
Confinement
(Running Untrusted Programs)

Chester Rebeiro

Indian Institute of Technology Madras

Untrusted	Programs	
•  How	to	run	untrusted	programs	and	not	harm	your	system?	

	Answer:	Confinement	(some:mes	called	sandbox)	

2	

Run	Program	
Here	

If	misbehaves	
Kill	it	

System	

Confinement	

Confinement	

•  Can	be	implemented	at	several	levels	
	

Air	Gap:	Run	untrusted	app	in	an	isolated	hardware	

	
	
	
	

	Not	easy	in	prac:ce	but	(almost)	fool	proof	

3	
Very	coarse	granularity	

Confinement	

•  Can	be	implemented	at	several	levels	
	

Virtual	Machines:	Run	untrusted	app	in	a	different	VM	
	
	
	

4	

Virtual	Machine	Manager	

VM1	
	
	
	
	

VM2	
	
	
	
	

VM3	
	
	
	
	

coarse	granularity	

Confinement	

•  Can	be	implemented	at	several	levels	

Containers:	Run	untrusted	apps	in	different	containers	

	

5	

Host	OS	

	
App
3	
	
	
	
	

Docker	

Bins/Lib	 Bins/Lib	

	
App	
4	
	
	
	
	

	
App
1	
	
	
	
	

	
App	
2	
	
	
	
	

Confinement	within	a	process	
(using	RPCs)	

•  Run	each	module	as	a	different	process	(different	address	spaces)	
–  Use	RPCs	to	communicate	between	modules	
–  Hardware	ensures	that	one	process	does	not	affect	another	

6	

Opera:ng	System	

Case	Study:	OKWS	Web	Server	

7	

•  Logical	separate	modules	present	in	a	single	address	space	
•  A	pool	of	processes	created	at	startup		
•  Weak	security	

Web	browser	
(Client)	

Web	Server	

mod_ssl	

mod_php	Connec:on	

Core	 mod_python	

Database	Server	

A	typical	webserver	architecture	

Apache	Webserver	
(Dependency	Graph)	

8	

P1	 P2	

S1	 S2	

T1	 T3	T2	 T4	

U1	 U2	

Every	child	process	created		
by	Apache,	Includes	all	services	

Px	pool	of	processes	
Sx	services	access	private	databases	
Tx	state	data	
Ux	users	
	
An	edge	from	(a,	b)	implies	b’s	
depenence	on	a.		If	a	gets	compromised	
b	also	will	be	compromised.		
	
	

A	compromised	process	
(Apache	Webserver)	

9	

P1	 P2	

S1	 S2	

T1	 T3	T2	 T4	

U1	 U2	 A	compromised	child	process	will	
compromise	all	services	

Known	abacks	on	Web	Servers	
•  A	bug	in	one	website	can	lead	to	an	aback	in	another	website	

example:	Amazon	holds	credit	card	numbers.	If	it	happens	to	share	the	same	web	server	as	
other	users	this	could	lead	to	trouble.	

	
	

•  Some	known	abacks	on	Apache’s	webserver	and	its	standard	modules	
–  Unintended	data	disclosure	(2002)		

	 	users	get	access	to	sensi:ve	log	informa:on	
–  Buffer	overflows	and	remote	code	execu:on	(2002)	
–  Denial	of	service	abacks	(2003)	
–  Due	to	scrip:ng	extensions	to	Apache	

10	

Principle	of	Least	Privileges	
•  Decompose	system	into	subsystems	
•  Grant	privileges	in	fine	grained	manner	
•  Minimal	access	given	to	subsystems	to	access	system	data	

and	resources	
•  Narrow	interfaces	between	subsystems	that	only	allow	

necessary	opera:ons	
•  Assume	exploit	more	likely	to	occur	in	subsystems	closer	to	

the	user	(eg.	network	interfaces)	
•  Security	enforcement	done	outside	the	system	(eg.	by	OS)	

11	

Achieving	Confinement	
Through	Unix	Tools	
•  chroot:	define	the	file	system	a	process	can	see	
•  setuid:	set	the	uid	of	a	process	to	confine	what	it	can	do	
•  Passing	file	descriptors:	a	privileged	parent	process	can	open	

a	file	and	pass	the	descriptor	to	an	unprivileged	child	

12	

OKWS	Webserver	
(designed	for	least	privileges)	

	
	
	
	

13	

Do	not	expose	more	code/
services	than	required!	
Tradeoff	security	vs	

performance	

	
each	independent	service	runs	in	an	
independent	process	
	

Each	process	should	run	as	an	unprivileged	
user.	

