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Encryp-on	

Alice	 Bob	

Plaintext	
“A?ack	at	Dawn!!”	

untrusted	communicaGon	link	

Mallory	
How	do	we	design	ciphers?	

E	 D	

K	 K	

“A?ack	at	Dawn!!”	
encrypGon	 decrypGon	

#%AR3Xf34^$	
(ciphertext)	
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Cipher	Models	
(What	are	the	goals	of	the	design?)	

Computa-on	Security	
	
	
	
	
Uncondi-onal	Security	

	

3	

	
	
	

My	cipher	can	withstand	all	
a?acks	with	complexity	less	

than	22048	
	

The	best	a?acker	with	the	
best	computaGon	resources	

would	
take	3	centuries	to	a?ack	

my	cipher	
	

	
	
	
	

My	cipher	is	secure	against	
all	a?acks	irrespecGve	of	

the	
a?acker’s	power.	
I	can	prove	this!!	

	

	

This	model	is	also	known	as	Perfect	Secrecy.	
Can	such	a	cryptosystem	be	built?	
We	shall	invesGgate	this.	

Provable	Security	
(Hardness	rela-ve	to	
	a	tough	problem)	

	
If	my	cipher	can	be	
broken	then	large	
numbers	can	be	
factored	easily	



CR 

Analyzing	Uncondi-onal	Security	

•  AssumpGons	
– Ciphertext	only	a?ack	model		
										The	a?acker	only	has	informaGon	about	the	
											ciphertext.	The	key	and	plaintext	are	secret.	

•  We	first	analyze	a	single	encrypGon	then	relax	
this	assumpGon	by	analyzing	mulGple	
encrypGons	with	the	same	key	
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Encryp-on	

	

P C 

ek	

•  For	a	given	key,	the	encrypGon	(ek)	defines	an	injecGve	mapping	between	the	
plaintext	set	(P)	and	ciphertext	set	(C)	

•  Alice	picks	a	plaintext	x	∈	P	,	chooses	a	key	(independently),	and	encrypts	it	to	
obtain	a	ciphertext	y	∈	C 

plaintext	set	 ciphertext	set	
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Plaintext	Distribu-on 		

Plaintext	Distribu-on	
•  Let	X	be	a	discrete	random	variable	over	the	set	P 
•  Alice	chooses	x	from	P	based	on	some	probability	distribuGon	

–  Let	Pr[X	=	x]	be	the	probability	that	x	is	chosen	
–  This	probability	may	depend	on	the	language	
	
	
	
	

		
	

	

		
	

P 

a	

b	

c	

Plaintext	set	

Pr[X=a]	=	1/2	

Pr[X=b]	=	1/3	

Pr[X=c]	=	1/6	

Note	:	Pr[a]	+	Pr[b]	+	Pr[c]	=	1	
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Key	Distribu-on	
Key	Distribu-on 
•  Alice	&	Bob	agree	upon	a	key	k	chosen	from	a	key	set	K 
•  Let	K	be	a	random	variable	denoGng	this	choice	

keyspace	

Pr[K=k1]	=	¾	

Pr[K=k2]	=	¼	

ek1	

ek2	There	are	two	keys	in	the	keyset	
thus	there	are	two	possible	encrypGon	
mappings	
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•  Let	Y	be	a	discrete	random	variable	over	the	set	C 
•  The	probability	of	obtaining	a	parGcular	ciphertext	y		

depends	on	the	plaintext	and	key	probabiliGes		
	

Ciphertext	Distribu-on	

∑==
k

k ydkyY ))(Pr()Pr(]Pr[

ek1	

ek2	

P	

Q	

R	

P	

Q	

R	

Pr[Y	=	P]	=	Pr(k1)	*	Pr(c)	+	Pr(k2)	*	Pr(c)	
															=	(3/4	*	1/6)	+	(1/4	*	1/6)	=		1/6	

a	

b	

c	

a	

b	

c	

plaintext	

Pr[X=a]	=	1/2	

Pr[X=b]	=	1/3	

Pr[X=c]	=	1/6	

keyspace	

Pr[K=k1]	=	¾	

Pr[K=k2]	=	¼	

Pr[Y	=	Q]	=	Pr(k1)	*	Pr(b)	+	Pr(k2)	*	Pr(a)	
																=	(3/4	*	1/3)	+	(1/4	*	1/2)	=		3/8	

