Cryptographic Hash Functions

Chester Rebeiro
IIT Madras

STINSON : chapter4

Issues with Integrity

Alice re channel . Bob »
— Attack at Dusk!!
Message 2

“Attack at Dawn!!”

Change ‘Dawn’ to ‘Dusk’

How can Bob ensure that Alice’s message has not been modified?

Note.... We are not concerned with confidentiality here

Hashes

y = h(x)

“Message digest”

secure channel

“Attack at Dawn!!” 3)
((Attack at Dawn!!
Message unsecure channel

“Attack at Dawn!!”

v
-N

Alice passes the message through a hash function, which produces a
fixed length message digest.

* The message digest is representative of Alice’s message.

* Even a small change in the message will result in a completely new message digest
* Typically of 160 bits, irrespective of the message size.

Bob re-computes a message hash and verifies the digest with Alice’s message digest.

» Integrity with Hashes

-« = h(x)
Alice
h “Message digest”
secure channel =
(l “Attack at Dawn!!” h “Attack at Dawn!!”
5 4
Message insecuré channel

“Attack at Dawn!!” i
. Mallory does not have access to the digest y.
1

Her task (to modify Alice’s message) is much
more difficult.

If she modifies x to x’, the modification can be
detected unless h(x) = h(x’)

Hash functions are specially designed to
resist such collisions

Message Authentication Codes
(MAC)

v

“Attack at Dawn!!”
(i Message Digest S h
Message unsecure channel K K

“Attack at Dawn!!”

MACs allow the message and the digest to be sent over an insecure channel

However, it requires Alice and Bob to share a common key

Avalanche Effect

\i Short
essage fixed length also called
M dlgeSt 4// IhaSh’

Hash functions provide unique digests with high probability.
Even a small change in M will result in a new digest

SHA256(“short sentence”)

Ox Dacdf28f4e8b00b399d89ca51f07fef34708e729ae15e85429¢5b0f403295¢c9
SHA256("The quick brown fox jumps over the lazy dog")
0x d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37¢9e592

SHA256("The quick brown fox jumps over the lazy do@
(extra period added)

x ef537f25c895bfa782526529a9b63d97aab31564d5d789c2b765448c8635fb6¢

Hash functions in Security

Digital signatures 4 &\
Random number generation /\\\i 1 “ /
Key updates and derivations & \) 7 4

One way functions : ¢ \

MAC i
Detect malware in code
User authentication (storing passwords)

Hash Family

hy
.~
:%<::
X Y

The hash family is a 4-tuple defined by (X,Y,K,H)

X is a set of messages
(may be infinite, we assume the minimum size is at least 2| Y|)

Y is a finite set of message digests (aka authentication tags)
K is a finite set of keys
Each K € K, defines a keyed hash function h, € H

Hash Family : some definitions

hy
.~
:%<::
X Y

* Valid pair under K : (x,y) € Xxy such that, x = h,(y)

e Size of the hash family:
is the number of functions possible from set X to set Y

Y| =M and |[X| =N
then the number of mappings possible is MN

* The collection of all such mappings are termed (N,M)-
hash mapping.

Unkeyed Hash Function

h
i
:%ﬁ
X Y

The hash family is a 4-tuple defined by (X,Y,K,H)

X is a set of messages
(may be infinite, we assume the minimum size is at least 2| Y|)

Y is a finite set of message digests
In an unkeyed hash function: |[K | =1
We thus have only one mapping function in the family

10

Security Aspects of

Unkeyed Hash Functions
h=X—2>Y

y = h(x) ----- > no shortcuts in computing. The
only valid way if computing y is
to invoke the hash function h on x
* Three problems that define security of a hash function
* Preimage Resistance
* Second Preimage Resistance
* Collision Resistance

11

Hash function Requirement 1
Preimage Resistant

Also know as one-wayness problem
If Mallory happens to know the message digest, she should
not be able to determine the message

Given a hash function h: X 2Y and an element y € Y. Find
any x € X such that, h(x) =y

;

12

Hash function Requirement 2
(Second Preimage)

Mallory has x and can compute h(x), she should not be able to
find another message x” which produces the same hash.