Prevent	interfering	with	
other	processes			

Each	service	should	run	in	a	separate	
chroot	

Allow	access	to	only	necessary	
files.	

Narrow	set	of	database	access	privileges	 Prevent	unrequired	
access	to	the	DB	service	

hbps://www.usenix.org/event/usenix04/tech/general/full_papers/krohn/krohn.pdf	
hbps://www.okcupid.com	
	

Strict	Confinement	

14	

P1	 P2	

S2	

T1	 T3	T2	 T4	

U1	 U2	 Px	pool	of	processes	
Sx	services	access	private	databases	
Tx	state	data	
Ux	users	

No	sharing	of	services	or	processes;	
Strong	confinement;		
Low	performance	due	to	too	many	processes	

S1	

OKWS	

15	

P1	 P2	

S1	 S2	

T1	 T3	T2	 T4	

U1	 U2	 A	compromised	service	will		
compromise	only	the	data		

Each	service	associated	with	
a	single	process	

OKWS	Design	

runs	as	superuser;	bootstrapping;	chroot	directory	is	run	
Monitors	processes;	relaunches	them	if	they	crash	
	

16	

okld	 uid=root	
dir=run	

OKWS	Design	

Launch	okd	(demux	daemon)	to	route	traffice	to	appropriate	service	;		
If	request	is	valid,	forwards	the	request	to	the	appropriate	service	
If	request	is	invalid,	send	HTTP	404	error	to	the	remote	client	
If	request	is	broken,	send	HTTP	500	error	to	the	remote	client	

17	

okld	

oklogd	

okd	

External	connec:ons	
(port	80)	

uid=root	
Dir=run	

uid=oklogd	
dir=log	

uid=okd	
dir=run	

OKWS	Design	

Launch	okd	(demux	daemon)	to	route	traffice	to	appropriate	service	;		
oklogd	daemon	to	write	log	entries	to	disk	
chroot	into	their	own	run:me	jail	(within	a	jail,	each	process	has	just	enough	
access	privileges	to	read	shared	libraries	on	startup,	dump	core	files	if	crash)	
Each	service	runs	as	an	unprivileged	user	
	

18	

okld	

oklogd	

okd	

External	connec:ons	
(port	80)	

uid=root	
Dir=run	

uid=oklogd	
dir=log	

uid=okd	
dir=run	

OKWS	Design	

pubd:	provides	minimal	access	to	local	configura:on	files		
	 19	

okld	

oklogd	

okd	

External	connec:ons	
(port	80)	

uid=root	
Dir=run	

uid=oklogd	
dir=log	

uid=okd	
dir=run	

pubd	

uid=www	
dir=htdocs	

OKWS	Design	

okld	launch	services;	each	service	in	its	chroot	with	its	own	uid	
	 20	

okld	

oklogd	

okd	

External	connec:ons	
(port	80)	

svc1	 svc2	 svc3	

uid=root	
Dir=run	

uid=oklogd	
Dir=log	

uid=okd	
dir=run	

Request	2	sockets	
fork()	
if	(child	process){	
				setuid()	
				chroot()	
				exec()	
}	

uid=u3	
dir=run	

uid=u2	
dir=run	

uid=u1	
dir=run	

Logging	

•  Each	service	uses	the	same	logging	file	
– They	use	the	oklogd	to	write	into	the	file	via	RPCs	
– oklogd	runs	in	its	own	chroot	jail	

•  Any	compromised	service	will	not	be	able	to	modify	/	
read	the	log	

•  A	compromised	service	may	be	able	to	write	arbitrary	
messages	to	the	log	(noise)		

21	

Confinement	within	a	process	
(using	RPCs)	

•  Overheads	due	to	communica:on	may	be	significant	
	communica:on	involves	a	trap	to	OS	,	context	switch	overheads	(saving	the	context,	
	switching	address	spaces,	flushing	of	TLB,	etc.),	coping	of	arguments	from	caller	to	
	callee	stacks.	This	happens	twice	on	every	RPC:	on	invoca:on	and	also	on	return	

•  Assumes	Hardware	and	OS	is	secure	(Hardware	and	OS	may	have	bugs)	
•  Applica:ons	now	highly	dependent	on	OS	(one	app	cannot	work	on	

another	OS,	may	be	a	problem	for	instance	for	web-applica:ons)	

22	

Opera:ng	System	

Web	Browser	Confinement	
•  Why	run	C/C++	code	in	web	browser	

–  Javascript	highly	restric:ve	/	very	slow	
–  Not	suitable	for	high	end	graphics	/	web	games	
–  Would	permit	extensive	client	side	computa:on	

•  Why	not	to	run	C/C++	code	in	web	browser	
–  Security!		

