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What is a Fat Pointer? 

●  Typically metadata contains the “base” and “bounds” of the pointer which is 
essentially the valid accessible memory region by the pointer 

●  if( (ADDRESS >= PTR.base) && (ADDRESS <= PTR.bound) ) 
 perform load or store 

       else 
 jump to error handler 

METADATA ADDRESS PTR 
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Recap of Memory-based attacks 

●  Spatial (Buffer overflow) 
○  Stack overflow 

○  Heap overflow 

○  Format string attacks 

●  Temporal 
○  Use-after-free 

○  Double free 
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Object based 

Key concept: Base and bounds associated per object 
Advantage: 

●  Memory layout of objects is not changed 
○  Improves source and binary compatibility 

Disadvantage: 

●  Overflows can occur on a sub-object basis 
●  Performance bottleneck: Object lookup is a range lookup 

○  Typically implemented using splay trees 

●  Out-of-bounds pointers need special care 

Examples: [1], [2], [3] 

struct {  
    char id[8]; 
    int account_balance; 
 }  bank_account; 
char* ptr = &(bank_account.id); 
strcpy(ptr, "overflow..."); 
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Pointer based 

Key concept: Base and bounds associated per pointer 
Advantages: 
●  Can enforce complete spatial safety 
●  Out-of-bounds pointers are taken care implicitly 

Disadvantage: 
●  Performance overhead: Propagation and checking of base and bounds 
●  Changes memory layout in a programmer visible way 
●  Do not handle arbitrary casts 
●  May be not support dynamic linking of libraries 

Examples: [4], [5], [6], [7] 
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Agenda 

1. SoftBound [4] 

2. Low-fat Pointers [5] 

3. WatchDog [6] 

4. Shakti-T [7] 
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1. SoftBound (PLDI ‘09) 
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SoftBound 

●  Tries to combine advantages of both object and pointer based solutions 

●  Source code compatibility 
○  Disjoint metadata: Avoids any programmer visible memory layout changes 

○  Allows arbitrary casts 

●  Completeness 
○  Guarantees spatial safety 

○  Includes a formal proof 

●  Separate compilation 
○  Allows library code to be recompiled with SoftBound and dynamically linked 
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Pointer dereference check 

value= *ptr; 

check (ptr, ptr_base, ptr_bound, sizeof(*ptr)) 

void check(ptr, base, bound, size) { 
    if ((ptr < base) || (ptr+size > bound)) {  
        abort(); 
    }  
} 
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Creating pointers  

1. Explicit memory allocation i.e. malloc() ptr = malloc(size); 
ptr_base = ptr; 
ptr_bound = ptr + size; 
if (ptr == NULL) 
    ptr_bound = NULL; 

2. Taking the address of a global or a stack 
allocated variable using the “&” operator 

int array[100]; 
ptr = &array; 
ptr_base = &array[0]; 
ptr_bound = ptr_base+ 
                    sizeof(array); 
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Pointer arithmetic and pointer assignment 

●  new_ptr= ptr + index 

●  No checks are required 
○  Out-of-bounds value of newptr_bound is fine as 

long as “newptr” is not dereferenced 

newptr = ptr + index; 
newptr_base = ptr_base; 
newptr_bound = ptr_bound; 
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Optional narrowings of pointer bounds 

1. Creating a pointer to a field of a structure. 
 

struct { ... int num; ... } *n; 
... p = &(n->num); 
p_base = max(&(n->num), n_base); 
p_bound = min(p_base + sizeof(n->num), n_bound); 

2. Creating a pointer to an element of an array. 
 

NARROWED 

memset(&arr[4], 0, size); 
p_base = arr_base; 
p_bound = arr_bound; 

NOT NARROWED 
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In-Memory Pointer Metadata Encoding 

int** ptr; 
int* new_ptr; 
new_ptr= *ptr; 

int** ptr; 
int *new_ptr; 
. . . 
check(ptr, ptr_base, ptr_bound, sizeof(*ptr)); 
newptr = *ptr; 
newptr_base = table_lookup(ptr)->base; 
newptr_bound = table_lookup(ptr)->bound; 

1.  Load 

int** ptr; 
int* new_ptr; 
(*ptr)= new_ptr; 