— It would be easy to forge new digital signatures from old signatures if
the hash function used weren’t second preimage resistant

Given a hash function h: X 2Y and an element x € X, find, x’
€ X such that, h(x) = h(x’)

13

Hash Function Requirement
(Collision Resistant)

 Mallory should not be able to find two messages
x and X" which produce the same hash

* Given a hash function h : X 2Y and an element x
€ X, find, x, x’ € X and x #x’ such that, h(x) = h(x’)

~ h (There is no \
collision Free

® hash Function but

[] hash functions

can be designed
so that collisions
are difficult to

K find. J

Hash Function Requirement
(No shortcuts)

* For a message m, the only way to compute its
hash is to evaluate the function h(m)

* This should remain to irrespective of how many
hashes we compute

— Even if we have computed h(m,), h(m,), h(m;), , h(M1000)
There should not be a shortcut to compute h(m ;)

— An example where this is not true :
eg. Consider h(x) = ax mod n

If h(x,) and h(x,) are known, then h(x,+x,) can be calculated

15

The Random Oracle Model
(to capture the ideal hash function)

The ideal hash function should be executed by applying h on
the message x.

The RO model was developed by Bellare and Rogaway for
analysis of ideal hash functions

random oracle Let FXY) be the set of all functions mapping
XtoY.

* The oracle picks a random function h from FX.Y),
only the Oracle has the capability of executing
the hash function.

* All other entities, can invoke the oracle with a
message x € X . The oracle will return y = h(x).

We do not know h. Thus the only way to compute
h(x) is to query the oracle.

16

Independence Property

* Let h be arandomly chosen hash function from the set FX.Y)
* If x; € Xand a different x, € X then
Pr[h(x,) = h(x,)] = 1/M
where M = | Y|
this means, the hash digests occur with uniform probability

17

Complexity of Problems
in the RO model

3 problems: First pre-image, Second pre-image,
Collision resistance

 We study the complexity of breaking these problems

— Use Las Vegas randomized algorithms
* A Las-Vegas algorithm may succeed or fail
* If it succeeds, the answer returned is always correct

— Worst case success probability

— Average case success probability (e)

* Probability that the algorithm returns success, averaged over all
problem instances is at least e

— (e, Q) Las Vegas algorithm:

* |s an algorithm which can make Q queries to the random oracle

and have an average success probability of e
e is the average across all MN hash functions and all possible

random choices of x or y.

18

Las Vegas Algorithm Example

Find a person who has a birthday today in at-most Q queries

BirthdayToday(){
X = set of Q randomly chosen people
for x in X{
if (birthday(x) == today) return x

}
return FAILURE;

19

Las Vegas Algorithm Example

Find a person who has a birthday today in at-most Q queries

BirthdayToday(){

X = set of Q randomly chosen people from the universe
for x in X{

if (birthday(x) == today) return x
}
return FAILURE;

Is this the average case success?

Let E be the event that a person has a birthday today

1
Pr that a person does not have a birthday today is (1 — %)

0
Pr[SuccessinQtrials] =1-Pr[FailureinQtries]=1- (1 — 32—5)

20

First Preimage Attack

h
Problem : Given a hash y, find an x : PY
such that h(x) =y :/o y
. .
.

First_Prelmage_Attack(h, y, Q){
choose Q distinct values from X (say x,, X5,, Xg)
Ideal hash function for(i=1; i<=Q; ++i){

qgueried using the RO access \n‘(h(x) =y) return x;

return FAIL

}

Y] =

o
Pr[SuccessinQtrials on average] =1 — (1 — ﬁ)

21

Second Preimage Attack

Problem : Given an x, find an
X" (#x) such that h(x’) = h(x)

Second_Prelmage_Attack(h, x, Q){
Extra Oraclel choose Q-1 distinct values from X (say X, Xy, ..., Xq.1)
query >y =h(x)
for(i=1; i<=Q-1; ++i){

if (h(x;) ==y) return x,
}
return FAIL

}

0-1
1
Pr[SuccessinQtrials on average]| =1— (1 — ﬁ)

Finding Collisions

Find_Collisions(h, Q){
choose Q distinct values from X (say x,, X5,, Xg)
for(i=1; i<=Q; ++i) y; = h(x)
if there exists (y; ==y,) for j #k then return (x;, x,)
return FAIL

}

0-1 :
SuccessProbability (¢)ise =1- H(l — ﬁ)

23

Birthday Paradox

Find the probability that at-least two people in
a room have the same birthday

Event A :atleast two peopleinthe room havethe same birthday

Event A':notwo peopleinthe room havethe same birthday
Pr[A]=1-Pr[A4']