Pr[Y	=	R]	=	Pr(k1)	*	Pr(a)	+	Pr(k2)	*	Pr(b)	
																=	(3/4	*	1/2)	+	(1/4	*	1/3)	=		11/24	

Note:	Pr[Y=P]	+	Pr[Y=Q]	+	Pr[Y=R]	=	1	
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AUacker’s	Probabili-es	

•  The	a?acker	wants	to	determine	the	plaintext	x	
•  Two	scenarios	

–  A?acker	does	not	have	y	(a	priori	Probability)	
•  Probability	of	determining	x	is	simply	Pr[x]	
•  Depends	on	plaintext	distribuGon	(eg.	Language	charcterisGcs)	

– A?acker	has	y	(a	posteriori	probability)	
•  Probability	of	determining	x	is	simply	Pr[x|y]	
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A	posteriori	Probabili-es	
•  How	to	compute	the	a?acker’s	a	posteriori	probabiliGes?	

–  Bayes’	Theorem	
						

]|Pr[ yYxX ==

]Pr[
]|Pr[]Pr[]|Pr[

y
xyxyx ×

=

probability	of	this	ciphertext	

probability	of	the	plaintext	

∑
=

=
})(:{
]Pr[]|Pr[

xydk k

kxy

The	probability	that	y	is	obtained	
given	x	depends	on	the	keys	
which	provide	such	a	mapping	

?	
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Pr[y|x]	
Pr[P|a]	=	0	
Pr[P|b]	=	0	
Pr[P|c]	=	1	
Pr[Q|a]	=	Pr[k2]	=	¼	
Pr[Q|b]	=	Pr[k1]=	¾ 	 		
Pr[Q|c]	=	0	
Pr[R|a]	=	Pr[k1]	=	¾ 		
Pr[R|b]	=	Pr[k2]	=	¼ 		
Pr[R|c]	=	0	
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keyspace	

Pr[K=k1]	=	¾	

Pr[K=k2]	=	¼	

ek1	

ek2	

P	

Q	

R	

P	

Q	

R	

a	

b	

c	

a	

b	

c	
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Compu-ng	A	Posteriori	Probabili-es	

Pr[a|P]	=	0							
Pr[a|Q]	=	1/3	
Pr[a|R]	=	9/11	

12	

]Pr[
]|Pr[]Pr[]|Pr[

y
xyxyx ×

=
plaintext	

Pr[X=a]	=	1/2	

Pr[X=b]	=	1/3	

Pr[X=c]	=	1/6	

ciphertext	

Pr[Y=P]	=	1/6	

Pr[Y=Q]	=	3/8	

Pr[Y=R]	=	11/24	

Pr[y|x]	

Pr[P|a]	=	0	
Pr[P|b]	=	0	
Pr[P|c]	=	1	

Pr[Q|a]	=	¼	
Pr[Q|b]	=	¾	
Pr[Q|c]	=	0	

Pr[R|a]	=	¾	
Pr[R|b]	=	¼	
Pr[R|c]	=	0	

Pr[b|P]	=	0							
Pr[b|Q]	=	2/3	
Pr[b|R]	=	2/11	

Pr[c|P]	=	1							
Pr[c|Q]	=	0	
Pr[c|R]	=	0	

If	the	a?acker	sees	ciphertext	P	then	she	would	know	the	plaintext	was	c	
If	the	a?acker	sees	ciphertext	R	then	she	would	know	a	is	the	most	likely	plaintext	
Not	a	good	encryp-on	mechanism!!	
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Perfect	Secrecy	
•  Perfect	secrecy	achieved	when	

	a	posteriori	probabili-es	=	a	priori	probabili-es		

		
						i.e	the	a?acker	learns	nothing	from	the	ciphertext	
	
	
	

	

]Pr[]|Pr[ xyx =

13	

Intui-vely,	by	seeing	the	safe,	you	learn		
nothing	about	what	is	in	it	
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Perfect	Secrecy	Example	
•  Find	the	a	posteriori	probabiliGes	for	the	following	scheme	
•  Verify	that	it	is	perfectly	secret.	

