
Transport Layer Security

Chester	Rebeiro	
IIT	Madras	

Some	of	the	slides	borrowed	from	the	book	‘Computer	Security:	A	Hands	on	Approach’	by	
Wenliang	Du	

TLS: Protocol to achieve secure
communication
TLS	provides	secure	communication	channel	with	3	properties:	
• Confidentiality	
•  Integrity	
• Authentication	
	
Two	important	components	
•  TLS	Handshake	
•  Secure	Data	transmission		

2	

SSL vs TLS

•  1995:	Netscape	released	SSL	2.0	
•  1996:	New	version	SSL	3.0	
•  1999:	TLS	introduced	as	the	new	version	of	SSL		
•  2011:	SSL	2.0	deprecated	by	IETF	
•  2015:	SSL	3.0	deprecated	by	IETF	
	
**	Difference:	Handshake	protocols	changes	from	SSL	to	TLS.	
Encryption		

3	

TLS in the Network Stack

• Between	the	network	and	Application	
layer.	
•  Unprotected	data	is	given	to	TLS	by	Application	

layer	
•  TLS	handles	encryption,	decryption	and	integrity	

checks	
•  TLS	gives	protected	data	to	Transport	layer	

4	

TLS Handshake

	
• Before	a	client	and	server	can	communicate	securely,	several	things	
need	to	be	set	up	first:		

•  Encryption	algorithm	and	key	
• MAC	algorithm		
• Algorithm	for	key	exchange	

• These	cryptographic	parameters	need	to	be	agreed	upon	by	the	client	
and	server	

	

	

TLS Handshake

6	

Network Traffics During TLS Handshake
Since	TLS	runs	top	of	TCP,		a	TCP	connection	needs	to	be	established	
before	the	handshake	protocol.	This	is	how	the	packet	exchange	looks	
between	a	client	and	server	during	a	TLS	handshake	protocol	captured	
using	Wireshark:	
	

TCP	
establishment	

TLS	
handshake	

TLS Handshake: Client Hello

8	

Client sends Cipher Options

• A	list	of	ciphers	for	data	encryption	and	hashing		
•  Supported	Groups:	

9	

• A	list	of	ciphers	for	data	encryption	and	hashing		
•  Supported	Groups	
•  Signature	Algorithms:	
list	of	signature	algorithms		the		
client	is	ready	to	verify	

10	

Pre-Shared Keys

• A	list	of	ciphers	for	data	encryption	and	hashing		
•  Supported	Groups	
•  Signature	Algorithms:	
list	of	signature	algorithms		the		
client	is	ready	to	verify	

•  Pre	Shared	Key	Extensions	
list	of	key	identities	known	to	the	
client	and	a	psk_key_exchange_mode	
	
	

11	

Server Hello

12	

Server Hello

13	

32	byte	random	number	

Selected	cipher	suite	

TLS Handshake

14	

Key Generation and Exchange
1.  Pre-master	Secret	

•  After	server’s	certificate	is	verified,	client	generates	random	number,	called	pre-master	
secret.		

•  Client	encrypts	pre-master	secret	using	server’s	public	key	and	sends	to	the	server.	
•  Length	of	the	key	depends	on	the	public	key	algorithm	used.	

2.  Master	Secret	
•  Uses	client_random	and	server_random	(as	nonce);	along	with	the	pre-master	
secret,	generates	a	master	secret	key.		