Pr[A']=1x(1—i)x(l—i)x(l—i) ------ (1—@)
365 365 365 365

Birthday Paradox

* |f there are 23 people in a room, then the
probability that two birthdays collide is 1/2

L 1
T 0.9 L
308 |
© 0.7
O 0.6
>05
= 0.4
203
Q02|

o1l

as 0 23 1 | 1 1
O 10 20 30 40 50 60 70 80 90 100

Number of people

[I [I

| | | | | I | | |

Collisions in Birthdays
to Collisions in Hash Functions

Find_Collisions(h, Q){
choose Q distinct values from X (say x,, X5,, Xg)
for(i=1; i<=Q; ++i) y; = h(x)
if there exists (y; ==y,) for j #k then return (x;, x,)
return FAIL

}

0-1 :
SuccessProbability (€)is € =1—r’l(l—i) Y] =M

Relationship between Q, M, and success

2M In—— of M.

1 Q always proportional to square root
l-¢ € only affects the constant factor

If € = O.Stheanl.U\/M

26

Birthday Attacks and Message Digests

0~1.174M

If the size of a message digest is 40 bits

M = 240

A birthday attack would require 2%° queries

Thus to achieve 128 bit security against
collision attacks, hashes of length at-least 256
Is required

27

Comparing Security Criteria

* Finding collisions is easier than solving pre-
Image or second preimage

* Do reductions exist between the three
problems?

28

collision resistance - second preimage

e We can reduce collision resistance to second
preimage problem

collision resitance 22" preimage

—i.e. If we have an algorithm to attack the 2"
preimage problem, then we can solve the collision
problem

findCollisions1(h, Q){
choose x randomly from X
if(Second_Prelmage_Attack(h, x, Q) == x')
return (x,x’)
else
return FAIL

29

collision resistance = preimage

a8 h
. .. X =
Find_Collisions2(h, Q){ X, O¢g @
choose x randomly from X 2 @ o
y =h(x) Y 08 .
x' = Prelmage_Attack(h, y, Q-1) 2
. , X ®
if (x # %) N e
return (x,x’) X Y
else -
return FAIL N> 2M
}

X, is an equivalence class.
Each y corresponds to a partition.
The number of partitions formed is | Y|

X=X, UX, UX, U X,

Assume Preimage_Attack always finds the pre-image of y in Q-1 queries to
the Oracle, then, Find_Collisions2 is a (1/2, Q) Las Vegas algorithm

30

Proof

X, /e® h
y €Y partitions X as follows. ®) ®
- X, ®
X, ={xEXls.t.h(x) =y} g .‘
Number of partitionsof XislY l= M X3 ® 90 X ®
= ! = 1_ 7
Pr[success]=Pr[x = x'] N?){Ey X X Y
1 1 N> 2M
=—EIXyI 1-
N < X, |
=iz(|x 1-1) =i(N—M)
N&TT N
N-N
> —NA (useN =2M)

1
2

31

Iterated Hash Functions

So far, we’ve looked at hash functions where the
message was picked from a finite set X

What if the message is of an infinite size?

— We use an iterated hash function

The core in an iterated hash function is a function
called compress ot bit
— Compress, hashes from m+t bit to m bit)

compress :{0,1}"""" — {0,1}"
r=1

m bit

32

Iterated Hash Function

| (P(r?nciple. given m and t)
input message (x

(may be of any length) ¢ must be at-least m+t+1 in length

. —

Append Pad * Input message is padded so that its length is a multiple of t

Pad Length -

 Number of bits in the pad appended

concatenate * Concatinate previous m bit output with next t bit block
(IV used only during initialization)

* The compress function is invoked iteratively for each t

bit block in the message. For the first operation, an
initialization vector is used

compress

» After all t bit blocks are processed, there is a post
processing step, and finally the hash is obtained.

This step is optional.

