
FAT POINTERS

Arjun Menon

IIT Madras

What is a Fat Pointer?

●  Typically metadata contains the “base” and “bounds” of the pointer which is
essentially the valid accessible memory region by the pointer

●  if((ADDRESS >= PTR.base) && (ADDRESS <= PTR.bound))
 perform load or store

 else
 jump to error handler

METADATA ADDRESS PTR

2

Recap of Memory-based attacks

●  Spatial (Buffer overflow)
○  Stack overflow

○  Heap overflow

○  Format string attacks

●  Temporal
○  Use-after-free

○  Double free

3

Object based

Key concept: Base and bounds associated per object
Advantage:

●  Memory layout of objects is not changed
○  Improves source and binary compatibility

Disadvantage:

●  Overflows can occur on a sub-object basis
●  Performance bottleneck: Object lookup is a range lookup

○  Typically implemented using splay trees

●  Out-of-bounds pointers need special care

Examples: [1], [2], [3]

struct {
 char id[8];
 int account_balance;
 } bank_account;
char* ptr = &(bank_account.id);
strcpy(ptr, "overflow...");

4

Pointer based

Key concept: Base and bounds associated per pointer
Advantages:
●  Can enforce complete spatial safety
●  Out-of-bounds pointers are taken care implicitly

Disadvantage:
●  Performance overhead: Propagation and checking of base and bounds
●  Changes memory layout in a programmer visible way
●  Do not handle arbitrary casts
●  May be not support dynamic linking of libraries

Examples: [4], [5], [6], [7]

5

Agenda

1. SoftBound [4]

2. Low-fat Pointers [5]

3. WatchDog [6]

4. Shakti-T [7]

6

1. SoftBound (PLDI ‘09)
7

SoftBound

●  Tries to combine advantages of both object and pointer based solutions

●  Source code compatibility
○  Disjoint metadata: Avoids any programmer visible memory layout changes

○  Allows arbitrary casts

●  Completeness
○  Guarantees spatial safety

○  Includes a formal proof

●  Separate compilation
○  Allows library code to be recompiled with SoftBound and dynamically linked

8

Pointer dereference check

value= *ptr;

check (ptr, ptr_base, ptr_bound, sizeof(*ptr))

void check(ptr, base, bound, size) {
 if ((ptr < base) || (ptr+size > bound)) {
 abort();
 }
}

9

Creating pointers

1. Explicit memory allocation i.e. malloc() ptr = malloc(size);
ptr_base = ptr;
ptr_bound = ptr + size;
if (ptr == NULL)
 ptr_bound = NULL;

2. Taking the address of a global or a stack
allocated variable using the “&” operator

int array[100];
ptr = &array;
ptr_base = &array[0];
ptr_bound = ptr_base+
 sizeof(array);

10

Pointer arithmetic and pointer assignment

●  new_ptr= ptr + index

●  No checks are required
○  Out-of-bounds value of newptr_bound is fine as

long as “newptr” is not dereferenced

newptr = ptr + index;
newptr_base = ptr_base;
newptr_bound = ptr_bound;

11

Optional narrowings of pointer bounds

1. Creating a pointer to a field of a structure.

struct { ... int num; ... } *n;
... p = &(n->num);
p_base = max(&(n->num), n_base);
p_bound = min(p_base + sizeof(n->num), n_bound);

2. Creating a pointer to an element of an array.

NARROWED

memset(&arr[4], 0, size);
p_base = arr_base;
p_bound = arr_bound;

NOT NARROWED

12

In-Memory Pointer Metadata Encoding

int** ptr;
int* new_ptr;
new_ptr= *ptr;

int** ptr;
int *new_ptr;
. . .
check(ptr, ptr_base, ptr_bound, sizeof(*ptr));
newptr = *ptr;
newptr_base = table_lookup(ptr)->base;
newptr_bound = table_lookup(ptr)->bound;

1.  Load

int** ptr;
int* new_ptr;
(*ptr)= new_ptr;

2.  Store int** ptr;
int *new_ptr;
. . .
check(ptr, ptr_base, ptr_bound, sizeof(*ptr));
(*ptr) = new_ptr;
table_lookup(ptr)->base = newptr_base;
table_lookup(ptr)->bound = newptr_bound;

13

Metadata Propagation with Function Calls

int func(char *s)
{ . . . }
int val = func(ptr);

int sb_func(char *s, void* s_base, void* s_bound)
{ . . . }
int val = sb_func(ptr, ptr_base, ptr_bound);

●  Functions that return a pointer are changed to return a 3-
element structure by value

