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Encryption

#%AR3Xf341S “Attack at Dawn!!”
Plaintext encryption  (ciphertext) decryption

“Attack at Dawn!!”

How do we design ciphers?




Cipher Models
(What are the goals of the design?)

Computation Security

P

|

My cipher can withstand all
attacks with complexity less
than 22048

The best attacker with the
best computation resources
would

take 3 centuries to attack

myv cipher

Unconditional Securitv

My cipher is secure against
all attacks irrespective of
the
attacker’s power.
| can prove this!!

T/

Provable Security
(Hardness relative to
a tough problem)

If my cipher can be
broken then large
numbers can be
factored easil

This model is also known as Perfect Secrecy.
Can such a cryptosystem be built?
We shall investigate this.



Analyzing Unconditional Security

* Assumptions

— Ciphertext only attack model
The attacker only has information about the
ciphertext. The key and plaintext are secret.

* We first analyze a single encryption then relax
this assumption by analyzing multiple
encryptions with the same key



Encryption

plaintext set ciphertext set

€y

P C

For a given key, the encryption (e,) defines an injective mapping between the
plaintext set (P) and ciphertext set (C)

Alice picks a plaintext x € P, chooses a key (independently), and encrypts it to
obtain a ciphertexty €C



Plaintext Distribution

Plaintext Distribution
 Let X be adiscrete random variable over the set P

* Alice chooses x from P based on some probability distribution
— Let Pr[X = x] be the probability that x is chosen
— This probability may depend on the language

a@® Plaintext set
Pr[X=a]=1/2
b ® Pr[X=b] =1/3
Pr[X=c] =1/6
e r[X=c] =1/
P

Note : Pr[a] + Pr[b] + Pr[c] =1



Key Distribution

Key Distribution
* Alice & Bob agree upon a key k chosen from a key set K
 Let Kbe arandom variable denoting this choice

e
keyspace .\ kl/'

PF[K=k1 =% [
PriK=k,] = % /\.

There are two keys in the keyset €
thus there are two possible encryption
mappings



Ciphertext Distribution

* LetY be adiscrete random variable over the set C 3

P

. g b /ﬁzﬂ

depends on the plaintext and key probabilities /\'R
Pr[Y = y]= Z Pr(k)Pr(d,(y))

Pr[Y = P] = Pr(k,) * Pr(c) + Pr(k,) * Pr(c)

€1
C
= (3/4 % 1/6) + (1/4 * 1/6) = 1/6 a o e
Pr[Y = Q] = Pr(k,) * Pr(b) + Pr(k,) * Pr(a) b Q
=(3/4*1/3)+(1/4*1/2)= 3/8 R
C

Pr[Y = R] = Pr(k,) * Pr(a) + Pr(k,) * Pr(b)
=(3/4*1/2)+(1/4 * 1/3) = 11/24

* The probability of obtaining a particular ciphertext y

’

——
pixeal =172 KETRRRERI

Note: Pr[Y=P] + Pr[Y=Q] + Pr[Y=R] = 1 Pr(X=b] =1/3  Pr[K=k,] =%
Pr[X=c]=1/6  Pr[K=k,] =%



Attacker’s Probabilities

* The attacker wants to determine the plaintext x

e Two scenarios

— Attacker does not have y (a priori Probability)
* Probability of determining x is simply Pr[x]
* Depends on plaintext distribution (eg. Language charcteristics)

— Attacker has y (a posteriori probability)
* Probability of determining x is simply Pr[x[y]



A posteriori Probabilities

* How to compute the attacker’s a posteriori probabilities? Pr[. X = x| Y = y]
— Bayes’ Theorem

Pr[x]xPr[y| x]
Pr[x|y] = 2
Pr[y] '
The probability that y is obtained
probablllty of the plaintext given X depends on the keys
which provide such a mapping
probability of this ciphertext PI'[y | x] — Pr[k]

e dn)=x)
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Pr(Pla]l =0
Pr[P|b] =0
Pr(Plc] =1
°r[Qla] = Prlk,] =7
Pr[Q| b] = Pr(k,]= %
Pr[Qlc] =0
Pr[R]a] = Prlk,] =%
Pr[R]b] =Prlk,] =7
Pr[R|c] =0

Prly|x]

e

b Q

: R
PriK=k,] = %

PriK=k,] = %
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Computing A Posteriori Probabilities

Prlx|y]=

Pr[y] Pr[X=a] =1/2

Pr[X=b] = 1/3

Pr[X=c] =1/6
Pr[a|P] =0 Pr[b|P]=0 Pr[c
Pr[a|Q]=1/3 Pr[b|Q]=2/3 Prc
Pr[a|R]=9/11 Pr[b|R]=2/11 Prc