33

Iterated Hash Function (Principle)

* Another perspective

IV

Y,

34

Merkle-Damgard Iterated Hash
Function

input message (x)
(may be of any length)

ho {0,137 — {011
e x = (Jwoy

I=m+t+1

r=0 for the first iteration
else r=1

compress

Iltrated hash function construction
That uses a compress function h

after k steps . . .
If h is collision resistant then the Merkle Damgard

$ construction is collision resistant
h(y)

35

Merkle-Damgard Iterated Hash
Function

Algorithm : MERKLE-DAMGARD(zx)

external compress
comment: compress: {0, 1} — {0,1}" where ¢ > 2

n + |z| > Message length

k r.71/(t - 1)] k :Num of blokks of in x. Each
d—k(t—1)—n block has length t-1

: 1 .
fors & Ltok = Note that t cdnnot be =1
do y; « x;

Yk ax || 04— Apply padding
Yk 41 ¢ the binary representation of d —> Append d

a0ty V is O™ Amo_unt of padding
g1 + compress(z;) requifed to make
for: < 1tok message a multiple of
do {Zi+1 —gi |l 1| yigr t-1
giy1 ¢ compress(Zz;q)
h(z) < g4

return (h(z))

36

On Merkle-Damgard Construction

Theorem: If the compress function is collision
resistant then the Merkle-Damgard
construction is collision resistant

Proof: We show the contra-positive...

If the Merkle-Damgard construction results in
a collision then the compress function is NOT
collision resistant

37

Merkle-Damgard Construction is Collision Resistant (Proof)

* Assume we have two message x and x’ which

result in the same hash.

* Proof proceeds by considering 2 cases:

(1)

| x =] x'| mod(£ — 1)

(2

—

| x |=| x'| mod(¢ —1)

K
2ol x [=['

=y
(2b)| x |=| x'|

38

Case1 |X[=|x'|mod(f-1)

* This means that the padding (resp. d and d’) applied to x and x’ is different
(iie.dzd)

\ J
T

I

X
The last step in hashing

1 ld 1 ld’

v "
concatenate |f h(X) — h(X') then
v v compress(xx||1]|d) = compress(xx]||1]|d’)
e T
Since d# d’, we have a collision in compress.
m m
v

v
h(x) h(x’)

39

Case 1 formally : | x || x'| mod(z - 1)

case 1: |z| # |2/| (mod £ —1).
Here d # d' and yx 1 # y;,,. We have

compress(gx || 1 || Yk+1) = grt1

= h(z')
— 92-1-1

= compress(g; || 1 || ¥41),

which is a collision for compress because yi 11 # ¥j ;.

40

Case 2a:

X
1

x|=| x'|mod(t-1) and |x|= x|

- d In this case, padding in x and x’ are the

same. Hence d =d’.
- d’ ... can’t use the old trick ®

T

oy X
/ \l/l\HYk-l \

]
/ \l'l \HYk-l

1

' These may or may not collide.

} If they collide, we are done : we have shown a collision in
\l/l v/ Yi+1 I

i compress. If they don’t collide we look at the previous
 iteration

a collision here

\
concatenate concatenate
compress compress

A g W =
concatenate concatenate
compress \compress

\Ll v yk+1
concatenate concatenate
ompress ompress

h(x) Vh(x’

41

' '
Case2a: | x |=| x'|mod(?—-1) and |x|= x'|
X
. |
- d In this case, padding in x and x” are the
same. Henced =d’.
- d’ ... can’t use the old trick ®
XI
]]
v \1'1 \H Y1 v \1'1 \H Yi1
concatenate concatenate
compress/ \compress) 1 e ey et ol T

If they collide, we are done :

\l,l \(,_lyk \Ll \Hyk . We have shown a collision in compress.

concatenate concatenate . If they don’t collide we look at the previous iteration

__

compress compress

\J,l Flykﬂ \lzl \(/_lyk+1 because x # x’.

concatenate concatenate

ompress ompress

h(x) Vh(x’ "

Case 2a formally : | x |=| x'|mod(¢ —1) and | x|=| x'|
Here we have k = fand yy 41 = lfl-+1~ We begin as in case 1:

compress(g || 1 || yk41) = g4

F
g

pd

=h
(x) concatenate
= h(z')
compress
= g;:+1
= compress(g, || 1 [l vhy1)- B
If g # gj., then we find a collision for compress, so assume gi = gj.
Then we have
compress(gi—1 || 1 || yx) = g
= gk
~ compress(gh_, || 1 || v4)-
Either we find a collision for compress, or gx_; = ¢,._, and yp = ;.
Assuming we do not find a collision, we continue working backwards, until
finally we obtain
compress(0™+! || y1) = g1 but y,=y,” implies x=x".

which is a contradiction.

:g’l

= compress(0™*! || y}). -

Case 2b: | x|=|x'|mod(¢ -1) and |x |=| x'|

X
1

Note here that d=d’ even though
lengths of the messages are not the same.

In most cases, the proof would proceed
similar to case 2a.

But there is a cornercase.

