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Ciphers	

Alice	 Bob	

Plaintext	
“A?ack	at	Dawn!!”	

untrusted	communicaGon	link	

Mallory	

E	 D	

KE	 KD	

“A?ack	at	Dawn!!”	
encrypGon	 decrypGon	

#%AR3Xf34^$	
(ciphertext)	

Only	sees	ciphertext.		
cannot	get	the	plaintext	message	
because	she	does	not	know	the	key	

2	

Are of 2 types 
•  Symmetric Key 
•  Asymmetric Key 
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Ciphers	
•  Symmetric	Key	Algorithms	

–  EncrypGon	and	DecrypGon	use	the	same	key	
–  i.e.	KE	=	KD	=	K				(kept	secret)	
–  Examples:	

•  Block	Ciphers	:	DES,	AES,	PRESENT,	etc.	
•  Stream	Ciphers	:	A5,	Grain,	etc.	

•  Asymmetric	Key	Algorithms	
–  EncrypGon	and	DecrypGon	keys	are	different	
–  KE	≠	KD	(KE	kept	public;	KD	kept	secret)	
–  Examples:		

•  RSA	
•  ECC	

3	
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A	CryptoSystem	

Alice	 Bob	

Plaintext	
“A?ack	at	Dawn!!”	

untrusted	communicaGon	link	E	 D	

K	 K	

“A?ack	at	Dawn!!”	
encrypGon	 decrypGon	

#%AR3Xf34^$	
(ciphertext)	

4	

A	cryptosystem	is	a	five-tuple	(P,C,K,E,D),	where	the	following	are	
saGsfied:	

•  P	is	a	finite	set	of	possible	plaintexts	
•  C	is	a	finite	set	of	possible	ciphertexts	
•  K,	the	keyspace,	is	a	finite	set	of	possible	keys	
•  	E		is	a	finite	set	of	encrypGon	funcGons		
•  	D		is	a	finite	set	of	decrypGon	funcGons	
•  ∀K∈K 

	 	EncrypGon	Rule	:	∃eK	∈	E, 	and	
	 	DecrypGon	Rule	:	∃dK∈	D		
														such	that	(eK:	P→C),	(dk:	C→P) and	∀x∈P,	dK(eK(x))	=	x.	
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Pictorial	View	of	Encryp;on	

5	

Depending	on	the	value	of	the	key,	
a	mapping	between	the	P	and	C	is		
chosen.	
	
The	encrypGon	map	then	fixes	a		
Mapping	between	C	and	P 
 
DecrypGon	is	the	exact	inverse	of	
encrypGon.	

If	we	know	the	key,	then	
mapping	is	easily	done.	
	
If	we	don’t	know	the	key,	
mapping	is	difficult.	
Mallory	needs	to	first	
figure	out	which	of	the	
keys	is	used.	
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A<acker’s	Capabili;es	
(Cryptanalysis)	

•  A?ack	models	
–  ciphertext	only	a?ack	
–  known	plaintext	a?ack	
–  chosen	plaintext	a?ack		

	Mallory	has	temporary	access	to	the	encrypGon	machine.	He	can	choose	the	
plaintext	and	get	the	ciphertext.	

–  chosen	ciphertext	a?ack	
	Mallory	has	temporary	access	to	the	decrypGon	machine.	He	can	choose	the	
ciphertext	and	get	the	plaintext.	

	
6	

Mallory	wants	to	some	how	get	informa;on	about	the	secret	key.	
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Kerckhoff’s	Principle	for	cipher	design	

•  Kerckhoff’s	Principle	
–  The	system	is	completely	known	to	the	a?acker.	This	includes	

encrypGon	&	decrypGon	algorithms,	plaintext			
–  only	the	key	is	secret	

•  Why	do	we	make	this	assumpGon?	
–  Algorithms	can	be	leaked	(secrets	never	remain	secret)	
–  or	reverse	engineered	

7	history	of	A5/1:	h?ps://en.wikipedia.org/wiki/A5/1		
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Facts	about	eK	
•  It	is	injecGve	(one-to-one)	

–  i.e.	ek(x1)	=	ek(x2)	iff	x1	=	x2	
– Why?	