•  Master	secret,	is	fixed	length	48	bytes	long	
3.  Session	Keys	

•  Master	key	used	to	generates	4	different	session	keys:	client_write_MAC_key;
client_write_key; server_write_MAC_key; server_write_key

(each	is	of	32	bytes)	
MAC	keys	used	for	integrity;	others	are	used	for	data	encryption;	each	direction	(client	to	
server	and	server	to	client	has	a	different	key)	

15	

TLS Data Transmission

16	

Type	of	protocol:	
0x14	ChangeCipherSpec	
0x15	Alert	
0x16	Handshake	
0x17	Application	
0x18	Heartbeat	

Type	of	protocol:	
0x300	SSL	3.0	
0x301	TLS	1.0	
0x302	TLS	1.1	
0x303	TLS	1.2	
TLS	1.3	

<	214	

Record	Format	

Sending Data with TLS Record Protocol

17	

Receiving Data with TLS Record Protocol

18	

TLS Programming : Overall Picture

TLS Client Program: TLS Initialization

•  TLS	protocol	is	a	stateful	protocol	
•  Create	a	context	data	structure		
•  Create	a	SSL	structure	to	hold	state	information	
	

SSL	Context:	
holding	SSL	

configuration		

Holding	
SSL	states	

TLS Client Program: TLS Initialization (cont’d)

Should	verify	
server’s	certificate	

Folder	containing	
trusted	CA’	
certificates,	such	as	
root	CA’s	
certificates.	

Check	whether	the	
certificate’s	subject	
field	matches	with	
hostname.	

TLS Client Program: Set Up a TCP
Connection

• TLS	is	primarily	
built	on	top	of	
TCP.	

• This	part	is	
standard.	

TLS Client Program: Initiate TLS Handshake

Establish	the	SSL	
session	on	top	of	
an	established	
TCP	connection	

Initiate	the	TLS	Handshake	protocol	

TLS Client Program: Send/Receive Data

Send	data	

Receive	data	

•  We	construct	a	simple	HTTP	GET	request,	and	print	out	the	reply	from	
the	web	server.	

TLS Server Program

Create a simple HTTPS server

TLS Server Program: Setup

Server’s	certificate	

Server’s	private	key	

Will	not	verify	the	
client’s	certificate	

TLS Server Program: TCP Setup

This	program	
creates	a	TCP	
socket,	binds	it	to	
a	TCP	port	(4433)	
and	marks	the	
socket	as	a	
passive	socket.	
This	is	quite	
standard.	

TLS Server: Handshake & Data Communication

Conduct	TLS	
handshake	

with	the	client	

We	can	now	
use	this	

established	SSL	
session	to	

conduct	data	
communication	

TLS Server Program: Data Transmission

•  Logic	for	sending/receiving	data	is	the	same	as	the	client	program.	
• We	simply	send	an	HTTP	reply	message	back	to	the	client.	

Padding Attack

30	

Data Encryption (CBC mode)

31	

eK	 eK	 eK	 eK	 eK	

IV	

p0	

c0	 c1	

p1	 p2	

c2	

p3	

c3	

p4	

c4	

CBC Mode Decryption

32	

dK	 dK	 dK	 dK	 dK	

IV	

p0	 p1	 p2	 p3	 p4	

c0	 c1	 c2	 c3	 c4	

Recollect TLS Data Encryption

33	

1 2 3 4 5 6 7 8	 1	 2	 3	 4	 5	 6 7	 8

a b c	 4 4 4 4 4	

a b c	 d e f	 1 1	

a b c	 d e f	 g h	 i	 6	 6	 6	 6	 6 6	 6
“abcdef”	

“abcdefghi”	

“abc”	

Padding,	assuming	block	size	is	8	Application	Data	

Data	Block	1	 Data	Block	2	

Compressed	

Compressed	 MAC	 Pad	

Encrypted	
Critical	point:	Pad	is	not	protected	by	MAC	
(thus	an	attacker	can	modify	the	Pad,	without	being	detected)	

Pad	length	
Pad	

Receiver Checks (older TLS versions)

34	

Encrypted	

Compressed	 MAC	 Pad	

decrypt	

TEST(PAD)	

Compressed	

Data	Block	1	

uncompress	

Signal	Error:		
PAD	check	failed	

PASSED	
FAILED	

TEST(MAC)	
PASSED	

Signal	Error:		
MAC	check	failed	

FAILED	 Two	different	errors	signaled	

TEST(PAD)	
	
Look	at	the	last	byte	(pad	length)	
If	it	is	0x05,	then	the	previous	5	bytes	should	contain	0x05.	