2.  Store int** ptr; 
int *new_ptr; 
. . . 
check(ptr, ptr_base, ptr_bound, sizeof(*ptr)); 
(*ptr) = new_ptr; 
table_lookup(ptr)->base = newptr_base; 
table_lookup(ptr)->bound = newptr_bound; 
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Metadata Propagation with Function Calls 

int func(char *s) 
{ . . . } 
int val = func(ptr); 

int sb_func(char *s, void* s_base, void* s_bound) 
{ . . . } 
int val = sb_func(ptr, ptr_base, ptr_bound); 

●  Functions that return a pointer are changed to return a 3-
element structure by value 
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Disadvantages 

●  Performance overhead of 67% on average 

●  Does not provide security against temporal attacks 
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2. Low-Fat Pointers (CCS ‘13) 
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Low-fat Pointers 
●  Use the upper unused bits of virtual address to store the base and bounds 
●  New, compact fat-pointer encoding and implementation (BIMA) 
●  Dedicated hardware checks in parallel if the Effective Address (EA) is within 

the valid base and bounds 
○  Does not affect the processor clock speed 

●  Assumptions: 
○  The memory is tagged 

■  Every word has a type associated with it 
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Aligned Encoding 

●  Assumption 
○  The pointer is aligned on a boundary that is a power of 2 

○  The size of the segment the pointer is referencing is also a power of two (i.e. 2B for some B) 

●  The base can be determined by replacing B bits in the LSB with 0’s 
  base= A - (A & ((1 << B) -1) ) 

●  The bound can be determined by replacing B bits in the LSB with 1’s 

●  Therefore, only B bits are required to represent both the base and the bounds 

●  Disadvantage: 
○  Very high memory fragmentation 
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BIMA encoding 

B I M A 

63 58 57 52 51 46 45 0 

6 6 6 46 

●  B:  Block size exponent 

●  I:   Minimum bound 

●  M:  Maximum bound   

●  A:  Address 

19 



The formula 

     carry  = 1 << (B + |I|) 

       Atop = ( A & (carry-1) ) 

     Mshift = M << B 

     Ishift  = I << B 

      Dunder = (A >> B)[5:0] < I ?  (carry | Atop) - Ishift : Atop - Ishift 

       Dover  = (A >> B)[5:0] > M?  (carry | Mshift) - Atop : Mshift - Atop 
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Example 

     carry  = 1 << (B + |I|) 
      Atop  = ( A & (carry-1) ) 
    Mshift  = M << B 
    Ishift  = I << B 
     Dunder  = (A >> B)[5:0] < I ?   

   (carry | Atop) - Ishift : Atop - Ishift 
      Dover  = (A >> B)[5:0] > M? 

   (carry | Mshift) - Atop : Mshift - Atop 

Base = 2 
Bound = 13 
Address = 7 

     carry  = 1 << (1+6) = ‘b1000_0000 
      Atop  = ‘b111 & (‘b0111_111)  = ‘b111 = 7 
    Mshift  = 7 << 1 = 14 
    Ishift  = 1 << 1 = 2 
     Dunder  = 3 < 1 ?   

   (carry | Atop) - Ishift : 7 - 2 = 5 
      Dover  = (A >> B)[5:0] > M? 

   (carry | Mshift) - Atop : 14 - 7 = 7 
21 



Drawbacks 

●  Cannot express Out-of-Bounds pointer implicitly 

●  Memory fragmentation (~3%) 

●  Managing the base and bounds of stack allocated variables 

●  Prevents only spatial, and not temporal memory attacks 
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3. WatchDog (ISCA ‘12) 
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Key idea 

●  Associate a base, bound, lock and a key with every pointer 

●  Hardware is responsible for propagation and checking of metadata 

●  Software manages the values of these metadata 

●  To prevent temporal attacks, fetch the value at the lock address, and check if 

it matches the value of the key 
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Temporal protection (Conceptual) 

●  Assumptions: 
○  Every register has a sidecar part which stores the metadata (id or lock) 

○  Every memory address has a shadow region which stores the id of the pointer stored in that 

memory location 
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Lock and Key Mechanism   
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Code instrumentation 
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Drawbacks 

●  The metadata overhead per pointer is 256bits 

●  Separate lock location cache 
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Existing Hardware Solutions (Common design choice) 
●  Store the base and bound values (in shadow registers) in the register file 

alongside the value. 