•  If	not,	then	Bob	does	not	know	if	the	ciphertext	came	
from	x1	or	x2	

•  If P = C,	then	the	encrypGon	funcGon	is	a	
permutaGon	
	 C is	a	rearrangement	of	P	

8	
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A	ShiH	Cipher	

•  Plaintext	set	:	P =	{0,1,2,3	…,	25}	
•  Ciphertext	set	:	C =	{0,1,2,3	…,	25}	
•  Keyspace	:	K =	{0,1,2,3	…,	25}	
•  EncrypGon	Rule	:	eK(x)	=	(x	+	K)	mod	26,		
•  DecrypGon	Rule	:	dk(x)	=	(x	–	K)	mod	26	
	 	where	K∈K and	x∈P 		

•  Note:		
–  Each	K	results	in	a	unique	mapping	eK:	P→C and	dK:C→P 
–   dk(eK(x))	=	x	
–  The	encrypCon/decrypCon	rules	are	permutaCons	

9	
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Using	the	ShiH	Cipher	

10	

attackatdawn DWWDFNDWFDZQ 

plaintext	
ciphertext	

plaintext	
ciphertext	

with	K=3	
0					1					2					3					4				5					6					7					8					9			10			11		12		

13		14			15			16			17		18		19			20			21		22			23		24			25		
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ShiH	Cipher	Mappings	

11	

•  Each	K	results	in	a	unique	mapping	eK:	P→C and	dK:C→P	
•  The	mappings	are	injecGve	(one-to-one)		

EncrypGon	Rule	
eK(x)	=	(x	+	K)	mod	26,		

	
DecrypGon	Rule		

dk(x)	=	(x	–	K)	mod	26	
	

plaintext	 a	 b	 c	 d	 …	 x	 y	 z	

		 0	 1	 2	 3	 		 23	 24	 25	

		 		 		 		 		 		 		 		 		

		 K=8	

ciphertext	8	 9	 10	 11	 		 5	 6	 7	

		 I	 J	 K	 L	 		 F	 G	 H	

		 K=10	

ciphertext	10	 11	 12	 13	 		 7	 8	 9	

		 K	 L	 M	 N	 		 H	 I	 J	

		 K=13	

ciphertext	13	 14	 15	 16	 		 10	 11	 12	

		 N	 O	 P	 Q	 		 K	 L	 M	

y1	,	y2	∈	C	
dK(y1)	≠	dK(y2)	
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How	good	is	the	shiH	cipher?	

•  A	good	cipher	has	two	properGes	
– Easy	to	compute	

•  SaGsfied	
– An	a?acker	(Mallory),	who	views	the	ciphertext	
should	not	get	any	informaGon	about	the	
plaintext.	

•  Not	SaGsfied!!	
•  The	a?acker	needs	at-most	26	guesses	to	determine	
the	secret	key	….	

–  This	is	an	exhausGve	key	search	(known	as	brute	force	a?ack)	

12	
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Cryptanalysis	of	ShiH	Cipher	

13	
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History	&	Usage	

•  Used	by	Julius	Caesar	in	55	AD	with	K=3.	This	variant	
known	as	Caesar’s	cipher.	

•  Augustus	Caesar	used	a	variant	with	K=-1	and	no	
mod	operaGon.		

•  Shiu	ciphers	are	extremely	simple,	sGll	used	in	
modern	Gmes	
–  By	Russian	Soldiers	in	first	world	war	
–  Last	known	use	in	2011	(by	militant	groups)	

14	InteresGng	Read:	h?ps://en.wikipedia.org/wiki/Caesar_cipher	
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Subs;tu;on	Cipher	

•  Plaintext	set	:	P =	{a,b,c,d,…,z}	
•  Ciphertext	set	:	C =	{A,B,C,D,…,Z}	
•  Keyspace	:	K =	{π	|	such	that	π	is	a	permutaGon	of	
the	alphabets}	
–  Size	of	keyspace	is	26!			

