

Key Establishment

Chester Rebeiro
IIT Madras

Multi Party secure communication

- N parties want to communicate securely with each other (N=6 in this figure)
- If U sends a message to V (U ≠V and U,V & {a,b,c,d,e,f})
 - Only V should be able to read the message
 - No other parties (even if they cooperate) should be able to read the message

Adversary Assumptions

- Passive Attacker (evesdropper)
- Active Attacker
 - Aim :

- Modus-Operandi :
 - alter messages
 - · save messages and replay later
 - masquerade

Adversary Assumptions

- Attackers can collude to get the secrets
- k-party colluding attacks
 - K attackers collude

Types of Keys

Long lived keys

- Generally used for authentication, setting up session keys
 - Could be either a key corresponding to a symmetric cipher
 - Or a private key corresponding to a public key cipher

Session keys

- Used for a brief period of time such as a single session.
 - Typically session key corresponds to a symmetric key cipher
- and requires to be changed periodically
- Derived from LL keys

Example (the keys in GSM)

Long lived (LL) keys

- SIM contains a individual subscriber authentication key (k_i)
 - It is never transmitted or the network.
- A copy of k_i is also stored in databases in the base station
- k_i is used to authenticate the SIM using an algorithm called A3

Session keys (k_c)

- Created at the time of a call changed periodically during the call
- It is created using k_i and an algorithm A8
- Voice and Signals are encrypted using the session key ki using a cipher A5

Why use Session Keys?

- Limit the amount of ciphertext an attacker sees.
- Limit exposure when device is compromised.
- Limits the amount of long term information that needs to be stored on device.

Distributing LL Keys

Non-interactively

- LL keys are stored in the device (such as TPMs)
 - Or computed from stored secrets (such as PUFs)

Interactively

- Could also be sent to the device by a trusted authority (TA)
 - Trusted Authority
 - Verifies identities of users
 - Issues certificates
 - Has a secure link with each user
- Distribution schemes from TA
 - Using public key constructs
 - User's store private keys
 - User certificates stored by TA contains the public keys
 - Using symmetric key constructs
 - TA has a secure channel to distribute secret keys to pairs of users

Key Predistribution

Definition

A Key Predistribution Scheme is a mechanism of distributing information among a set of users in such away that every user in a group in some specified family is able to compute individually a common key associated with that group.

Defining Feature: Key Pre-distribution affects all users

Key Predistribution Scheme

Solution using symmetric key cryptography (Naïve Scheme)

- TA generates a key and sends it securely to A and B.
- Storage in each user : N − 1
- Maximum secure links : N
- Network Overheads : $\binom{N}{2}$ transfers

can we reduce the overheads?

Trading Security for reduced Overheads

- The naïve scheme protects against N-2 colluding users
- What if we reduce this assumption to say k (< N-2) colluding users?
 - Security reduces
 - But overheads may also reduce.

Blom's Key PreDistribution Scheme

Aim: each pair of users requires a unique key

- Unconditionally secure key distribution in a k-party colluding network (k < N 2)
 - At-most k parties can collude
 (k parties acting together will not be able to determine the key for anyone else)
- Maximum secure links N (no change here)
- Network Transfers : N(k+1) (reduced from $\binom{N}{2}$)
- Storage : Each user stores (k+1) elements (reduced from N-1)

Blom's Key Distribution Scheme (for k=1)

- Public parameters:
 (1) prime p (> N) and (2) for each user a distinct value (public) r_u ε Z_p
- Trusted Authority
- 1. Choose secret a, b, c $\in \mathbb{Z}_p$ and forms the polynomial $f(x,y) = (a + b(x + y) + cxy) \mod p$ $= (a + by) + (b + cy)x \mod p$
- 2. For each user u, the TA transmits two elements (2=k+1) to user **U** over a secure channel

$$a_U = (a + br_U) \mod p$$
 and $b_U = (b + cr_U) \mod p$

- Usage: if 'U' and 'V' want to communicate
 - U: has $f(x, r_u)$, computes $K_{VU} = f(r_v, r_u)$
 - V: has $f(x, r_v)$, computes $K_{UV} = f(r_u, r_v) = f(r_v, r_u) = K_{VU}$

Blom's Key Distribution Scheme (for k=1, U, V, W)

Public parameters:

$$(1) p = 17$$

(2)
$$r_u = 12$$
; $r_v = 7$; $r_w = 1$

- Trusted Authority
- 1. Choose **secret** *a*=**8**, *b*=**7**, *c*=**2** and forms the polynomial

$$f(x,y) = (a + b(x + y) + cxy) \mod p$$

= $(a + by) + (b + cy)x \mod p$

2. $a_U = (8 + 7*12) \mod 17 = 7$ and $b_U = (7 + 2*12) \mod 17 = 14$

$$a_v = 6$$
 and $b_v = 4$

$$a_v = 15$$
 and $b_v = 9$

- Usage: if 'U' and 'V' want to communicate
 - $K_{VU} = f(r_{V'}, r_{U}) = 7 + 14 * 7 \mod 17 = 3$
 - $K_{UV} = f(r_{UV}, r_{V}) = 6 + 4 * 12 \mod 17 = 3$

Blom's Key Distribution Scheme (for k=1)

Public parameters:

(1) prime n (> N) and (2) for each user a distinct value (public) r., & Z.

a,b, c are the only secrets. If an attacker can compute these, then the system is broken!