14

Disadvantages

●  Performance overhead of 67% on average

●  Does not provide security against temporal attacks

15

2. Low-Fat Pointers (CCS ‘13)
16

Low-fat Pointers
●  Use the upper unused bits of virtual address to store the base and bounds
●  New, compact fat-pointer encoding and implementation (BIMA)
●  Dedicated hardware checks in parallel if the Effective Address (EA) is within

the valid base and bounds
○  Does not affect the processor clock speed

●  Assumptions:
○  The memory is tagged

■  Every word has a type associated with it

17

Aligned Encoding

●  Assumption
○  The pointer is aligned on a boundary that is a power of 2

○  The size of the segment the pointer is referencing is also a power of two (i.e. 2B for some B)

●  The base can be determined by replacing B bits in the LSB with 0’s
 base= A - (A & ((1 << B) -1))

●  The bound can be determined by replacing B bits in the LSB with 1’s

●  Therefore, only B bits are required to represent both the base and the bounds

●  Disadvantage:
○  Very high memory fragmentation

18

BIMA encoding

B I M A

63 58 57 52 51 46 45 0

6 6 6 46

●  B: Block size exponent

●  I: Minimum bound

●  M: Maximum bound

●  A: Address

19

The formula

 carry = 1 << (B + |I|)

 Atop = (A & (carry-1))

 Mshift = M << B

 Ishift = I << B

 Dunder = (A >> B)[5:0] < I ? (carry | Atop) - Ishift : Atop - Ishift

 Dover = (A >> B)[5:0] > M? (carry | Mshift) - Atop : Mshift - Atop

20

Example

 carry = 1 << (B + |I|)
 Atop = (A & (carry-1))
 Mshift = M << B
 Ishift = I << B
 Dunder = (A >> B)[5:0] < I ?

 (carry | Atop) - Ishift : Atop - Ishift
 Dover = (A >> B)[5:0] > M?

 (carry | Mshift) - Atop : Mshift - Atop

Base = 2
Bound = 13
Address = 7

 carry = 1 << (1+6) = ‘b1000_0000
 Atop = ‘b111 & (‘b0111_111) = ‘b111 = 7
 Mshift = 7 << 1 = 14
 Ishift = 1 << 1 = 2
 Dunder = 3 < 1 ?

 (carry | Atop) - Ishift : 7 - 2 = 5
 Dover = (A >> B)[5:0] > M?

 (carry | Mshift) - Atop : 14 - 7 = 7
21

Drawbacks

●  Cannot express Out-of-Bounds pointer implicitly

●  Memory fragmentation (~3%)

●  Managing the base and bounds of stack allocated variables

●  Prevents only spatial, and not temporal memory attacks

22

3. WatchDog (ISCA ‘12)
23

Key idea

●  Associate a base, bound, lock and a key with every pointer

●  Hardware is responsible for propagation and checking of metadata

●  Software manages the values of these metadata

●  To prevent temporal attacks, fetch the value at the lock address, and check if

it matches the value of the key

24

Temporal protection (Conceptual)

●  Assumptions:
○  Every register has a sidecar part which stores the metadata (id or lock)

○  Every memory address has a shadow region which stores the id of the pointer stored in that

memory location

25

Lock and Key Mechanism

26

Code instrumentation

27

Drawbacks

●  The metadata overhead per pointer is 256bits

●  Separate lock location cache

28

Existing Hardware Solutions (Common design choice)
●  Store the base and bound values (in shadow registers) in the register file

alongside the value.

●  It has the following implications:

○  Most of the base and bound shadow registers remain unused

○  When register spilling occurs, the base and bounds are also discarded

○  If aliased pointers exists in the registers, the base and bound values will have duplicate entries

29

4. Shakti-T (HASP ‘17)
30

Proposed solution

1.  Have a common memory region called Pointer Limits Memory (PLM) to
store the values of base and bounds
•  Declare a new register which points the base address of PLM
•  Base and bounds are associated with a pointer by
 the value of the offset (pointer_id)

2.  Add a 1-bit tag to every memory word
•  0: Data/Instruction

•  1: Pointer
PLBR

(Data +
Instructions)

PLM

MEMORY
Tag bit

31

3.  Maintain a separate table alongside the register file that stores the
values of base and bounds (and the pointer_id)
•  One level indexing is used to associate a GPR holding a pointer with its corresponding

values of base and bounds

Proposed solution

32

Proposed solution

33

•  Write tag [wrtag rd, imm]
•  Write PLM [wrplm rs1, r2, rs3]
•  Load base and bounds [ldbnb rd, rs1]
•  Load pointer [ldptr rd, rs1, imm]
•  Write special register [wrspreg rs1, imm]
•  Read special register [rdspreg rd, imm]
•  Function store [fnst rs1, imm(rs2)]
•  Function load [fnld rd, imm(rs1)]