•  EncrypGon	Rule	:	eπ(x)	=	π(x),		
•  DecrypGon	Rule	:	dπ	(x)	=	π-1(x)	
		

15	
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Subs;tu;on	Cipher	Example	

		

16	

Note	that	the	shiu	cipher	is	a	special	case	of	the	subsGtuGon	cipher	which	includes	only	26		
of	the	26!	keys	
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Cryptanalysis	of	Subs;tu;on	Cipher	
(frequency	analysis)	

17	
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Cryptanalysis	of	Subs;tu;on	Cipher	
(from	their	frequency	characterisCcs)	

18	

Frequency	analysis	of	plaintext	alphabets	 Frequency	analysis	of	ciphertext	alphabets	
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Usage	&	Variants	
•  Evidence	showed	that	it	was	used	before	Caesar’s	cipher	
•  The	technique	of	‘subsGtuGon’	sGll	used	in	modern	day	block	

ciphers	
•  Frequency	based	analysis	a?ributed	to	Al-kindi,	an	Arab	

mathemaGcian	(in	AD	800)	

19	
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Polyalphabe;c	Ciphers	
•  Problem	with	the	simple	subsGtuGon	cipher	:	

–  A	plaintext	le?er	always	mapped	to	the	same	ciphertext	le?er	(mono	
alphabeGc)	
	eg.	‘Z’	always	corresponds	to	plaintext	‘a’	

–  facilitaGng	frequency	analysis	

•  A	variaGon	(polyalphabeGc	cipher)	
–  A	plaintext	le?er	may	be		mapped	to	mulGple	ciphertext	le?ers	
–  eg.	‘a’	may	correspond	to	ciphertext	‘Z’	or	‘T’	or	‘C’	or	‘M’		
–  More	difficult	to	do	frequency	analysis	(but	not	impossible)	

–  Example	:	Vigenere	Cipher,	Hill	Cipher	

20	
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Vigenère	Cipher	

21	

plaintext	(x)	

key	(k)	

(x	+	k)	mod	26	

ciphertext	

|keyspace|	=	26m	

(where	m	is	the	length		
	of	the	key)	
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Cryptanalysis	of	Vigenère	Cipher	

•  Frequency	analysis	more	difficult		
										(but	not	impossible)	

•  A?ack	has	two	steps	
	

22	
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Determining	Key	Length	
(Kaisiki	Test)	

•  Kasiski	test	by	Friedrich	Kasiski	in	1863	
•  Let	m	be	the	size	of	the	key	
•  observaGon:	two	idenGcal	plaintext	segments	will	encrypt	to	

the	same	ciphertext	when	they	are	δ	apart	and	(m	|	δ)	

•  If	several	such	δs	are	found	(i.e.	δ1,	δ2,	δ3,	….)	then		
–  m|δ1,	m|δ2,	m|δ3,	….		
–  Thus	m	divides		the	gcd	of	(δ1,	δ2,	δ3,	….)		

23	

when	(m	divides	δ)	
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Example	

24	

The distance between the two “CSASTP” is 16. 
The key length is either 16,8,4,2, or 1. 
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Increasing	Confidence	of	Key	Length	
(Index	of	Coincidence)	

•  Consider	a	mulG	set	of	le?ers	of	size	N	
																							say	s	=	{a,b,c,d,a,a,e,f,e,g,…..}	

•  Probability	of	picking	two	‘a’	characters	(without	
replacement)	is	

•  Sum	of	probabiliGes	of	picking	two	similar	characters	is			
												

		

25	

∑
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25
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nnI

probability	the	first	pick	is	‘a’	
	

0n :	Number	of	occurrences	of				
		‘a’	in	S	

probability	the	second	pick	is	‘a’	
	

1
100

−

−
×
N
n

N
n

index	of	coincidence	
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Index	of	Coincidence	
•  Consider	a	random	permutaGon	of	the	alphabets	(as	in	the	subsGtuGon	

cipher)	

•  Note	that	:													;		thus	the	value	of	Ic	remains	unaltered	

•  Number	of	occurrence	of	an	alphabet	in	a	text	depends	on	the	language,	
thus	each	language	will	have	a	unique	Ic	value	