Difficult	to	trust	C/C++	code		

23	

Web	Browser	Confinement	
•  How	to	allow	an	untrusted	module	to	load	into	a	web-browser?	

–  Trust	the	developer		/	User	decides	
Ac:ve	X	

24	

Web	Browser	Confinement	
•  How	to	allow	an	C/C++	in	a	web-browser?	

–  Trust	the	developer		/	User	decides	
Ac:ve	X	

–  Fine	grained	confinement		
•  (eg.	NACL	from	Google)	
•  Uses	Sosware	Fault	Isola:on	

25	

Fine	Confinement	within	a	Process	
•  How	to		

–  restrict	a	module	from	jumping	outside	its	module	
–  Restrict	read/modifica:on	of	data	in	another	module	
	
(jumping	outside	a	module	and	access	to	data	
outside	a	module	should	be	done	only	through	
prescribed	interfaces)	

26	

Applica:on	

Fine	Grained	Confinement	
(Sosware	Fault	Isola:on)	

•  process	space	par::oned	into	logical	fault	domains.	
•  Each	fault	domain	contains	data,	code,	and	an	unique	ID	
•  Code	in	one	domain	not	allowed	to	read/modify	data	in	another	domain.		
•  Code	in	one	domain	cannot	jump	to	another	domain.	
•  The	only	way	is	through	a	low	cost	cross-fault-domain	RPC	interface	not	

involving	the	OS..	

	
	
	
	

27	

Opera:ng	System	
Logical	Fault	Domains	
(with	a	unique	ID	which	

is	used	for	access	
control)	

Code	

Data	

Efficient	Sosware	Fault	Isola:on,	hbp://www.ece.cmu.edu/~ece732/readings/wahbe-sfi.pdf	

Segments	and	Segment	Iden:fier	

28	

process	virtual		
Address	space	

0	

MAX	

0xabcd0000	

0xabcdFFFF	
Segment,		

with		
iden:fier		
0xabcd	

Note:	A	fault	domain	contains	2	segments	(code;	
data+stack+heap)	
	
Virtual	address	space	divided	into	segments	such	that	
addresses	in	the	same	segment	have	the	same	upper	address	
bits	(eg	in	the	above	example	the	segment	iden:fier	is	
0xabcd)	
	
An	untrusted	module’s	object	is	modified	so	that	it	can	jump	
only	to	targets	in	its	code	segment	and	read/write	only	to	
addresses	within	its	data	segment.	

Segments	and	Segment	Iden:fier	

29	

process	virtual		
Address	space	

0	

MAX	

0xabcd0000	

0xabcdFFFF	
Segment,		

with		
iden:fier		
0xabcd	

Modify	untrusted	object	at	load	:me,	
	
All	legal	jumps	will	have	the	same	upper	bits	(same	segment	
iden:fier)	
	
All	legal	data	addresses	generated	will	also	have	the	same	
upper	bits	(same	segment	iden:fier)	
	

Achieving	Segmenta:on	
•  Binary	rewri:ng	sta:cally	

–  At	the	:me	of	loading,	parse	through	the	untrusted	module	to	
determine	all	memory	read	and	write	instruc:ons	and	jump	
instruc:ons.		

	
–  Use	unique	ID	(upper	bits)	to	determine	if	the	target	address	is	
legal	

–  Rewri:ng	can	be	done	either	at	compile	:me	(modifying	
compiler)	or	at	load	:me.	
(currently	only	compile	:me	rewri:ng	feasible)	

	
–  A	verifier	also	needed	when	the	module	is	loaded	into	the	fault	
domain.	

