	associated	with	a	user	ID	(32	bit	integer)	and	
group	ID	(32	bit	user	integer)	

•  The	privileges	of	a	process	depends	on	the	user	ID	and	group	
ID	

17	



File	Opera5ons	in	Unix	
Opera@ons	for	a	file	

–  Create	
–  Read	
–  Write	
–  Execute	(does	this	imply	read?)	
–  Ownership	
–  Change	permissions	

Opera@ons	for	a	directory	
–  Create	
–  Unlink	/	link	
–  Rename	a	file	
–  lookup	

	

18	

Permissions	for	files	and	directories	
	
In	inode	:		
uid,	gid	
	
	
	
Change	permissions	by	owner	(same	uid	as	the	
file)	
	
For	directories	almost	similar:	linking	/	unlinking	
write	permissions	
X	permission	on	a	directory	implies	look	up.	You	
can	look	up	a	name	but	not	read	the	contents	of	
the	directory	
	
Addi5onally	bits	are	present	to	specify	type	of	file	
(like	directory,	symbolic	link,	etc.)	
	

R	 W	 X	

Owner	 1	 1	 0	

Group	 1	 0	 0	

Other	 1	 0	 0	



User	IDs	
•  UID	=	0	is	root	permissions	
•  setuid(user	ID)	àset	the	user	id	of	a	process.	Can	be	executed	only	by	

processes	with	UID	=	0	
•  setgid(group	iD)	à	set	the	group	id	of	a	process	
•  Login	process	

–  At	the	5me	of	login,	the	login	process	runs	with	uid=0	
–  If	user	name	and	password	is	verified,	

•  Use	uid	stored	in	/etc/passwd	file	to	invoke	setuid()	
•  Invoke	shell	with	the	user’s	process	ID	

•  setuid	bit	in	inode	
–  Allows	a	program	to	execute	with	the	privileges	of	the	owner	of	the	

file.	

19	



sudo	/	su	
•  used	to	elevate	privileges	

–  If	permined,	switches	uid	of	a	process	to	0	temporarily	
–  Remove	variables	that	control	dynamic	linking	
–  Ensure	that	5mestamp	directories	(/var/lib/sudo)	are	only	writeable	

by	root		

20	



File	Descriptors	

•  Represents	an	open	file	
•  Two	ways	of	obtaining	a	file	descriptor	

–  Open	a	file	
–  Get	it	from	another	process		

•  for	example	a	parent	process	
•  Through	shared	memory	or	sockets	

•  If	you	have	a	file	descriptor,	no	more	explicit	checks	

21	



Processes	

•  Opera5ons	
–  Create	
–  kill	
–  Debug	(ptrace	system	call	that	allows	one	process	to	
observe	the	control	the	other)	

•  Permissions	
–  Child	process	gets	the	same	uid	and	gid	as	the	parent	
–  ptrace	can	debug	other	processes	with	the	same	uid	

22	



Network	Permissions	in	Unix	

•  Opera5ons	
–  Connect	
–  Listening	
–  Send/Receive	data	

•  Permissions	
–  Not	related	to	UIDs.	Any	one	can	connect	to	a	machine	
–  Any	process	can	listen	to	ports	>	1024	
–  If	you	have	a	descriptor	for	a	socket,	then	you	can	send/
receive	data	without	further	permissions	

23	



Problems	with	the	Unix	Access	Control	

•  Root	can	do	anything	(has	complete	access)	
–  Can	delete	/	modify	files	

(FreeBSD,	OSX,	prevent	this	by	having	flags	called	append-only,	
undeletable,	system	à	preven5ng	even	the	root	to	delete)	

–  Problem	comes	when	(a)	the	system	administrator	is	untrustable	
(b)	if	root	login	is	compromised	

•  Permissions	based	on	uid	are	coarse-grained	
–  a	user	cannot	easily	defend	himself	against	allega5ons	
–  Cannot	obtain	more	intricate	access	control	such	as			

“X	user	can	run	program	Y	to	write	to	file	Z”	
–  Only	one	user	and	one	group	can	be	specified	for	a	file.	