14	

keyspace	

Pr[K=k1]	=	1/3	

Pr[K=k2]	=	1/3	

Pr[K=k3]	=	1/3	

plaintext	

Pr[X=a]	=	1/2	

Pr[X=b]	=	1/3	

Pr[X=c]	=	1/6	

ek1	

ek2	

P	

Q	

R	

P	

Q	

R	

a	

b	

c	

a	

b	

c	

ek3	 P	

Q	

R	

a	

b	

c	
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Observa-ons	on	Perfect	Secrecy	

15	

]Pr[]|Pr[ yYxXyY ====Follows	from		
Baye’s	theorem	

Perfect	Indis-nguishability	

]|Pr[]|Pr[ 21 xXyYxXyY =====Pxx ∈∀ 21,

Perfect	Secrecy	iff	

Perfect	secrecy	has	nothing	to	do	with	plaintext	distribuGon.		
Thus	a	crypto-scheme	will	achieve	perfect	secrecy	irrespecGve	of		
the	language	used	in	the	plaintext.	
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Shi_	Cipher	with	a	Twist	

•  Plaintext	set	:	P =	{0,1,2,3	…,	25}	
•  Ciphertext	set	:	C =	{0,1,2,3	…,	25}	
•  Keyspace	:	K =	{0,1,2,3	…,	25}	
•  EncrypGon	Rule	:	eK(x)	=	(x	+	K)	mod	26,		
•  DecrypGon	Rule	:	dk(x)	=	(x	–	K)	mod	26	
	 	where	K∈K and	x∈P 		

					The	Twist	:		
	(1)	the	key	changes	azer	every	encrypGon		

				(2)	keys	are	picked	with	uniform	probability	

16	
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The	Twisted	Shi_	Cipher	is	Perfectly	
Secure	

17	

Keys	chosen	with	uniform	probability	

This	is	1	because	the	sum	is	over	
all	values	of	x	

For	every	pair	of	y	and	x,	there	
is	exactly	one	key	.	Probability	of		
that	key	is	1/26	

y	

P C 
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The	Twisted	Shi_	Cipher	is	Perfectly	
Secure	

18	
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Shannon’s	Theorem	

Intui-on	:	
Every	y	∈	C can	result	from	any	of	the	possible	plaintexts	x	
Since	|K|	=	|P|	there	is	exactly	one	mapping	from	each	plaintext	to	y	
Since	each	key	is	equi-probable,	each	of	these	mappings	is	equally	probable	

19	

If	|K|	=	|C|	=	|P|	then	the	system	provides	perfect	secrecy	iff		
		(1)	every	key	is	used	with	equal	probability	1/|K|,	and	
		(2)	for	every	x	∈	P and	y	∈	C,	there	exists	a	unique	key	k	∈	K	such	that	ek(x)	=	y	
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One	Time	Pad		
(Verman’s	Cipher)	

20	

exor	

plaintext	

key	

ciphertext	

plaintext	
ciphertext	block	

key	

length	L	

length	L	

chosen	uniformly	from	keyspace	of	size	2L	
Pr[K	=	k]	=	1/2L	
	

EncrypGon	:		
DecrypGon	:	

ykx =⊕
xky =⊕
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One	Tme	Pad	(Example)	

21	
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One	Time	Pad	is	Perfectly	Secure	

•  Proof	using	indisGnguishability	

22	

LkK

ykxxXkKxXxXyY

2
1]Pr[

 from]|,Pr[]|Pr[

===

=⊕======

Xxx

xXyYxXyY L

∈∀

======

21

21

,

]|Pr[
2
1]|Pr[

This	implies	perfect	Indis-nguishability	
that	is	independent	of	the	plaintext	distribu-on	
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Limita-ons	of	Perfect	Secrecy	
•  Key	must	be	at	least	as	long	as	the	message	

–  Limits	applicability	if	messages	are	long	

•  Key	must	be	changed	for	every	encrypGon	
–  If	the	same	key	is	used	twice,	then	an	adversary	can	compute	
the	ex-or	of	the	messages	