44

Case 2b: | x|=|Xx'|mod(z-1) and |x|# x'|

X
1

’

X

e The corner case: x = (x| x’)
back tracking in such as case will not help

find a collision
* Handling this case:

the inserted bit r
(r=0 for the 1t round, else r=1)

Om

]
v 0N

concatenate

compress

LA

<

concatenate

compress

L

P4

concatenate

compress

]
\J/l \l/—l yk+1

concatenate

ompress

45

Case 2b formally : | x |=| X'| mod(? —1) and | x |=| x|

case 2b: |z| # |2/|.

Without loss of generality, assume |2’| > |z|, so £ > k. This case pro- -
ceeds in a similar fashion as case 2a. Assuming we find no collisions for
compress, we eventually reach the situation where

compress(0™" || y1) = g1
— 9:"-};4-1
= compress(g;_ || 1| ¥r—py1)-

But the (m + 1)st bit of
0m+1 ” U1

is a 0 and the (m + 1)st bit of

92-k || 1| yff—k+1

isa 1. So we find a collision for compress.

46

Merkle-Damgard-2
(for the case when t=1)

Algorithm : MERKLE-DAMGARD2(z)

external compress
comment: compress : {0, 1}t — {0 1}™

n < |z|
y < 1| f(za) || f(x2) |- || flan)
denotey = y1 || y2 || +*- || Yk, wherey; € {0, 1}, 1< i <k

g1 < compress(0™ || y1)
fori+— 1tok—1

do giv1 — compress(g,- || y,-+1)
return (gx)

47

Hash Functions in Practice

* MD5

* NIST specified “secure hash algorithm”
— SHAO : published in 1993. 160 bit hash.

e There were unpublished weaknesses in this algorithm

* The first published weakness was in 1998, where a collision attack was discovered with
complexity 261

— SHA1 published in 1995. 160 bit hash.

SHAO replaced with SHA1 which resolved several of the weaknesses

e SHA1 used in several applications until 2005, when an algorithm to find collisions with a
complexity of 2% was developed

* In 2010, SHA1 was no longer supported. All applications that used SHA1 needed to be
migrated to SHA2

— SHAZ2 : published in 2001. Supports 6 functions: 224, 256, 384, 512, and
two truncated versions of 512 bit hashes

* No collision attacks on SHA2 as yet. The best attack so far assumes reduced rounds of the
algorithm (46 rounds)

— SHA3 : published in 2015. Also known as Kecchak

48

input message x

!

MD5

1

Append Pad

Pad Length

. Appended with 1 and then Os so that length is a multiple of 512 — 64 = 448
—

512 bits

eachlimb A B C

iso

f 32 bits

Round 1

Round 2

Round 3

Round 4

/

_ = =

* Message length appended (in 64 bits) and split into blocks of 512 bits

Each round has 16 similar Opewmodiﬁed Feistel form

32 bits x 16
A B C D
32 bit il round operations
message FHe F f&=—— round1 F(B,C,D)=(BAC)V(=BAD)
parts\\M___E"a round 2 G(B,C,D)= (BA D)V (CA-D)
' v round3 H(B,C,D)=B&C¢D
/‘--’EH round4 [(B,C,D)=C& (BV-D)
v
constants E<
¥,
=
A B (65 D

(Vv vv>128 bit hash

49

Collisions in MD5 (Timeline)

A birthday attack on MD5 has complexity of 254

Small enough to brute force collision search

1996, collisions on the inner functions of MD5 found

2004, collisions demonstrated practically

2007, chosen-prefix collisions demonstrated
Given two different prefixes pl, p2 find two appendages m1 and m2 such
that hash(pl || m1) = hash(p2 | | m2)

2008, rogue SSL certificates generated

2012, MD5 collisions used in cyberwarfare

— Flame malware uses an MD5 prefix collision to fake a Microsoft digital
code signature

MD?5 Collisions demos : http://www.mscs.dal.ca/~selinger/md5collision/

50

Collision attack on MD5
like hash functions

* Analyze differential trails
* A bit different from block ciphers

— No secret key involved
— We can choose M and N as we want

 We have a valid attack if probability of
trail is P > 2°N/2

AH

0

51

Collision attack on MD5
like hash functions

Wang and Yu made it possible to find two pairs
of blocks (m, m.,;) and (n, n.,;) such that

F(F(s, m), m.,;) = F(F(s, n)), n.,,)

Where s is some state of the hash function
(can be anything)

The method makes it possible to construct two

strings
Mgy,My, M, ... My, Mgy m,,
Mg, My, My, weee N, Ny, m,,

AH=0

which have the same MD?5 hash.