If the attacker sees ciphertext P then she would know the plaintext was ¢

P]
Q]
R]

Prlx]x Pr[y|x] [leintexel [eiphersexe 00 [Peiyia

Pr(Y=P] = 1/6
PrY=Q] = 3/8
Pr(Y=R] = 11/24

1
0

0

Pr[P|a]=0
Pr[P|b] =0
Pr[P|c] =1

PriQ|a] =7
Pr[Q|b] =%
Pr[Q|c]=0
Pr[R|a] = %
Pr[R|b] =%
Pr[R|c] =0

If the attacker sees ciphertext R then she would know a is the most likely plaintext
Not a good encryption mechanism!!

12



Perfect Secrecy

Perfect secrecy achieved when

a posteriori probabilities = a priori probabilities

Prix|y]=Pr[x]

i.e the attacker learns nothing from the ciphertext

Intuitively, by seeing the safe, you learn
nothing about what is in it

13



Perfect Secrecy Example

* Find the a posteriori probabilities for the following scheme

e Verify that it is perfectly secret. a Q\Ekl/pP

Pr[X=a]=1/2
Pr[X=b] =1/3
Pr[X=c] =1/6

PriK=k,] = 1/3
PriK=k,] = 1/3
Prik=k,] = 1/3

b@®—

14



Observations on Perfect Secrecy

Perfect Secrecy iff

Pr[Y = y| X =x]=Pr[Y = y]

Follows from
Baye’s theorem

Perfect Indistinguishability

Vi.nEP PAY = y| X =x]=Pr[¥ = y| X = x,]

Perfect secrecy has nothing to do with plaintext distribution.
Thus a crypto-scheme will achieve perfect secrecy irrespective of
the language used in the plaintext.



Shift Cipher with a Twist

Plaintext set : P ={0,1,2,3 ..., 25}

Ciphertext set : C ={0,1,2,3 ..., 25}

Keyspace : K={0,1,2,3 ..., 25}

Encryption Rule : e (x) = (x + K) mod 26,

Decryption Rule : d,(x) = (x — K) mod 26
where KEK and x&P

The Twist :

(1) the key changes after every encryption

(2) keys are picked with uniform probability

16



The Twisted Shift Cipher is Perfectly
Secure

Prly =y] = z Pr(K = K|Pr[x = dk(y)]

KeTae —» Keys chosen with uniform probability
|
= Z Pr[x =y—- K]
K€D ae 26 » This is 1 because the sum is over

all values of x
‘_’() :\

Pry|lz] = Pr[K = (y — ) mod 26]

1 KG
- — P C
26 or every pair of y and x, there

is exactly one key . Probability of
that key is 1/26

17



The Twisted Shift Cipher is Perfectly

Secure
Prly =y = z PrK = K|Pr(x = dg(y)]
KeZe
|
= Z 2—6Pr[x =y- K]
KeZae
= %K; Prix =y - K|
. 3
2%
Prly|z] = Pr[K = (y — ) mod 26]

1
26

Pr(z|Pr(y|z]
Pry]

_ Pr(z]L

Priz|y] =

gl

= Pl‘[:c],




Shannon’s Theorem

If |K| =|C| = |P]| then the system provides perfect secrecy iff
(1) every key is used with equal probability 1/| K|, and
(2) for every x EP and y €C, there exists a unique key k €K such that e (x) =y

Intuition :
Every y € C can result from any of the possible plaintexts x
Since |K| = |P| there is exactly one mapping from each plaintext toy

Since each key is equi-probable, each of these mappings is equally probable
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One Time Pad
(Verman’s Cipher)

length L
plaintext ciphertext
laintext
P \l' ciphertext block
| key 1
key

SR — T " Encryption: x®@k =y

length L Decryption: y @k = x

chosen uniformly from keyspace of size 2%
PrlK=k] =1/2"



One Tme Pad (Example)

L |
Y

e=000 h=001 =010 k=011 =100 r=101 s=110 =111

Encryption: Plaintext ®@ Key = Ciphertext

h e | I h i t | e r

Plaintext: 001 000 010 100 001 010 111 100 000 101

KCY: 111 101 110 101 111 100 000 101 110 000
CiphCPTZXT: 110 101

100 001 110 110 111 001 110 101

s r | h s s t h s r

21



One Time Pad is Perfectly Secure

* Proof using indistinguishability

Pr[Y =y| X =x]=Pr[X=x,K=k|X=x] fromx®k=y

1
=P1‘[K=k]=2—L
1
Pr[Y=y|X=x1]=2—L=Pr[Y=y|X=x2]
Vx,x,eX

This implies perfect Indistinguishability
that is independent of the plaintext distribution