	

30	

Safe	&	Unsafe	Instruc:ons	
Safe	InstrucGons:		

–  Most	instruc:ons	are	safe	(such	as	ALU	instr)	
–  Many	of	the	target	addresses	can	be	resolved	sta:cally	

(jumps	and	data	addresses	within	the	same	segment	id.	These	are	also	
safe	instrucGons)	

31	

Safe	Instruc:ons	
•  Compile	:me	techniques	/	Load	:me	techniques	

–  Scan	the	binary	from	beginning	to	end.	
–  Reliable	disassembly:	by	scanning	the	executable	linear	

•  variable	length	instruc:ons	may	be	issues	

	
•  A	jump	may	land	in	the	middle	of	an	instruc:on	
•  Two	ways	to	deal	with	this—	

–  Ensure	that	all	instruc:ons	are	at	32	byte	offsets	
–  Ensure	that	all	Jumps	are	to	32	byte	offset	
	

32	

25		CD		80		00		00	
AND	%eax,	0x000080CD				

CD		80		00		00	

INT	$0x80	

AND	eax,	0xffffffe0	
JMP	*eax	

Safe	Instruc:ons	
•  Compile	:me	techniques	/	Load	:me	techniques	

–  Scan	the	binary	from	beginning	to	end.	
–  Reliable	disassembly:	by	scanning	the	executable	linear	

•  variable	length	instruc:ons	may	be	issues	

	
•  A	jump	may	land	in	the	middle	of	an	instruc:on	
•  Two	ways	to	deal	with	this—	

–  Ensure	that	all	instruc:ons	are	at	32	byte	offsets	
–  Ensure	that	all	Jumps	are	to	32	byte	offset	
	

33	

25		CD		80		00		00	
AND	%eax,	0x000080CD				

CD		80		00		00	

INT	$0x80	

AND	eax,	0xffffffe0	
JMP	*eax	

Unsafe	Instruc:ons	
	

Prohibited	InstrucGons:	
–  Eg.	int,	syscall,	etc.	

Unsafe	InstrucGons:	Cannot	be	resolved	sta:cally.		
–  For	example	store	0x100,	[r0]	
–  	Unsafe	targets	need	to	be	validated	at	runGme	
–  Jumps	based	on	registers	(eg.	Call	*eax),	and	Load/stores	that	use	

indirect	addressing	are	unsafe.	
Eg.	JMP	*eax	

	

34	

Run:me	Checks	for	Unsafe	Instruc:ons	
(segment	matching)	

35	

Is	instruc:on	
unsafe?	

Is	address	
legal?	

Yes	

Execute	Instruc:on	
(either	Jump	or	Memory	access)	

Yes	

Trap	to	a	system	
error	rou:ne	outside	the	

distrusted	code	

Run	Time	Checks	Segment	Matching	

36	

Insert	code	for	every	unsafe	instruc:on	that	would	trap	if	the	store	
is	made	outside	of	the	segment	
	
4	registers	required	(underlined	registers)	
	
	
	
	
	
	
	
	
	
Overheads	increase	due	to	addi:onal	instruc:ons	but	the	increase	is		
not	as	high	as	with	RPCs	across	memory	modules.	

Address	Sandboxing	
•  Segment	matching	is	strong	checking.		

–  Able	to	detect	the	faul:ng	instruc:on	(via	the	trap)	
•  Address	Sandboxing	:	Performance	can	be	improved	if	this	

fault	detec:on	mechanism	is	dropped.	
–  Performance	improved	by	not	making	the	comparison	but	forcing	the	upper	

bits	of	the	target	address	to	be	equal	to	the	segment	ID	
–  Cannot	catch	illegal	addresses	but	prevents	module	from	illegally	accessing	

outside	its	fault	domain.	

37	

Segment	Matching	:	Check	::	Address	Sandboxing	:	Enforce	

Ensure	Valid	Instruc:ons	

•  How	to	ensure	that	jump	targets	are	at	valid	
instruc:on	loca:ons	
–  Ensure	that	all	instruc:ons	are	at	32	byte	offsets	
–  Ensure	that	all	Jumps	are	to	32	byte	offset	

	

38	

25		CD		80		00		00	
AND	%eax,	0x000080CD				

CD		80		00		00	

INT	$0x80	

AND	eax,	0xffffffe0	
JMP	*eax	

Address	Sandboxing	
Requires	5	dedicated	registers	
	
	
	
	
Enforces	that	the	upper	bits	of	the	dedicated-reg	contains	the	
segment	iden:fier	

39	

Calls	between	Fault	Domains	
(light	weight	cross-fault-domain-RPC)	

40	

Safe	calls	outside	a	fault	domain	is		
by	jump	tables.	
	