52

Example of an MD5 collision

Block 1

Block 2

dl31dd02c5ebeecd693d9a0698aff95c2fcab58712467eab4004583eb8£fb7£89
55ad340609£f4b30283e488832571415a085125e8£7cdc99£d91dbdf280373¢c5b
d8B823e3156348f5baebdacd436c919c6dd53e2b487da03£d02396306d248cdal
e99£33420£577eeBce54b67080aB80d1lec69821bcb6aB839396£9652b6££72a70

dl31dd02c5ebeecd693d9a0698aff95¢c2fcab50712467eab4004583eb8£fb7£89
55ad340609£f4b30283e4888325£1415a085125e8£7cdc99£d91dbd7280373c5b
dB8B823e3156348f5baebdacd436c919chbdd53e23487da03£d02396306d248cdal
e99£33420£577eeBce54b67080280d1ect9821bcbbaBB839396£965ab6££72a70

MD?5 hash 79054025255fb1a26e4bc422aef54eb4

53

A Visualization of the Collision

http://www.links.org/?p=6

A Visualization
(Difference in just one MSB of the two blocks)

55

input message (x)

S HA1 (may be of any length less than 254)

global K, ..
y + SHA-1-PAD(z)

.,I&','g

denotey = M, || Mz || - - - || M», where each M; is a 512-bit block
1 Ho + 67452301

H + EFCDAB89
Hy <+ 98BADCFE
H3 < 10325476

Algorithm

comment:

{ < the binary representation of |z|, where |[¢| = 64

: SHA-1-PAD(x)

x| < 264 —]

d « (447 — |z|) mod 512

yea|1]jot]e

e, P

Hjy + C3D2E1F0

do

return (Ho || H, || H || Hs || Ha)

fori+1ton
(denote M; =Wy || Wi || -+ || Wis, where each W; is a word

fort +— 16 to 79

A« Hy
B(—Hl
C « Hy
D(—Hg
E(—H4
fort —0to79

E« D
do D« C

B+ A

Hyp (—H0+A
H,« H,+B
H2 (—H2+C
H34—H3—|—D

|\ Hy + Hy+ E

doW, « ROTL'(W,_a @& W, s ® Wi_14E Wi_16) ——

temp < ROTL?(A4) + f,(B.C, D)+ E + W, + K,

C « ROTL*(B)

A « temp

e

32*5=160 bit hash output

— each word is 32 bits (512/16=32)

(BAC)V((=B)A D) if0<t<19
f(B,C.py={BECED if20 <t <39
7 expandto 79 words [0 TS
A B | E
,’I I_/
/ Y
[/
/
/ Y
---(l <<<5 / / ;
N
\\ - W
\ o t
| Y
\‘ - Kt
\\
\
\
\\
\\
Tals]c E

56

Kacchak and the SHA3

* Uses a sponge construction
— Achieves variable length hash functions

|
A l M l M l M l ~i1l A M
|
bit rate Sirl [0 o o o > -
i i i T
) |
. . . N . [N -
: — U UTU ur uouU
securlty parameter o)
absorbing | Squeezing

sponge

Success of an attack against Kecchak < N2/2¢*!
where N is number of calls to f

57

Message Authentication Codes
(Keyed Hash Functions)

“Attack at Dawn!!”
(i Message Digest N h
Message unsecure channel K K

“Attack at Dawn!!”

Provides Integrity and Authenticity

Integrity : Messages are not tampered

Authenticity : Bob can verify that the message came from Alice
(Does not provide non-repudiation)

58

How to construct MACs?
recall ... shortcuts

* For a message m, the only way to compute its
hash is to evaluate the function h,(m)

* This should remain to irrespective of how many
hashes we compute

— Even if we have computed h,(m,), h,(m,), h(m;),,

h(M000)
It should be difficult to compute h,(x) without knowing the

value of K

59

Constructing a MAC
(Naive Attempt)

input message (x) ,) .
(may be of any lengthf Won't work if no preprocessing step

— attackers could append messages and get the
same hash

Apoe;d Pad X 9 hK(X),

X || X' = compress(h(x) || x’)

Secret Iy

compress

after k steps

v

h(y)

60

Constructing a MAC
I (Naive Attempt)