			
			The	a?acker	can	then	do	language	analysis	to	determine	y1	and	
y2	

23	

2121

22

11

yyxx
ykx
ykx

⊕=⊕

=⊕

=⊕
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Ciphers	in	Prac-ce	

•  Perfect	secrecy	is	difficult	to	achieve	in	pracGce	
•  ComputaGonal	Security	rather	than	Perfect	Security	
•  Instead	we	use	a	crypto-scheme	that	cannot	be	
broken	in	reasonable	9me	with	reasonable	success	

•  This	means,	
–  Security	is	only	achieved	against	adversaries	that	run	in	
polynomial	Gme	

–  A?ackers	can	potenGally	succeed	with	a	very	small	
probability	(a?ackers	need	to	be	very	lucky	to	succeed)	

24	
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Quan-fying	Informa-on	

25	
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A	Metric	to	Quan-fy	Informa-on	

26	

lassis	
hole	
lok	

There	is	one	alphabet	missing	in	each	of	these	words.	Can	you	find	the	alphabet	so	
that	the	words	make	sense?	

nough	
ntwork	
dvic	

classics	
chole	
clock	

enough	
network	
device	

Frequently	occurring	le?ers	(like	e)	contain	less	informaGon	than	non-frequent	le?ers	
(like	c)	

We	need	to	have	funcGon	to	quanGfy	informaGon!	
	
AddiGonally,	the	funcGon	should	be	(1)	conGnuous	(2)	should	be	able	to	sum	
individual	informaGon	(eg.	X1	:	Message	1,	X2	:	Message	2)	
																I(X1,	X2)	=	I(Message	1)	+	I(Message	2)	
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Metric	to	Quan-fy	Informa-on	

27	

Claude	Shannon	

H (X) = pi log2
1
pi

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑

Pr(e)	=	0.12702													-log2(0.12702)	=	2.97	
Pr(a)	=	0.08167													-log2(0.08167)	=	3.61	
Pr(m)	=	0.02406											-log2(0.02406)	=		5.37	
Pr(c	)	=	0.02782												-log2(0.02782)	=		5.16	
Pr(q)	=	0.0095															-log2(0.0095)	=	6.71	
...	
...	
...	

A	higher	probability		
indicates	lesser	informaGon	
content.	
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Metric	to	Quan-fy	Informa-on	

28	

Claude	Shannon	

H (X) = pi log2
1
pi

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑

To	find	the	average	informaGon	content	of	a	language	
find	weighted	sum	as	follows	
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Metric	to	Quan-fy	Informa-on	

29	

Claude	Shannon	

H (X) = pi log2
1
pi

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑

To	find	the	average	informaGon	content	of	a	language	
find	weighted	sum	as	follows	
Call	this	term	the	Entropy	

Entropy	of	English		
										Contemporary	:	4.03	bits															
										Shakesphere				:	4.106	bits	
German																						:		4.08	bits	
French																								:		4.00	bits	
Italian																									:	3.98	bits	
Spanish																						:	3.98	bits	

Maximum	Entropy	occurs	when	each	alphabet	is	equally	likely	(ie.	1/26).		
The	maximum	entropy	is	log_2(1/26)	=	4.7	

Entropy	provides	the		
average	number	of	
bits	needed	to	
represent	leUers	in	
the	language	
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Entropy	of	the	Weather	Forecast	

30	

M1	:	Sunny	(with	probability	0.05)	
M2	:	Cloudy	(with	probability	0.15)	
M3	:	Light	Rain	(with	probability	0.70)	
M4	:	Heavy	Rain	(with	probability	0.10)	

Tomorrow I the weather will be 
__________

Weather	Forecast	

H (Forecast) = pi log2
1
pi

⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑

= −((0.05)log2 0.05+ (0.15)log2 0.15+ (0.7)log2 0.7+ (0.1)log2 0.1)
=1.319
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Entropy	and	Uncertainity	
•  Alice	thinks	of	a	number	(0	or	1)	
•  The	choice	is	denoted	by	a	discrete	random	variable	X.	