Each	entry	in	jump	table	is	a	control	
transfer	instruc:on	whose	target	
address	is	a	legal	entry	point	outside	
the	domain.	
	
Maintained	 in	 the	 read	only	 segment	
of	 the	 program	 therefore	 cannot	 be	
modified.	
	
	

Call	stub	

Return	
stub	

fun	

Jump		
table	

Fault	Domain	1	 Fault	Domain	2	

fun()	

Calls	between	Fault	Domains	
(cross-fault-domain-RPC)	

•  A	pair	of	stubs	for	each	pair	of	fault	domains	
•  Stubs	are	trusted	
•  Present	outside	the	fault	domains	
•  Responsible	for		

–  copying	cross-domain	arguments	between		
domains	

–  manages	machine	state	
(store/restore	registers	as	required)	

–  Switch	execu:on	stack	
–  They	can	directly	copy	call	arguments	to		

the	target	domain	

•  Cheap	
–  No	traps,	no	context	switches	

41	

Call	stub	

Return	
stub	

fun	

Jump		
table	

Fault	Domain	1	 Fault	Domain	2	

fun()	

System	Resources	
•  How	to	ensure	that	one	fault	domain	does	not	alter	system	

resources	used	by	another	fault	domain	
–  For	example,	does	not	close	the	file	opened	by	another	domain	

•  One	way,	
–  Let	the	OS	know	about	the	fault	domains	
–  So,	the	OS	keeps	track	if	such	viola:ons	are	done	at	the	system	level	

•  Another	(more	portable	way),	
–  Modify	the	executable	so	that	all	system	calls	are	made	through	a	well	

defined	interface	called	cross-fault-domain-RPC.	
–  The	cross-fault-domain-RPC	will	make	the	required	checks.	

42	

Shared	Data	(Global	/	Heap	Variables)	

•  Page	tables	in	kernel	modified	so	that	shared	memory	
mapped	to	every	segment	that	needs	access	to	it	

43	

process	virtual		
Address	space	

0	

MAX	

Physical	address	
space	

process	tables	 Shared	
page	

Segmenta:on	
(Hardware	Support	for	Sandboxing)	

44	

Segmenta:on	Example	

45	

(linear	address)	

(logical	address)	

Segment Base Limit

0 - -

1 1000 1000

2 4000 500

3 8000 1000

4 9000 1000

1	
segment	register	(eg	%CS)	

0x3000	
pointer	to	descriptor	table	

0x3000			(descriptor	table)	

100	
offset	register	(eg	%eip)	

+	 1100	

Segmenta:on	In	Sandboxing	
•  Create	segments	for	each	sandbox	
•  Make	segment	registers	(CS,	ES,	DS,	SS)	point	to	these	

segments	

•  Need	to	ensure	that	the	untrusted	code	does	not	modify	the	
segment	registers 		

•  Jumping	out	of	a	segment:	need	to	change	segment	registers	
appropriately	

46	

Usage	

47	

When	to	use	it?	
When	you	have	an	applica:on	with		

	mul:ple	:ghtly	linked	modules.	
	a	lot	of	shared	data	

	
If	your	applica:on	does	not	have	these	characteris:cs,	

	then	hardware	based	solu:ons	are	useful.	
	

Na:ve	Client	
•  Used	in	Google	Chrome	:ll	May	2017	
•  Uses	SFI	to	run	C/C++	code	in	a	web	browser	(with	support	from	

Segmenta:on)	
•  A	trusted	environment	for	opera:ons	such	as	alloca:ng	memory,	

threading,	message	passing,	etc	

48	

hbps://sta:c.googleusercontent.com/media/research.google.com/en//pubs/archive/
34913.pdf	
	

Web	Broswer	

	
	
	

Trusted		
Run:me	

C/C++	
Na:ve	module	
always	loaded	in		
The	range	0	to	256MB	

Na:ve	Client	Rules	
1.  Binary	not	writable	
2.  Start	at	mem	64K	offset	and	extend	to	a	max	of	

256MB	
3.  Indirect	jumps	protected	by	macro	instruc:ons	
4.  Pad	memory	aser	code	with	hlt	instruc:ons	

un:l	page	boundary	
5.  Direct	jumps	are	to	valid	instruc:ons	
6.  No	instruc:ons	that	span	the	32-byte	boundary	
7.  All	instruc:ons	reachable	by	disassembly	from	

the	start	

49	

50	