24	



Vulnerabili5es	in	Discre5onary	Policies	

•  Discre5onary	policies	only	authen5cate	a	user	
•  Once	authen5cated,	the	user	can	do	anything	
•  Subjected	to	Trojan	Horse	anacks	

–  A	Trojan	horse	can	inherit	all	the	user’s	privileges	
–  Why?	

•  A	trojan	horse	process	started	by	a	user	sends	requests	to	OS	on	the	
user’s	behalf	

25	



Drawback	of	Discre5onary	Policies	
•  It	is	not	concerned	with	

informa5on	flow	
–  Anyone	with	access	can	propagate	

informa5on	

	
•  Informa5on	flow	policies	

–  Restrict	how	informa5on	flows	
between	subjects	and	objects	

26	



Informa5on	Flow	Policies	
•  Every	object	in	the	system	assigned	to	a	security	class	(SC)	

27	
Ravi	Sandhu,	La8ce	Based	Access	Control	Models,	1993	

Security	classes	(SC)	

object	

A	

B	

C	

Inform
a5on	flow

	

low	

high	



Examples	

•  Trivial	case	(also	the	most	secure)	
– No	informa5on	flow	between	classes	

•  Low	to	High	flows	only	

28	



Exercises	
•  A	company	has	the	following	security	policy	

–  A	document	made	by	a	manager	can	be	read	by	other	managers	but	
no	workers	

–  A	document	made	by	a	worker	can	be	read	by	other	workers	but	no	
managers	

–  Public	documents	can	be	read	by	both	Managers	and	Workers	
	

•  What	are	the	security	classes?	
•  What	is	the	flow	operator?	
•  What	is	the	join	operator?	

29	



Exercises	
•  A	company	has	the	following	security	policy	

–  A	document	made	by	a	manager	can	be	read	by	other	managers	but	
no	workers	

–  A	document	made	by	a	worker	can	be	read	by	other	workers	but	no	
managers	

–  Public	documents	can	be	read	by	both	Managers	and	Workers	
	

30	



Mandatory	Access	Control	
•  Most	common	form	is	mul5level	security	(MLS)	policy	

–  Access	Class	
•  Objects	need	a	classifica@on	level	
•  Subjects	needed	a	clearance	level	

–  A	subject	with	X	clearance	can	
access	all	objects	in	X	and	below	X	
but	not	vice-versa	

–  Informa5on	only	flows	upwards	and	
				cannot	flow	downwards	

31	



Bell-LaPadula	Model	
•  Developed	in	1974	
•  Objec5ve	:	Ensure	that	informa5on	does	not	flow	to	those	not	

cleared	for	that	level	
•  Formal	model	for	access	control	

–  allows	formally	prove	security	
•  Four	access	modes:	

–  read,	write,	append,	execute	
•  Three	proper5es	(MAC	rules)	

–  No	read	up		(simple	security	property	(ss-property))	
–  No	write	down	(*-property)	
–  ds	property	:	discre5onary	security	property	(every	access	must	be	

allowed	by	the	access	matrix)	

32	
D.	E.	Bell	and	L.	J.	LaPadula,	Secure	Computer	System:	Unified		



No	read	up	

•  Can	only	read	confiden5al	and	unclassified	files	

33	

Clearance	:	Confiden5al	



No	Write	Down	

•  Cannot	write	into	an	unclassfied	object	

34	

Clearance	:	Confiden5al	



Why	No	Write	Down?	

•  A	process	inflected	with	a	trojan,	could	read	confiden5al	data	
and	write	it	down	to	unclassified	

•  We	trust	users	but	not	subjects	(like	programs	and	processes)	
35	

Process	with		
confiden5al	clearance	

trojan	

Read	h
igher	c

lassifie
d	obje

ct	



ds-property	

•  Discre5onary	Access	Control	
–  An	individual	may	grant	access	to	a	document	he/she	
owns	to	another	individual.	