Padding Attack

35	

dK	 dK	

IV	

p0	 p1	

c0	 c1	
234562490a 4372458815

Chosen	Cipher	text	attack	

Compressed	 MAC	 Pad	

Padding Attack

36	

dK	 dK	

IV	

p0	 p1	

c0	 c1	
23456249xx 4372458815

Lets	try	to	decrypt	i1B	
Attacker	changes	LSByte	of	c0	to	(say	xx)	
and	sends	the	modified	ciphertext	to	the	server.	
	
	
P1B	=	xx	^	i1B		
	
(if	P1B	holds	an	valid	pad	(=	0x00),	then	pad	test	will	pass	
	if	P1B	holds	an	invalid	pad	(≠	0x00),	then	pad	test	will	fail)	
	
	
There	are	256	possible	values	of	xx.	
Vary	the	values	of	xx	until,	pad	test	passes.	
	
	
	
	

Compressed	 MAC	 Pad	

i1	

p1B	

Padding Attack

37	

dK	 dK	

IV	

p0	 p1	

c0	 c1	
234562yyxx 4372458815

Lets	try	to	decrypt	i1B-1	
Attacker	changes	LSByte	of	c0	to	(say	xx)	
and	sends	the	modified	ciphertext	to	the	server.	
	
Set	xx	such	that,	P1B	=	0x01	
P1B-1	=	yy	^	i1B-1	
	
(if	P1B-1	holds	an	valid	pad	(=	01),	then	pad	test	will	pass	
	if	P1B	holds	an	invalid	pad	(≠	01),	then	pad	test	will	fail	
quite	likely,	the	MAC	test	will	fail,	in	this	case)	
	
There	are	256	possible	values	of	xx.	
Vary	the	values	of	xx	until,	pad	test	passes.	
	
	
	
	

Compressed	 MAC	 Pad	

i1	

p1B-1	

Padding Attack in Practice

• Won’t	work	in	all	places	
• When	TLS	detects	a	padding	or	MAC	error,	it	renegotiates	the	key	
• Certain	scenarios	where	it	will	work	

•  IMAP	over	TLS	
Every	5mins,	IMAP	will	send	the	same	encrypted	string	comprising	of		
USERNAME	and	PASSWORD	to	the	email	server.	
	
Even	with	the	key	changes,	the	attacker	would	need	at	most	256	x	8	x	5	minutes	to	capture	
the	entire	8	byte	(ASCII)	password	
	

•  Datagram	TLS		

38	

Receiver Checks Modified

39	

Encrypted	

Compressed	 MAC	 Pad	

decrypt	

TEST(PAD)	

Compressed	

Data	Block	1	

uncompress	

Signal	Error:		
Check	failed	

PASSED	
FAILED	

TEST(MAC)	
PASSED	

Signal	Error:		
check	failed	

FAILED	 Same	Error	(so	an	attacker	cannot	distinguish	
between	a	PAD	or	MAC	error)	

Timing Attacks

40	
https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf	

Fr
eq

ue
nc
y	
di
st
rib

ut
io
n	

Receiver Checks (Modification 2)

41	

Encrypted	

Compressed	 MAC	 Pad	

decrypt	

TEST(PAD)	

Compressed	

Data	Block	1	

uncompress	

PASSED	/	FAILED	

TEST(MAC)	
PASSED	

Signal	Error:		
check	failed	

FAILED	 Always	do	a	MAC	test.	
If	PAD	test	failed,	then	assume	0	PAD	and		
compute	MAC.	