26	

s	=	{a,b,c,d,a,a,e,f,e,g,…..}	 S	=	{X,M,D,F,X,X,Z,G,Z,J,…..}	

Xa nn =

Index	of	Coincidence,	NSA	Declassified	Document	
h?ps://www.nsa.gov/public_info/_files/friedmanDocuments/PublicaGons/FOLDER_231/41760429079956.pdf	

English 	0.0667 	French 	0.0778	
German 	0.0762 	Spanish 	0.0770	
Italian 	0.0738 	Russian 	0.0529	
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Modular	ArithmeGc	
slides	in	MathemaGcal	Background	

27	

Modular	Arithme;c	
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Affine	Cipher	
•  A	special	case	of	subsGtuGon	cipher	
•  EncrypGon:		y	=	ax	+	b	(mod	26)	
•  DecrypGon:		x	=	(y	–	b)a-1	(mod	26)	

–  plaintext			:	x	∈	{0,1,2,3,	….	25}	
–  ciphertext	:	y	∈	{0,1,2,3,	….	25}	
–  key													:	(a,b)		

•  where									a	and	b	∈	{0,1,2,3,	….	25}	and		
•  																					gcd(a,	26)	=	1	
	

•  Example:	a=3,	b=5	
–  EncrypGon:	x=4;	y	=	(3*4	+	5)mod	26	=	17	
–  DecrypGon:	x	=	(y	–	b)a-1	mod	26	
	

																						a-1	=	9															(Note	that	3	*	9	mod	26	=	1)	
																						(17	-	5)*9	mod	26	=	4																	 		

	 		
	

28	

why	need	this	condiGon?	

a.a-1	=	1	mod	26.	The	inverse	
exists	only	if	a	and	26	are	coprime	
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When	gcd(a,26)	≠	1?	

•  Let	gcd(a,	26)	=	d	>	1	
–  then	d|a	and	d|26			(i.e.	d	mod	26	=	0)	
– y	=	ax	+	b	mod	26	
Let	ciphertext	y	=	b	;						ax	=	0	mod	26	
In	this	case	x	can	have	two	decrypted	values	:	0	and	d.	

				Thus	the	funcGon	is	not	injecGve….	cannot	be	used	for	an	
encrypGon	

	
			What	is	the	ciphertext	when	(1)	x1	=	1	and	(2)	x2	=	14	are	
encrypted	with	the	Affine	cipher	with	key	(4,	0)?	

	

	 29	
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Usage	&	Variants	of	Affine	Cipher	

•  Ciphers	built	using	the	Affine	Cipher	
– Caesar’s	cipher	is	a	special	case	of	the	Affine	
cipher	with	a	=	1	

– Atbash	
•  b	=	25,		a-1	=	a	=	25			
•  EncrypGon	:	y	=	25x	+	25	mod	26	
•  DecrypGon	:	x	=	25x	+	25	mod	26	

30	

EncrypGon	funcGon	
same	as	decrypGon	funcGon	
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Hill	Cipher		
•  EncrypGon:		y	=	xK	(mod	26)	
•  DecrypGon:	x	=	yK-1	(mod	26)	

–  plaintext			:	x	∈	{0,1,2,3,	….	25}	
–  ciphertext	:	y	∈	{0,1,2,3,	….	25}	
–  key													:	K	is	an	inverGble	matrix	

•  example		

31	

⎥
⎦

⎤
⎢
⎣

⎡
=

73
811

K ⎥
⎦

⎤
⎢
⎣

⎡
=−

1123
1871K 26mod11 =• −KK

h i l l 
	
(7,8)(11,11)	

[ ] [ ]