New Instructions

34

•  Dynamic memory allocation

1.  After malloc returns with the base address, the bounds is computed as
 bound = base + n

2.  Store the value of base and bound in the PLM at the address PLBR+ptr_id using the
wrplm instruction.

3.  When storing the initialized value of ptr in the memory at an address addr, store the
value of ptr_id at addr+8

char *ptr = malloc(n);

Example programs

35

•  A function call

function foo() {
 char *ptr5;
 ptr5= malloc(20);
 …
 bar();
 …
}

ptr_id= 5

Example programs

36

•  A function call

function foo() {
 char *ptr5;
 ptr5= malloc(20);
 …
 bar();
 …
}

Example programs

37

•  A function call

function foo() {
 char *ptr5;
 ptr5= malloc(20);
 …
 bar();
 …
}

Example programs

38

•  A function call

function bar() {
 char *ptr6;
 ptr6= malloc(40);
 …
 int c= 4+5;
 …
 free(ptr6);
 return;
}

Example programs

39

•  A function call

function bar() {
 char *ptr6;
 ptr6= malloc(40);
 …
 int c= 10+3;
 …
 free(ptr6);
 return;
}

Example programs

40

•  A function call

function bar() {
 char *ptr6;
 ptr6= malloc(40);
 …
 int c= 10+3;
 …
 free(ptr6);
 return;
}

Example programs

41

•  A function call

function bar() {
 char *ptr6;
 ptr6= malloc(40);
 …
 int c= 10+3;
 …
 free(ptr6);
 return;
}

ptr5 R1

Example programs

42

•  A function call

function foo() {
 char *ptr5;
 ptr5= malloc(20);
 …
 bar();
 …
}

Example programs

43

The pipeline

44

 Safety
checking

Instrumentation
methodology

Metadata size for
n aliased pointers

Memory
fragmentation

Performance
overhead (delay)

Intel MPX Spatial Compiler 128 x n No N/A
HardBound Spatial Hardware 128 x n No HW: N/A

SW: 10%
Low-fat Pointer Spatial Hardware 0 Yes HW: 5%

Watchdog Spatial &
Temporal

Compiler +
Hardware

(256 x n) + 64 No HW: N/A
SW: 25%

WatchdogLite Spatial &
Temporal

Compiler (256 x n) + 64

No SW: 29%

Shakti-T Spatial &
Temporal

Hardware (64 x n) + 128 No HW: 1.5%+

Comparison with existing solutions

45

References
[1] D. Dhurjati and V. Adve. Backwards-Compatible Array Bounds Checking for C with Very Low Overhead. In
 Proceeding of the 28th International Conference on Software Engineering, May 2006.
[2] F. C. Eigler. Mudflap: Pointer Use Checking for C/C++. In GCC Developer’s Summit, 2003.
[3] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure Virtual Ar- chitecture: A Safe Execution Environment
 for Commodity Operating Systems. In Proceedings of the 21st ACM Symposium on Operating Systems
 Principles, Oct. 2007.
[4] Nagarakatte, Santosh, et al. "SoftBound: Highly compatible and complete spatial memory safety for C." ACM
 Sigplan Notices 44.6 (2009): 245-258. Link: http://cis.upenn.edu/acg/papers/pldi09_softbound.pdf
[5] Kwon, Albert, et al. "Low-fat pointers: compact encoding and efficient gate-level implementation of fat pointers
 for spatial safety and capability-based security." Proceedings of the 2013 ACM SIGSAC conference on
 Computer & communications security. ACM, 2013. Link: http://ic.ese.upenn.edu/pdf/fatptr_ccs2013.pdf
[6] Nagarakatte, Santosh, Milo MK Martin, and Steve Zdancewic. "Watchdog: Hardware for safe and secure
 manual memory management and full memory safety." ACM SIGARCH Computer Architecture News. Vol. 40.
 No. 3. IEEE Computer Society, 2012.
 Link: http://repository.upenn.edu/cgi/viewcontent.cgi?article=1740&context=cis_papers
[7] Menon, Arjun, et al. "Shakti-T: A RISC-V Processor with Light Weight Security Extensions." Proceedings of the
 Hardware and Architectural Support for Security and Privacy. ACM, 2017.

46

Backup slides
47

A 5-stage pipelined processor

Fetch Decode &
Operand Fetch Execute Memory

access Writeback

48

Microarchitecture (Shakti-C)

49

