
Capability	Based	Systems	

1	

Chester	Rebeiro	
IIT	Madras	

h8ps://homes.cs.washington.edu/~levy/capabook/Chapter1.pdf	



Confused	Deputy	Problem	
•  A	computer	program	that	is	fooled	into	misusing	authority	leading	to	a	privilege	

escalaHon	

2	h8p://people.csail.mit.edu/alinush/6.858-fall-2014/papers/confused-deputy.pdf	

•  Fortran	Compiler	Installed	in	a	directory	say	SYSX	
•  Writes	billing	to	a	file	called	SYSX/BILL	
•  Writes	staHsHcs	to	a	file	called	SYSX/STATS	
•  The	SYSX	directory	is	privileged	and	cannot	be	wri8en	into	by	other	programs	

(only	the	compiler	can	write	into	it	because	it	had	a	LISENCE	file)		

•  Usage	of	the	Fortran	compiler	will	look	like	this:	
SYSX/FORT			file_to_be_compiled				output_file	

MISUSE	BY	USER	
•  SYSX/FORT			file_to_be_compiled				SYSX/BILL	 Bill	file	is	overwri8en	



Confused	Deputy	Problem	
•  Who	is	to	blame?	

3	h8p://people.csail.mit.edu/alinush/6.858-fall-2014/papers/confused-deputy.pdf	

•  Compiler?	
•  Should	the	compiler	check	if	for	the	directory	/	output	file	name	and	prevent	access	to	it?	
	

	(No,	the	name	SYSX	was	not	invented	at	the	Hme	of	wriHng	the	code;	BILL	is	not	the	
													only	sensiHve	file	in	SYSX)	
	

FIXING	THE	PROBLEM	–	SWITCH	HATS	
•  The	compiler	wears	two	hats	

One	hat	when	sensiHve	informaHon	like	the	file	BILL	was	wri8en	into	
								Other	hat	was	based	on	user’s	privileges	to	write	user	file	
	
(However	this	approach	cannot	be	easily	generalized	–	a	program	may	require	mulHple	hats)	



DiscreHonary	Access	Control	
•  By	Butler	Lampson,	1971	(Earliest	Form)	
•  Subjects	:	acHve	elements	requesHng	informaHon	
•  Objects	:	passive	elements	storing	informaHon	

–  Subjects	can	also	be	objects	

4	

objects	

subjects	

Other	acHons	:	ownership	(property	of	objects	by	a	subject),		
																									control	(father-children	relaHonships	between	processes)	

rights	

Butler	Lampson,	“ProtecHon”,	1971	



Unix	Processes	

5	

Process	space	

Every	procedure	called	by	a	program	
executes	within	the	address	space	
defined	by	the	process.	
	
Every	procedure	has	access	to	the	enHre	
process	address	space,	including	
segments	and	files	

Object	
(procedure	/	address	

pointer)	



Capability	Based	Systems	

6	

Objects	can	be	any	logical	enHty	or	physical	enHty:	such	as	a	segment	of	
Memory,	an	array,	a	file,	IO	port	

Access	rights	define	the	operaHons	that	can	be	performed	on	the	object	

unforgeable	



Capability	Based	Systems	
•  Subjects:	users,	programs,	funcHons,	pointers	
•  Each	subject	has	access	to	a	list	of	capabiliHes,	which	specifies	objects	that	

can	be	accessed	

7	

subject	
Capability	list	

write(file_capability,	“HelloWorld”)	

File	capability	does	two	things:	
It	idenHfies	the	file	to	be	wri8en	into	
It	checks	the	capabiliHes	of	the	subject		
to	write	into	that	file	



Capability	Based	Systems	

8	

Programs	cannot	directly	modify	the	capability	list	
	
New	capabiliHes	can	be	obtained	by	requesHng	the	OS	or	by		
special	hardware	instrucHons	

unforgeable	



Capability	Based	Processes	

9	

•  Process	capability	registers	instead	of		
segments	

	
•  A	segment	of	memory	is	only	accessible		

if	a	capability	of	a	segment	is	loaded	into	
a	capability	register	

•  Loading	a	capability	register	is	not		
a	privilege	(does	not	require	OS	support).	
However,	modifying	the	capability	requires	support	from	the	OS.	

•  Address	space	dynamically	changes	depending	on	capability	registers.	Done	by		
changing	capability	registers		

•  A	capability	does	not	have	to	be	local	to	a	process.	That	is,	a	segment	addressed	by	
a	capability	is	independent	of	a	process.	(Easily	implement	shared	libraries)	

	
	
	
	



Capability	Processes	

10	

Process	space	

A	procedure	called	by	a	program	has	
access	to	the	process	space	based	on	its	
capabiliHes.	
	
Easily	support	sandboxing;	
Achieves	principle	of	least	privileges	
easily.	

Object	
(procedure	/	address	

pointer)	



Address	Contexts`	
•  Each	object	idenHfier	is	unique	and		

persistent	
	
•  It	is	used	by	the	OS	to	locate	an	object	

•  The	idenHfier	is	assigned	amer	the		
object	is	created	and	that	idenHfier	
is	never	resused	even	amer	the	object	is	deleted.	

•  Unlike	convenHonal	addressing	schemes,	where	addresses	are	valid	within	a	
process,	in	capability	systems,	the	object	idenHfiers	are	valid	throughout	the	
system.	
–  Adv.	CapabiliHes	can	be	freely	passed	from	one	process	to	another	and	used	to	access	shared	

data		

•  Files	in	secondary	devices	are	also	referred	to	by	their	object	idenHfiers.		

11	



Capability	Based	Systems	
•  Hydra,	L4	micro	kernel,	Cambridge	CAP	processor	
•  EROS	
•  Google	Fuchsia	
•  CHERI	
•  Intel	iAPX	432	

12	