[ ] [ ]87)26(mod
1123
187

823

823)26(mod
73
811

87

=⎥
⎦

⎤
⎢
⎣

⎡
×

=⎥
⎦

⎤
⎢
⎣

⎡
× encrypGon	

decrypGon	

plaintext	

h i l l 

h i l l	 (7,8)(11,11)	 (23,8)(24,9)	 XIYJ 
plaintext	 ciphertext	



CR 

Cryptanalysis	of	Hill	Cipher	

•  ciphertext	only	a?ack	is	difficult	
•  known	plaintext	a?ack	

32	

(7,8)(11,11)	 (23,8)(24,9)	⎥
⎦

⎤
⎢
⎣

⎡
×

2221

1211

kk
kk

known	plaintext	 corresponding	ciphertext	

241111
2387

2111

2111

=+

=+

kk
kk

Form	equaGons	and	solve	to	get	the	key	

91111
887

2212

2212

=+

=+

kk
kk
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Permuta;on	Cipher	
•  Ciphers	we	seen	so	far	were	subsGtuGon	ciphers	

–  Plaintext	characters	subsGtuted	with	ciphertext	characters	

•  Alternate	technique	:	permutaGon	
–  Plaintext	characters	re-ordred	by	a	random	permutaGon	

33	

h i l l	 XIYJ 
plaintext	 ciphertext	

h i l l	 LIHI 
plaintext	 ciphertext	
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Permuta;on	Cipher	

•  Example	plaintext	:	attackatdawn 
–  key	:	(1,3,2,0)				here	is	of	length	4	and	a	permutaGon	of	
(0,1,2,3)	

•  It	mean’s	0th	character	in	plaintext	goes	to	1st	character	in	
ciphertext	(and	so	on…)	

•  cryptanalysis	:	4!	possibiliGes	

						

34	

a t t a c k a t d a w n 

A	 A	 T	 T	 T	 C	 A	 K	 N	 D	 W	 A	

plaintext	

ciphertext	
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Rotor	Machines	(German	Enigma)	

•  Each	rotor	makes	a	permutaGon	
–  Adding	/	removing	a	rotor	would	change	the	

ciphertext	

•  AddiGonally,	the	rotors	rotates	with	a	gear	
auer	a	character	is	entered	

•  Broken	by	Alan	Turing	
	

35	
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Block	Ciphers	
•  General	principal	of	all	ciphers	seen	so	far	

–  Plaintext	divided	into	blocks	and	each	block	encrypted	with	the	same	key	
–  Blocks	can	vary	in	length	starGng	from	1	character	

	
	
	

•  examples:	subsGtuGon	ciphers,	polyalphabeGc	ciphers,	permutaGon	ciphers,	etc.	

36	

E	

plaintext	

key	

ciphertext	

plaintext	block	
ciphertext	block	
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Stream	Ciphers	
•  Each	block	of	plaintext	is	encrypted	with	a	different	key	

37	

E	

plaintext	

key	

ciphertext	

plaintext	block	
ciphertext	block	

key	block	

Observe:	the	key	should	be	variable	length…	we	call	this	a	key	stream.	

Formally,		 )...()()(... 321321 321
xexexeyyyy kkk==

Typically a bit, but can also more than a bit 

Typically ex-or operation 
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Stream	Ciphers	
(how	they	work)	

38	

,....;;
...

333222111

321

kxykxykxy
yyyy

⊕=⊕=⊕=

=
stream	cipher	output	:		

),...,,,,( 1321 −= iii kkkkKfk
ith		key	is	a	funcGon	of	K	and	the	first	i-1	plaintexts	

How	to	generate	the	ith	key	:	

ikkkk ,...,,, 321 Is	known	as	the	keystream	
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Genera;ng	the		
keystream	in	prac;ce	
•  Using	LFSRs	(Linear	feedback	shiu	registers)	
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b3	 b2	 b1	 b0	IV keystream 

b3	 b2	 b1	 b0	

1	 0	 0	 0	

0	 1	 0	 0	

0	 0	 1	 0	

1	 0	 0	 1	

1	 1	 0	 0	

0	 1	 1	 0	

1	 0	 1	 1	

0	 1	 0	 1	

1	 0	 1	 0	

1	 1	 0	 1	

1	 1	 1	 0	

1	 1	 1	 1	

0	 1	 1	 1	

0	 0	 1	 1	

0	 0	 0	 1	

1	 0	 0	 0	

Initialization Vector 