22



Limitations of Perfect Secrecy

 Key must be at least as long as the message
— Limits applicability if messages are long

 Key must be changed for every encryption

— If the same key is used twice, then an adversary can compute
the ex-or of the messages

X @k =y,
X, ®k=y,
X ®Dx, =y 0y,

The attacker can then do language analysis to determine y, and
Y2

23



Ciphers in Practice

Perfect secrecy is difficult to achieve in practice
Computational Security rather than Perfect Security

Instead we use a crypto-scheme that cannot be
broken in reasonable time with reasonable success

This means,

— Security is only achieved against adversaries that run in
polynomial time

— Attackers can potentially succeed with a very small
probability (attackers need to be very lucky to succeed)

24



Quantifying Information



A Metric to Quantify Information

There is one alphabet missing in each of these words. Can you find the alphabet so
that the words make sense?

nough lassis
ntwork hole
dvic lok

Frequently occurring letters (like e) contain less information than non-frequent letters
(like c)

We need to have function to quantify information!

Additionally, the function should be (1) continuous (2) should be able to sum
individual information (eg. X1 : Message 1, X2 : Message 2)
I(X1, X2) = I(Message 1) + [(Message 2)

26



Metric to Quantify Information

Claude Shannon

A higher probability
indicates lesser information
content.

Pr(e) =0.12702
Pr(a) = 0.08167
Pr(m) = 0.02406
Pr(c)=0.02782

Pr(g) = 0.0095

log, i

P;

-log2(0.12702) = 2.97
-log2(0.08167) = 3.61
-log2(0.02406) = 5.37
-log2(0.02782) = 5.16
-log2(0.0095) = 6.71

27



Metric to Quantify Information

To find the average information content of a language
find weighted sum as follows

Claude Shannon

28



Metric to Quantify Information

To find the average information content of a language
find weighted sum as follows

Call this term the Entropy

Claude Shannon

Entropy of English

Entropy provides the Contemporary : 4.03 bits
average number of Shakesphere :4.106 bits
bits needed to German : 4.08 bits
represent letters in French : 4.00 bits
the language ltalian : 3.98 bits
Spanish : 3.98 bits

Maximum Entropy occurs when each alphabet is equally likely (ie. 1/26).
The maximum entropy is log_2(1/26) = 4.7



Entropy of the Weather Forecast

Weather Forecast M1 : Sunny (with probability 0.05)

Tomorrow 1 the weather will be M2 : Cloudy (with probability 0.15)
M3 : Light Rain (with probability 0.70)

M4 : Heavy Rain (with probability 0.10)

H(Forecast) = Epl. log, (i)
i=1 D

= —((0.05)1og, 0.05 +(0.15)1og, 0.15+(0.7)log, 0.7 +(0.1)log, 0.1)
-1.319
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Entropy and Uncertainity

* Alice thinks of a number (0 or 1)

* The choice is denoted by a discrete random variable X.

 What is Mallory’s uncertainty about X?
— Depends on the probability distribution of X
(Mallory knows the probability distribution)

31



Uncertainty

Lets assume Mallory know this probability
distribution.

If Pr[X=1]=1and Pr[X=0]=0
— Then Mallory can determine with 100% accuracy
If Pr[X=0]=.75and Pr[X=1] =.25

— Mallory will guess X as 0, and gets it right 75% of
the time

If Pr{X=0] =Pr[X=1]=0.5

— Mallory’s guess would be similar to a uniformly
random guess. Gets it right % the time.

32



What is the Entropy of X?

Pr[X=0] = pand Pr[X=1]=1-p
H(X) = — plog,p — (1-p) log,(1 — p)
H(X)p=0= 0, H(X)p=1 =0, H(X)p=_5 =1

using lim ., (plog p)=0

33



Properties of H(X)

 |f Xis arandom variable, which takes on values {1,2,3,....n}
with probabilities p,, p,, ps, ....p,,, then

1. H(X)<log,n

2. When p;=p,=p5= ... p, = 1/n then H(X) = log,n

Example an 8 face dice.
If the dice is fair, then we obtain the maximum entropy of 3 bits
If the dice is unfair, then the entropy is < 3 bits

34



Entropy and Coding

* Entropy quantifies Information content

“Can we encode a message M in such a way that the
average length is as short as possible and hopefully
equal to H(M)?”