•  What	is	Mallory’s	uncertainty	about	X?	
–  Depends	on	the	probability	distribuGon	of	X	
				(Mallory	knows	the	probability	distribuGon)	

31	

X		
What	is	X?	
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Uncertainty	
•  Lets	assume	Mallory	know	this	probability	

distribuGon.	
•  If	Pr[X	=	1]	=	1	and	Pr[X	=	0]	=	0	

–  Then	Mallory	can	determine		with	100%	accuracy	

•  If	Pr[X	=	0]	=	.75	and	Pr[X	=	1]	=	.25	
–  Mallory	will	guess	X	as	0,	and	gets	it	right	75%	of	

the	Gme	

•  If	Pr[X=0]	=	Pr[X	=	1]	=	0.5	
–  Mallory’s	guess	would	be	similar	to	a	uniformly	

random	guess.	Gets	it	right	½	the	Gme.	

	
32	

What	is	X?	
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What	is	the	Entropy	of	X?	

Pr[X=0]	=	p	and	Pr[X=1]	=	1	-	p	
	H(X)	=	–	plog2p	–	(1-p)	log2(1	–	p)	

H(X)p=0	=	0,	H(X)p=1	=	0,	H(X)p=.5	=	1		

33	

X		
What	is	X?	

using	limp->0	(p	log		p)	=	0	

H(
X)
	

0	 1	.5	
p	

1	
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Proper-es	of	H(X)	
•  If	X	is	a	random	variable,	which	takes	on	values	{1,2,3,….n}	

with	probabiliGes	p1,	p2,	p3,	….pn,	then		
	
1.  H(X)	≤	log2	n	

	

	
2.  When	p1=	p2=p3=	…	pn	=	1/n	then	H(X)	=	log2n	
	

34	

Example	an	8	face	dice.	
If	the	dice	is	fair,	then	we	obtain	the	maximum	entropy	of	3	bits	
If	the	dice	is	unfair,	then	the	entropy	is	<	3	bits	
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Entropy	and	Coding	

•  Entropy	quanGfies	InformaGon	content	
					“Can	we	encode	a	message	M	in	such	a	way	that	the	
average	length	is	as	short	as	possible	and	hopefully	
equal	to	H(M)?”	

					Huffman	Codes		:	
														allocate	more	bits	to	least	probable	events	

									allocate	less	bits	to	popular	events							

35	
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Example	
•  S	=	{A,	B,	C,	D}		are	4	symbols		
•  Probability	of	Occurrence	is	:	

					P(A)	=	1/8,	P(B)	=	½,	P(C)	=	1/8,	P(D)	=	1/4	

36	

C	 A	
1/8	 1/8	

0	 1	

1/4	1/4	
D	

1/2	

1	0	

1/2	
B	

1	0	

Encoding	
A	:	111	
B	:	0	
C	:	110	
D:	10	

To	decode,	with	each	bit	
traverse	the	tree	from	
root	unGl	you	reach	a	
leaf.	
	
Decode	this?	
1101010111	
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Example	:		
Average	Length	and	Entropy	

•  S	=	{A,	B,	C,	D}		are	4	symbols		
•  Probability	of	Occurrence	is	:	

					p(A)	=	1/8,	p(B)	=	½,	p(C)	=	1/8,	p(D)	=	¼	

•  Average	Length	of	Huffman	code	:		
							3*p(A)	+	1*p(B)	+	3*p(C	)	+	2*p(D)	=		1.75	

•  Entropy	H(S)	=	
								-1/8	log2(8)	–	½	log2(2)	–	1/8	log2(8)	–	¼	log2(4)	

													=	1.75	

37	

Encoding	
A	:	111	
B	:	0	
C	:	110	
D:	10	



CR 

Example		
Entropy	Considering	One	LeUer	

•  Consider	a	language	with	26	le?ers	of	the	set	S	=	{s1,	s2,	s3,	
…..,	s26}.	Suppose	the	language	is	characterized	by	the	
following	probabiliGes.	What	is	the	language	entropy?	

38	

26,...,12,11
128
1)(

10,9,8,7,6,5,4,3
64
1)(

4
1)(,

2
1)( 21

==

==

==

iforsP

iforsP

sPsP

i

i

625.2
8
7

8
6

2
1

2
1

128log
128
11664log

64
184log

4
12log

2
1

)(
1log)(

)(
26

1

)1(
1

=+++=

⎟
⎠

⎞
⎜
⎝

⎛+⎟
⎠

⎞
⎜
⎝

⎛++=

=

=

∑
=i i

i sP
sP

SHr
Language	Entropy	

7.426log ==R
Maximum	Entropy	
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Example	
	Entropy	Considering	Two	LeUers	

•  In	the	set	S	=	{s1,	s2,	s3,	…..,	s26},	suppose	the	diagram	
probabiliGes	is	as	below.	What	is	the	entropy?	