(may be of any lengthf Won't work if preprocessing step present

\L suppose y = x || pad(x) where| y |=rt
Append Pad consider x'= x || pad(x)||w where|w|=t¢
pad Length y'=Xx'l| pad(x') = x|| pad(x) || wi| pad(x")
Secret IV 1 Y where| y'|= r't forsomeinteger 7' > r

Let z. = h,(x)
Zr+1 < COmpl’eSS(hK ('x) || yr+1)

compress 2,y < compress(z,,, || ¥,,,)

Zr' = COmpreSS(Zr'—l || yr')

after k steps

7vL thus h.(x')=z.

h(y)

61

CBC-MAC

m1 m?2 m3

nmn

h(mg | Imy]| [my)

Birthday Attack on CBC MAC

Ci—1 |«
Co = 0
m; Block MAC = cp
encryption 7

TKey

By Birthday paradox, in 2% steps (assuming a 128 bit cipher), a collision will arise.
Let’s assume that the collision occurs in the a-th and b-th step.

Ca = Cb
E(m,®c,)=E(m,dc,)
thus

ma @ Ca—l = mb @ Cb—l

ma @ mb = Ca—l @ Cb—l

Birthday Attack on CBC MAC

Ci—1 |«
Co = 0
Block MAC = ¢,
encryption i’

TKey

By Birthday paradox, in 2% steps (assuming a 128 bit cipher), a collision will arise.
Let’s assume that the collision occurs in the a-th and b-th step.

Ca = Cb
E(m,®c,)=E(m,dc,)
thus

m,®dc,_, =m,dDc,

ma @ mb = Ca—l @ Cb—l

M, =m/lm, ... NIm l...1Im
M,=mllm,Il..l(m@c,_ Dc,_,)l...NIm,

64

HMAC

FIPS standard for MAC
Based on unkeyed hash function (SHA-1)

HMAC, (x) = SHAI(K @ opad) | SHAI(K ® ipad) |l x))

Ipad and opad are predefined constants

65

Authenticated Encryption

* Achieves Confidentiality, Integrity, and Authentication

*

Encryption

Hash function

MAC

EtM
(encrypt then MAC)

! !

Encryption < Key % Hash function

MAC

Key

Hash function

Encryption

e

E&M

MtE
(MAC then Encrypt)

66

1.

2.
3.

Using CBC-MAC for Authenticated
Encryption

Consider p = (py, P1, Py, P3) is @ message Alice sends to Bob

1. She encrypts it with CBC as follows
Co = EnlPo) 5 €1 = Elpy + ¢o); ¢ = Eilp, + ¢4); €3 = Ey(ps + ¢))
2. She computes mac = CBC-MAC,(p)
She transmits (¢, mac) to Bob : where ¢ = (c,, ¢, ¢,, ¢;)

Mallory modifies one or more of the ciphertexts (c,, c,, ¢,) to (¢, ¢,’, ¢,’)
Bob will

1. Decrypt(cy, ci, c,’) to(py, py's P,)
2. And use it compute the MAC mac’

We show that mac’ = c; irrespective of how Mallory modifies the ciphertext

67

Using CBC-MAC for Authenticated
Encryption

Alice’s side Bob’s side
(encryption) (decryption)

¢, = Ec(py) p. =D(c)
c=E(p ®c,) p; =Dk(c;)@c'0
¢, =E,(p,®c) p; =Dk(c'2)(-Dc'1
¢, = E(p; ®c,) p; =Dy (c;)®c,

mac'= CBCMAC(p")
=E,(p. ®E,(p. ®E,(p. ®E (p)))))
=E, (p, @c;)
=E,(D,(c;)®c,®Dc,)
= E,(D,(c3))

(assumelV =0)

Without modifying the final
ciphertext, Mallory can change any
other ciphertext as she pleases. The
CBC-MAC will not be altered.

Moral of the story: Never use CBC-
MAC with CBC encryption!!

68

Counter Mode + CBC-MAC for
Authenticated Encryption

Consider p = (py, P1, P,, P3) is @ message Alice sends to Bob

1. She encrypts p with counter mode as follows
Co =Py t+Eclctr); c,=p;+E(ctr+1);
c, = p, + E (ctr + 2); c; = py+ E,(ctr + 3)

2. She computes mac = CBC-MAC,(p)
She transmits (¢, mac) to Bob : where ¢ = (c,, ¢, ¢,, C;)

69