Huffman Codes :

allocate more bits to least probable events
allocate less bits to popular events

35



« S={A, B, C, D} are 4 symbols Encoding

Example

Probability of Occurrence is : 25311

P(A)=1/8, P(B) =%, P(C) =1/8, P(D) =1/4 C:110
D: 10

To decode, with each bit
traverse the tree from

root until you reach a
leaf.

Decode this?
1101010111
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Example :

Average Length and Entropy

S={A, B, C, D} are 4 symbols

Probability of Occurrence is :
p(A) = 1/8, p(B) =%, p(C) = 1/8, p(D) = 7%

Average Length of Huffman code :
3*p(A) + 1*p(B) + 3*p(C ) + 2*p(D) = 1.75

Entropy H(S) =

Encoding
A:111
B:0
C:110
D: 10

-1/8 log,(8) — % log,(2) — 1/8 log,(8) — % log,(4)

=1.75
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Example
Entropy Considering One Letter

Consider a language with 26 letters of the set S ={s,, s,, S5,
..y Syet- SUppOSe the language is characterized by the

following probabilities. What is the language entropy?

P(s)) = %, P(s,) = 1 Maximum Entropy

| 4 R =1log26=4.7
P(s;) = a for i=3,4,5,6,7,8,9,10

P(sl.)=§ for i=11,12,..26

Language Entropy
rn=H(SY)

26 1
- Pl

1 1 I I
=—log2+—logd+8 —log64 |+16| —log128
2 BT, 8 (64g) (128g )

=l+l+§+z=2&5
2 2 8 8
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Example
Entropy Considering Two Letters

* InthesetS={s,s,, S ..., Sye}, SUPpOSe the diagram
probabilities is as below. What is the entropy?

P(s,,s,)=P(s, |s,)x P(s,)=1/4; P(s,,s,) = P(s; | s,)x P(s,)=1/4
P(s;,, 1s,)=P(s,,, |Sl‘)=l for i=1to?24 P(sy,55) = P(s;]5,)x P(s,) =1/8; P(s;,5,) = P(s, | 5,)x P(s,) =1/8
2 P(s,,5,,) = P(s,., | 8,)P(s)=1/128  for i=3,4, ......,10
1 _ _ _
P(5,, 15,5) = P(s, 18,5) = P(5, 15,0) = P(s, | 8, )= — P(s;,8.,,)=P(s;.,|s,)P(s;))=1/128  for i=3,4,.....,10
2 P(s;,s.,)=P(s., |s)P(s)=1/256  for i=11,12, ......,24
P(s,,s,,,)=P(s,., |s)P(s,))=1/256  for i=11,12,......,24
P(555,856) = P(S,5,5,) = P(85,5,) = P(55,5,) =1/256

all other probabilities are 0

Entropy considering 2 letters

26
H(S®)=2) P(s,,s,)log
,21 7T P(s;s))

= 2(llog4) +2(llog8) +16(L10g128) +32(L10g256)
| \4 8 128 256

= 1+E+Z+1}=3.625
| 4 8
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Redundancy in Languages

H(S)=2.625
H(S?)=3.625

H(S*)-H(S)=1 . . .
This means, that having the first letter, we can
obtain the second one using one bit only.

i.e. if we know the first letter, then there are

only 2 equally possible candidates for the
second.

Languages are redundant

Entropy reduces as we consider more number of alphabets in the
entropy computation

40



Measuring the Redundancy in a
Language

Let S be letter in a language (eg. S = {A,B,C,D})

* S=SxSxSxSxSxS(ktimes)is a set representing messages of length k

Let S) be a random variable in S

The average information in each letter is given by
the rate of S,

In our example,

(k)
_HET) r = H(S)=2.625
k r, = H(S®)/2=3.625/2=18125

Ve

r, for English is between 1.0 and 1.5 bits/letter (when k is large)

41



Measuring the Redundancy in a
Language

Absolute Rate(R) : The maximum amount of information per
character in a language

— the absolute rate of language Sis R = log, |S]|
— For English, |S| = 26, therefore R = 4.7 bits / letter

Redundancy of a language is
— For English when r, =1, then D = 3.7 = around 70% redundant

r=H(S)=2.625 D, =4.7-2.625=2.075 (44% redundant)
r,=H(5?)=1.8125 D, =4.7-1.8125=2.8875(61%redundant)

As we increase the message size Rate reduces; inferring less information per letter
Redundancy increases

42



Conditional Entropy

e Suppose X and Y are two discrete random variables,
then conditional entropy is defined as

1
H(X|Y)= log,
(K1)= 3 p0) S p(x1) "g(p<x|y))

_ p(x)
= E 2 p(x,y) logz(p(x, y))

* Conditional entropy means ....
— What is the remaining uncertainty about X given Y
— H(X]Y) < H(X) with equality when X and Y are independent