39	

P(si+1 | si ) = P(si+2 | si) =
1
2

for i =1 to 24

P(s26 | s25 ) = P(s1 | s25 ) = P(s1 | s26 ) = P(s2 | s26 )=
1
2

all other probabilities are 0

H (S (2) ) = 2 P(si, sj )log
1

P(si, sj )i, j=1
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Entropy	considering	2	leUers	
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Redundancy	in	Languages	

Languages	are	redundant	
Entropy	reduces	as	we	consider	more	number	of	alphabets	in	the	
entropy	computaGon	
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H (S) = 2.625
H (S (2) ) = 3.625
H (S (2) )−H (S) =1

This	means,	that	having	the	first	le?er,	we	can	
obtain	the	second	one	using	one	bit	only.	
i.e.	if	we	know	the	first	le?er,	then	there	are	
only	2	equally	possible	candidates	for	the	
second.	
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Measuring	the	Redundancy	in	a	
Language	

•  Let	S	be	le?er	in	a	language	(eg.	S	=	{A,B,C,D})	
•  																																												is	a	set	represenGng	messages	of	length	k		
•  Let	S(k)	be	a	random	variable	in	S 
•  The	average	informaGon	in	each	le?er	is	given	by		

the	rate	of	S(k).		

•  rk	for	English	is	between	1.0	and	1.5	bits/le?er	(when	k	is	large)		
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)times(kSSSSSS ×××××=S

k
SHr
k

k
)( )(

= r1 = H (S) = 2.625
r2 = H (S

(2) ) / 2 = 3.625 / 2 =1.8125

In	our	example,	
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Measuring	the	Redundancy	in	a	
Language	

•  Absolute	Rate(R)	:	The	maximum	amount	of	informaGon	per	
character	in	a	language	
–  the	absolute	rate	of	language	S	is	R	=	log2	|S|	
–  For	English,	|S|	=	26,	therefore	R	=	4.7	bits	/	le?er	

•  Redundancy	of	a	language	is		
														D	=	R	–	rk	
–  For	English	when	rk	=	1,	then	D	=	3.7	à	around	70%	redundant	
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r1 = H (S) = 2.625 D1 = 4.7− 2.625= 2.075 (44% redundant)
r2 = H (S

(2) ) =1.8125 D2 = 4.7−1.8125= 2.8875(61%redundant)
As	we	increase	the	message	size	Rate	reduces;	inferring	less	informaGon	per	le?er	

Redundancy	increases		
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Condi-onal	Entropy	

•  Suppose	X	and	Y	are	two	discrete	random	variables,	
then	condiGonal	entropy	is	defined	as	

•  CondiGonal	entropy	means	….	
– What	is	the	remaining	uncertainty	about	X	given	Y	
–  H(X|Y)	≤	H(X)	with	equality	when	X	and	Y	are	independent	
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Derive	using	the	fact	that	p(a|b)	=	p(a,b)	/	p(b)	
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Joint	Entropy	
•  Suppose	X	and	Y	are	two	discrete	random	variables,	and	p(x,y)	

the	value	of	the	joint	probability	distribuGon	when	X=x	and	
Y=y	

•  Then	the	joint	entropy	is	given	by	

•  The	joint	entropy	is	the	average	uncertainty	of	2	random	
variables	
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Entropy	and	Encryp-on	

•  There	are	three	entropies:	H(P(n)),	H(K),	H(C(n))	
•  Message	EquivocaGon	:	

												If	the	a?acker	can	view	n	ciphertexts,	what	is	his	
												uncertainty	about	the	message	
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Entropy	and	Encryp-on	

•  Key	EquivocaGon	:	
												If	the	a?acker	can	view	n	ciphertexts,	what	is	his	
												uncertainty	about	the	key	
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Unicity	Distance	