●  It has the following implications: 

○  Most of the base and bound shadow registers remain unused 

○  When register spilling occurs, the base and bounds are also discarded 

○  If aliased pointers exists in the registers, the base and bound values will have duplicate entries 
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4. Shakti-T (HASP ‘17) 
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Proposed solution 

1.  Have a common memory region called Pointer Limits Memory (PLM) to 
store the values of base and bounds 
•  Declare a new register which points the base address of PLM 
•  Base and bounds are associated with a pointer by 
   the value of the offset (pointer_id) 
 
 

2.  Add a 1-bit tag to every memory word 
•  0: Data/Instruction 

•  1: Pointer 
PLBR 

( Data + 
Instructions ) 

PLM 

MEMORY 
Tag bit 
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3.  Maintain a separate table alongside the register file that stores the 
values of base and bounds (and the pointer_id) 
•  One level indexing is used to associate a GPR holding a pointer with its corresponding 

values of base and bounds 

Proposed solution 
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Proposed solution 
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•  Write tag     [ wrtag rd, imm ] 
•  Write PLM     [ wrplm rs1, r2, rs3 ] 
•  Load base and bounds   [ ldbnb rd, rs1 ] 
•  Load pointer    [ ldptr rd, rs1, imm ] 
•  Write special register   [ wrspreg rs1, imm ] 
•  Read special register   [ rdspreg rd, imm ] 
•  Function store    [ fnst rs1, imm(rs2) ] 
•  Function load    [ fnld rd, imm(rs1) ] 

New Instructions 
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•  Dynamic memory allocation 

1.  After malloc returns with the base address, the bounds is computed as 
   bound = base + n 

2.  Store the value of base and bound in the PLM at the address PLBR+ptr_id using the 
wrplm instruction. 

3.  When storing the initialized value of ptr in the memory at an address addr, store the 
value of ptr_id at addr+8 

char *ptr = malloc(n); 

Example programs 
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•   A function call 

function foo( ) { 
    char *ptr5; 
    ptr5= malloc(20); 
    … 
    bar( ); 
    … 
} 

ptr_id= 5 

Example programs 

36 



•   A function call 

function foo( ) { 
    char *ptr5; 
    ptr5= malloc(20); 
    … 
    bar( ); 
    … 
} 

Example programs 
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•   A function call 

function foo( ) { 
    char *ptr5; 
    ptr5= malloc(20); 
    … 
    bar( ); 
    … 
} 

Example programs 
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•   A function call 

function bar( ) { 
    char *ptr6; 
    ptr6= malloc(40); 
    … 
    int c= 4+5; 
    … 
    free(ptr6); 
    return; 
} 

Example programs 
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•   A function call 

function bar( ) { 
    char *ptr6; 
    ptr6= malloc(40); 
    … 
    int c= 10+3; 
    … 
    free(ptr6); 
    return; 
} 

Example programs 
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•   A function call 

function bar( ) { 
    char *ptr6; 
    ptr6= malloc(40); 
    … 
    int c= 10+3; 
    … 
    free(ptr6); 
    return; 
} 

Example programs 
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•   A function call 

function bar( ) { 
    char *ptr6; 
    ptr6= malloc(40); 
    … 
    int c= 10+3; 
    … 
    free(ptr6); 
    return; 
} 

ptr5     R1 

Example programs 
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•   A function call 

function foo( ) { 
    char *ptr5; 
    ptr5= malloc(20); 
    … 
    bar( ); 
    … 
} 

Example programs 
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The pipeline 

44 



  Safety 
checking 

Instrumentation 
methodology 

Metadata size for 
n aliased pointers 

Memory 
fragmentation 

Performance 
overhead (delay) 

Intel MPX  Spatial Compiler 128 x n No N/A 
HardBound  Spatial Hardware 128 x n No HW: N/A 

SW: 10% 
Low-fat Pointer  Spatial Hardware 0 Yes HW: 5% 

Watchdog  Spatial & 
Temporal 

Compiler + 
Hardware 

(256 x n) + 64 No HW: N/A 
SW: 25% 

WatchdogLite  Spatial & 
Temporal 

Compiler (256 x n) + 64 
 
 

No SW: 29% 

Shakti-T  Spatial & 
Temporal 

Hardware (64 x n) + 128 No  HW: 1.5%+ 

Comparison with existing solutions 
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Backup slides 
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A 5-stage pipelined processor 

Fetch Decode & 
Operand Fetch Execute Memory 

access Writeback 
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Microarchitecture (Shakti-C) 
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