Derive using the fact that p(a|b) = p(a,b) / p(b)
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Joint Entropy

 Suppose X and Y are two discrete random variables, and p(x,y)
the value of the joint probability distribution when X=x and

Y=y
* Then the joint entropy is given by

1
H(X.Y)= ) log,
&1 ZZM Og(p(x,y))

 The joint entropy is the average uncertainty of 2 random
variables
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Entropy and Encryption

K distribution

n: length of message/ciphertext

M distribution Ch distribution

<o
* There are three entropies: H(P(), H(K), H(C)

* Message Equivocation :
If the attacker can view n ciphertexts, what is his
uncertainty about the message

C

1
HM(n) C(n) _ 1 ,
1€ = 3p(@) 3 plmleyiog (p(m|c))
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Entropy and Encryption

K distribution

n: length of message/ciphertext

M distribution Ch distribution

< >
* Key Equivocation :

If the attacker can view n ciphertexts, what is his
uncertainty about the key

(n)\ _ 1
HKIC™)=300) 3 p<k|c>1og2(p(k|c))
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Unicity Distance

(n)y _ 1
H(K|C )—Cezcnp(C)m;np(HC)logz(p(k|c))

e Asnincreases, H(K|C™) reduces...

— This means that the uncertainty of the key reduces as the attacker
observes more ciphertexts

 Unicity distance is the value of n for which H(K |C")=0
— This means, the entire key can be determined in this case
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Unicity Distance and Classical Ciphers

Caesar’s Cipher 1.5 letters

Affine Cipher 2.6 letters

Simple Substitution Cipher 27.6 letters
Permutation Cipher 0.12 (block size = 3)

0.66 (block size = 4)
1.32 (block size = 5)
2.05 (block size = 6)

Vigenere Cipher 1.47d (dis the key length)



Product Ciphers

* Consider a cryptosystem where P=C (this is an endomorphic system)

— Thus the ciphertext and the plaintext set is the same

 Combine two ciphering schemes to build a product cipher

Given two endomorphic crypto-systems

S :(P,P,K E,D,)

S2:(P9P9K29E29D2) P

Resultant Product Cipher
S, xS, :(P,P,K,xK,,E,D)

Resultant Key Space K x K,

K, [IK,
¢K4 5
C, = C
E, ——3 >

&

Ciphertext of first cipher fed as

input to the second cipher
49



Product Ciphers

* Consider a cryptosystem where P=C (this is an endomorphic system)
— Thus the ciphertext and the plaintext set is the same

 Combine two ciphering schemes to build a product cipher

K1 lIKz
Given two endomorphic crypto-systems

Spix = dK1 (eKl (X)) ‘l’ ‘l’

Sy X = dK2 (eK2 (x)) P C, = C

Resultant Product Cipher
S, xS,

€.k, (¥) = €, (g (X))

d(Kl,Kz)(x) = dK2 (dKl (x)) &
Resultant Key Space K| x K,

Ciphertext of first cipher fed as

input to the second cipher
50



Affine Cipher is a Product Cipher

Multiplicative Cipher Shift Cipher
.+ P=C={0,1,2,. P\

Afﬁne Cipher = M x S

/\

Encryption (e,(x)) : y = ax mod 26 Encryption (e, (x)) : y = x+b mod 26
Decryption (d,(x)) : x =aly mod 26 Decryption (d,(x)) : x = y-b mod 26

e Affine cipher:y=ax+b mod 26
* Size of Key space is

— Size of key space for Multiplicative cipher * Size of keyspace for shift
cipher

— 12 *26=312
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Is S x M same as the Affine Cipher

SxM:y=a(x+b)mod 26
= ax + ba mod 26

Key is (b,a)

ba mod 26 is some b’ such that
alb’ =b mod 26

This can be represented as an Affine cipher,
y =ax+ b’ mod 26

Thus affine ciphers are commutable (i.e. Sx M =M x S)

Create a non-commutable product ciphers
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Ildempotent Ciphers

e If S,:(P,P,K,E,D) is an endomorphic cipher

* thenitis possible to construct product ciphers of the
form S, xS,, denoted s* :(P,P,KxK,E,D)

o |f $°=5 then the cipher is called idempotent cipher

Show that the simple substitution cipher is idempotent
Does the security of the newly formed cipher increase?

In a non-idempotent cipher, however the security may increase.
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Iterative Cipher

* An n-fold product of thisisSxS xS ... (n times) =S"is an
iterative cipher

All modern block ciphers like DES, 3-DES, AES, etc. are
iterative, non-idempotent, product ciphers.

We will see more about these ciphers next!!
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