•  As	n	increases,	H(K|C(n))	reduces…	
–  This	means	that	the	uncertainty	of	the	key	reduces	as	the	a?acker	

observes	more	ciphertexts	

•  Unicity	distance	is	the	value	of	n	for	which	
–  This	means,	the	enGre	key	can	be	determined	in	this	case	
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Unicity	Distance	and	Classical	Ciphers	

Cipher	 Unicity	Distance	(for	English)	

Caesar’s	Cipher	 1.5	le?ers		

Affine	Cipher	 2.6	le?ers	

Simple	SubsGtuGon	Cipher	 27.6	le?ers	

PermutaGon	Cipher	 0.12	(block	size	=	3)	
0.66	(block	size	=	4)	
1.32	(block	size	=	5)	
2.05	(block	size	=	6)	

Vigenere	Cipher	 1.47d			(d	is	the	key	length)	

48	
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Product	Ciphers	
•  Consider	a	cryptosystem	where	P=C (this	is	an	endomorphic	system)	

–  Thus	the	ciphertext	and	the	plaintext	set	is	the	same	
•  Combine	two	ciphering	schemes	to	build	a	product	cipher	
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E1	 E2	
C1 = P2	P	 C	

K1	 K2	

Ciphertext	of	first	cipher	fed	as	
input	to	the	second	cipher	

K1 ||K2	

),,,,(: 2121 DEKKPPSS ××

),,,,(:
),,,,(:

2222

1111

DEKPPS
DEKPPS

Given	two	endomorphic	crypto-systems	

Resultant	Product	Cipher	

Resultant	Key	Space	 21 KK ×
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Product	Ciphers	
•  Consider	a	cryptosystem	where	P=C (this	is	an	endomorphic	system)	

–  Thus	the	ciphertext	and	the	plaintext	set	is	the	same	
•  Combine	two	ciphering	schemes	to	build	a	product	cipher	
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E1	 E2	
C1 = P2	P	 C	
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EncrypGon	(ea(x))	:	y	=	ax	mod	26	
DecrypGon	(da(x))	:	x	=	a-1y	mod	26	

Affine	Cipher	is	a	Product	Cipher	
•  P	=	C	=	{0,	1,	2,	…	25}	
																																														Affine	Cipher	=	M	x	S	

•  Affine	cipher	:	y	=	ax	+	b	mod	26	
•  Size	of	Key	space	is		

–  Size	of	key	space	for	MulGplicaGve	cipher	*	Size	of	keyspace	for	shiz	
cipher	

–  12	*	26	=	312	
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EncrypGon	(eb(x))	:	y	=	x+b	mod	26	
DecrypGon	(db(x))	:	x	=	y-b	mod	26	

MulGplicaGve	Cipher	 Shiz	Cipher	
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Is	S	x	M	same	as	the	Affine	Cipher	
•  S	x	M	:	y	=	a(x	+	b)	mod	26	

																=	ax	+	ba	mod	26	
•  Key	is	(b,a)	
•  ba	mod	26	is	some	b’	such	that	

						a-1b’	=	b	mod	26	
•  This	can	be	represented	as	an	Affine	cipher,	
	 										y	=	ax	+	b’	mod	26	
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Thus	affine	ciphers	are	commutable	(i.e.	S	x	M	=	M	x	S)	

Create	a	non-commutable	product	ciphers	
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Idempotent	Ciphers	

•  If																										is	an	endomorphic	cipher	
•  then	it	is	possible	to	construct	product	ciphers	of	the	
form	S1	x	S1,	denoted		

•  If												then	the	cipher	is	called	idempotent	cipher	
	
Show	that	the	simple	subsGtuGon	cipher	is	idempotent	
Does	the	security	of	the	newly	formed	cipher	increase?	
	
In	a	non-idempotent	cipher,	however	the	security	may	increase.	
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Itera-ve	Cipher	
•  An	n-fold	product	of	this	is	S	x	S	x	S	…	(n	-mes)	=	Sn	is	an	

iteraGve	cipher	
	
					All	modern	block	ciphers	like	DES,	3-DES,	AES,	etc.	are		
	iteraGve,	non-idempotent,	product	ciphers.	

	
					We	will	see	more	about	these	ciphers	next!!	
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