Receiver Checks Modification 2

42	

Encrypted	

Compressed	 MAC	 Pad	

decrypt	

TEST(PAD)	

Compressed	

Data	Block	1	

uncompress	

PASSED	/	FAILED	

TEST(MAC)	
PASSED	

Signal	Error:		
check	failed	

FAILED	 Always	do	a	MAC	test,	even	if	PAD	test	
failed	

Helps	reduce	attack	surface	….. But not much L

If PAD test fails, the server cannot identify the length
of the PAD. Assuming 0 PAD, would imply that the
data would be larger; hence, MAC computation
would take longer

Poodle Attack

(Padding Oracle Downgraded Legacy
Encryption)

43	

Recollect Client Hello

44	

• A	list	of	ciphers	for	data	encryption	and	hashing		
•  Supported	Groups	
•  Signature	Algorithms:	
list	of	signature	algorithms		the		
client	is	ready	to	verify	

•  Pre	Shared	Key	Extensions	
list	of	key	identities	known	to	the	
client	and	a		
psk_key_exchange_mode	
	
	

Man in the Middle

45	

Beast Attack (Man in the Middle)

46	

Force	Alice	to	execute	something	
(for	example	using	Javascript)	

Sniff	encrypted	traffic	

encrypted	traffic	

IVs used in CBC mode

47	

eK	 eK	 eK	 eK	 eK	

IV	

p0	

c0	 c1	

p1	 p2	

c2	

q0	

d0	

q1	

d1	

Attacker	can	control	Holds	a	password	

IVs used in CBC mode

48	

eK	 eK	 eK	 eK	 eK	

IV	

p0	

c0	 c1	

p1	 p2	

c2	

q0	

d0	

q1	

d1	

Attacker	can	control	Holds	a	password	

q0 = c2⊕ c0⊕ p1

c1= d0
then	

Attacker	knows	c0,	d2	
Can	control	q0	
	
Needs	to	know	p1	… this is not easy. 8 bytes 264 possibilities	

Get and Post HTTP Requests

49	

Secret	information	Constant	HTTP	Get	request	

http://commandlinefanatic.com/cgi-bin/showarticle.cgi?article=art027	

CBC	Encryption	with	DES	

Splitting Attack

50	

One	byte	is	unknown	
(256	guesses)	

Rizzo	and	Duong	exploited	a	security	hole	in	the	Java	Applet	of	their	browser	(which	has	since	been	patched)	to	
make	this	work	

Taming the Beast

• Use	a	stream	cipher	such	as	RC4	(works)	

• Use	other	modes	of	operation,	like	GCM	mode	

• Prepend	each	record	with	an	empty	plaintext	fragment,	just	
containing	the	MAC	and	padding.	

•  The	IV	used	for	live	data	will	not	be	known	in	advance	
•  Buggy	web-browsers	and	servers	won’t	tolerate	empty	packets	

• Compression		

51	

CRIME

•  The	Deflate	Compression	Scheme	

52	

53	

Force	Alice	to	execute	something	
(for	example	using	Javascript)	

Sniff	encrypted	traffic	

encrypted	traffic	

Assumption:	The	Javascript	program	can	inject	known	messages	in	the	active	TLS	connection	
between	the	client	and	server	

The Attack

• Consider	that	the	following	cookie	is	sent	from	client	to	server:	
			Cookie	secret	=	345678	
	
•  The	attacker	knows	the	session	token	“Cookie	secret	=“		and	wants	to	
obtain	the	secret	token.	

•  The	javascript,	will	start	to	inject	strings	as	follows	in	the	
communication	between	Alice	and	Bob:	“Cookie	secret	=a“	

•  The	attacker	notes	the	size	of	the	transmitted	packet	
•  If	the	size	reduces,	then,	the	guess	is	correct	

54	

55	

Buffer Overread Example

Buffer Overread Example

56	

len	read	from	command	line	

len	used	to	specify	how	much	
needs	to	be	read.		
Can	lead	to	an	overread	

Heartbleed : A buffer overread malware

57	

•  2012	–	2014	
•  Introduced	in	2012;	disclosed	in	2014	

•  CVE-2014-0160	
•  Target	:	OpenSSL	implementation	of		
TLS	–	transport	layer	security	