–  However	the	MAC	rules	must	be	met	

MAC	rules	over	rides	any	discre5onary	access	control.	A	user	
cannot	give	away	data	to	unauthorized	persons.	

		

36	



Limita5ons	of	BLP	

•  Write	up	is	possible	with	BLP	
•  Does	not	address	Integrity	Issues	

37	

Clearance	:	Confiden5al	

User	with	clearance	can	modify	a	secret	document	
BLP	only	deals	with	confiden5ality.	Does	not	take	care	of	integrity.	

file	with	classifica5on	secret	



Limita5on	of	BLP	
(changing	levels)	

•  Suppose	someone	changes	an	object	labeled	top	
secret	to	unclassified.	
–  breach	of	confiden5ality	
– Will	BLP	detect	this	breach?	

•  Suppose	someone	moves	from	clearance	level	top	
secret	to	unclassified	
– Will	BLP	detect	this	breach?	

Need	an	addi@onal	rule	about	changing	levels	

38	



Tranquility	

•  Strong	Tranquility	Property:	
–  Subjects	and	objects	do	not	change	label	during	life5me	of	
the	system	

•  Weak	Tranquility	Property:	
–  Subjects	and	objects	do	not	change	label	in	a	way	that	
violates	the	spirit	of	the	security	policy.	

–  Should	define	
•  How	can	subjects	change	clearance	level?	
•  How	can	objects	change	levels?	

39	



Principle	of	Least	Privilege	
•  Every	subject	has	access	to	the	minimum	amount	of	
informa5on	and	resources	that	are	necessary	

•  Useful	for	implemen5ng	weak	tranquility.	

40	



Limita5ons	of	BLP	
(Covert	Channels)	

•  Covert	channels	through	system	resources	that	normally	not	intended	for	communica5on.	
•  covert	channel	examples:		

page	faults,	file	lock,	cache	memory,	branch	predictors	,	rate	of	compu5ng,	sockets	

•  Highly	noisy,	but	can	use	coding	theory	to	encode	/	decode	informa5on	through	noisy	
channels	

41	

Process	with		
confiden5al	clearance	

trojan	

Read	h
igher	c

lassifie
d	obje

ct	



Covert	Channels	
•  Iden5fying:	Not	easy	because	simple	things	like	the	existence	

of	a	file,	5me,	etc.	could	be	a	source	for	a	covert	channel.	
	
•  Quan5fica5on:	communica5on	rate	(bps)	

•  Elimina5on:	Careful	design,	separa5on,	characteris5cs	of	
opera5on	(eg.	rate	of		opening	/	closing	a	file)	

42	



Biba	Model	
•  Bell-LaPadula	upside	down	
•  Ignores	confiden@ality	and	only	deals	with	integrity		
•  Goals	of	integrity	

–  Prevent	unauthorized	users	from	making	modifica5ons	to	an	object	
–  Prevent	authorized	users	from	making	improper	modifica5ons	to	an	

object	
–  Maintain	consistency	(data	reflects	the	real	world)	

•  Incorporated	in	FreeBSD	

43	



BIBA	Proper5es	
(read	up	/	write	down)	

44	

Proper5es	
No	read	down	:	Simple	Integrity	Theorem	
No	write	up	:	*	Integrity	Theorem	

High	integrity	

Low	integrity	

read	

read	write	

write	

Kenneth	J.	Biba	in	1975	



Why	no	Read	Down?	

•  A	higher	integrity	object	may	be	modified	based	
on	a	lower	integrity	document	

45	

High	integrity	

Low	integrity	



Example	

Read	Up	
•  A	document	from	the	general	

should	be	read	by	all	
	
No	Read	Down	
•  A	private’s	document	should	not	affect	

the	General’s	decisions	

46	

General	

Captains	

Privates	