•  TLS	defines	crypto-protocols	for	secure	communication		
•  Used	in	applications	such	as	email,	web-browsing,	VoIP,	instant	
messaging,		

•  Provide	privacy	and	data	integrity	

https://www.theregister.co.uk/2014/04/09/heartbleed_explained/	

Heartbeat

	

•  A	component	of	TLS	that	provides	a	means	to	keep	alive	secure	communication	links	
•  This	avoids	closure	of	connections	due	to	some	firewalls	
•  Also	ensures	that	the	peer	is	still	alive	

58	

Hello	World;	12	

Hello	World;	12	

Heartbeat	Message	

type	 length	 payload	 padding	

Heartbeat

	

•  Client	sends	a	heart	beat	message	with	some	payload	

•  Server	replies	with	the	same	payload	to	signal	that	everything	is	OK	

59	

Hello	World;	12	

Hello	World;	12	

Heartbeat	Message	

type	 length	 payload	 padding	

SSL3 struct and Heartbeat

60	

•  Heartbeat	message	arrives	via	an	SSL3	structure,	which	is	defined	as	follows	

	length	:	length	of	the	heartbeat	message	

								data		:	pointer	to	the	entire	heartbeat	message	
	

struct ssl3_record_st
{
 unsigned int D_length; /* How many bytes available */
 [...]
 unsigned char *data; /* pointer to the record data */
 [...]
} SSL3_RECORD;

type	 Length	(pl)	 payload	
Format	of	data	(Heartbeat	Message)	

Payload and Heartbeat length

•  payload_length:	controlled	by	the	heartbeat	message	creator	
•  Can	never	be	larger	than	D_length	
•  However,	this	check	was	never	done!!!		

•  Thus	allowing	the	heartbeat	message	creator	to	place	some	arbitrary	large	number	in	the	
payload_length	

•  Resulting	in	overread	

61	

type	 Length	(pl)	 payload	
Heartbeat	Message	

payload	length	(pl)	

D_length	(pl)	

Overread Example

62	

Attacker	sends	a	heartbeat	message	with	
a	single	byte	payload	to	the	server.	
However,	the	pl_length	is	set	to	65535	
(the	max	permissible	pl_length)	

Victim	ignores	the	SSL3	length	(of	4	bytes),		
Looks	only	at	the	pl_length	and	returns		
a	payload	of	65535	bytes.	In	the	payload,	only	
1	byte	is	victim’s	data	remaining	65534	from	
its	own	memory	space.	

Broken OpenSSL
code@victim

63	https://git.openssl.org/gitweb/?p=openssl.git;a=blob;f=ssl/t1_lib.c;h=a2e2475d136f33fa26958fd192b8ace158c4899d#l3969	

p	points	to	the	attackers	heart	
beat	packet	which	the	victim	
just	received.	

get	the	heartbeat	type;	
fill	payload	with	size	of	payload	
(pl	in	our	notation)	
This	is	picked	up	from	the		
attackers	payload	and	contains	
65535	

Allocate	buffer	of	3	+	65535	+	
16	bytes	

memcpy	grossly	overreads	
from	the	victim’s	heap	

1	

2	

3	

4	

Broken OpenSSL
code@victim

64	

Add	padding	and	send	the	
response	heartbeat	message	
back	to	the	attacker	

5	

65534 byte return payload may contain
sensitive data

65	

Further,	invocations	of	similar	false	heartbleed	will	result	in	another	64KB	of	the	
heap	to	be	read.	
In	this	way,	the	attacker	can	scrape	through	the	victim’s	heap.	

The patch in OpenSSL

66	

Discard	the	heartbeat	response	if	it	happens	to	be	greater	than		
the	length	in	the	SSL3	structure	(i.e.	D_length)	