Interchanging x and y values

choose secret a, b, c & Z, and forms the polynomia

$$f(x,y) = (a + b(x + y) + cxy) \mod p$$

= $(a + by) + (b + cy)x \mod p$

For each user u, the TA computes $f(x, r_{ij})$ and transmits two elements (k+1) to user **U** over a secure channel

$$a_U = (a + br_U) \mod p$$
 and $b_U = (b + cr_U) \mod p$

- Usage: if 'U' and 'V' want to communicate
 - U: has $f(x, r_{ij})$, computes $K_{iji} = f(r_{iji}, r_{ij})$
 - V: has $f(x, r_{v})$, computes $K_{uv} = f(r_{v}, r_{v}) = f(r_{v}, r_{v}) = K_{vu}$

This is an Affine transformation. There are three unknowns (a, b, c). Therefore requires 3 equations to solve. However, each user has only a_{11} and b_{11} .

f(x,y) is symmetric.

will not alter results.

Needs more information!!

Blom's scheme is unconditionally secure

• What does this means? Any other user W (not U or V) cannot get any information about K_{UV} apriori probability of K_{UV} = aposteriori probability of K_{UV}

Given all of Blom's public parameters and $f(x, r_w)$

Two equations; three unknowns (a, b, c)
This is an underdetermined system therefore
number of solutions possible is |Zp|.

Aposteriori probability of $K_{UV} = 1/|Z_p|$

2-party Colluding Attackers

If two attackers (say W and X) collude, then
 4 equations present and 3 unknowns
 This will result in a unique solution for a,b,c ... system broken!!!

```
What 'W' and 'X' have?

a_W = a + br_W

b_W = b + cr_W

a_X = a + br_X

b_X = b + cr_X
```


2-party coalition attackers

Generalizing Blom's Scheme

- More complex polynomial so that secret coefficients cannot be retrieved
- For a k-party colluding network

$$f(x,y) = \sum_{i=0}^{k} \sum_{j=0}^{k} a_{i,j} x^{i} y^{j} \mod p$$
where $a_{i,j} \in \mathbb{Z}_{p}$ $(0 \le i, j \le k)$ and $a_{i,j} = a_{j,i}$ for all i, j

Limits of Blom's Scheme

Pairwise keys cannot be changed i.e. U and V cannot change their keys

To change keys, all users need to be reconfigured

Thus, it is difficult to implement this scheme for session keys

Key Distribution Patterns

- suppose we have a TA and a network of n users, $\mathcal{U} = \{U_1, \ldots, U_n\}$
- the TA chooses v random keys, say $k_1, \ldots, k_v \in \mathcal{K}$, where $(\mathcal{K}, +)$ is an additive abelian group, and gives a (different) subset of keys to each user (This is a secret operation).
- a key distribution pattern is a public v by n incidence matrix, denoted M, which has entries in $\{0,1\}$
- M specifies which users are to receive which keys: user U_j is given the key k_i if and only if M[i,j]=1

Key Distribution Patterns (Trivial Example)

Suppose

- There are n users (n = 4)
- and v keys (v = 6)

$$U_1$$
 has keys k_1, k_2, k_3
 U_2 has keys k_1, k_4, k_5
 U_3 has keys k_2, k_4, k_6
 U_4 has keys k_3, k_5, k_6

Group Keys

$$P \subset \mathcal{U}$$

- Consider that a subset of users $P(|P| \ge 2)$ want to communicate together
- Define, $keys(P) = \bigcap_{U_i \in P} keys(U_j)$

$$keys(U_1) = \{ k_1, k_2, k_3 \}$$

 $keys(U_2) = \{ k_1, k_4, k_5 \}$

$$keys(P) = keys(U_1) \cap keys(U_2) = k_1$$

In this case, $k_p = \text{keys}(P) = k_1 \text{ can be used as the key}$

Each user in P can compute keys(P) independently because M is public

If
$$|keys(P)| > 2$$
, then define $k_P = \sum_{i \in kevs(P)} k_i \mod K$

Security of Group Keys

- Consider another subset of users F, who want to collaborate to determine the group key k_p
- 1 If $F \cap P \neq \emptyset$, then there exists some $U_j \in F$ who can compute k_P

If
$$\left(keys(P) \subseteq \bigcup_{U_j \in F} keys(U_j)\right)$$

then there exists a subset in F who can cooperate to compute k_P

If such a subset does not exist, then the system in unconditionally secure

Another Example

- M: n=7, v=7

$$keys(U_1) = \{1, 4, 6, 7\}, keys(U_2) = \{1, 2, 5, 7\},$$
and $keys(U_1, U_2) = \{1, 7\},$ so $k_{\{U_1, U_2\}} = k_1 + k_7.$

No other user has both k₁ and k₂

U₃ has k₁ but not k₇

U₄ has k₇ but not k₁

Therefore the scheme is secure against single party attackers

The scheme is not secure against two (or more) party attackers

If U_3 and U_4 collaborate, they can compute $k_1 + k_7$

Key Distribution Pattern (Trivial Example)

- If there are n users,
- For each pair to communicate securely, the matrix size is
- Each user must store n − 1 keys

$$\binom{n}{2} \times n$$

Security Guarantee:

The system is secure against a coalition of size n-2.

i.e. to get the key between Alice and Bob, everyone remaining must cooperate

Maximum security guarantees, but huge of storage requirements.

Can we trade security for lower storage?

Fiat-Naor Key Distribution Patterns

- Consider n users : $U = \{U_1, U_2,, U_n\}$.
- How do we construct a key pattern matrix M which can resist attacks from w collating users $(1 \le w \le n)$

(w is called the security parameter)

1. Compute:
$$v = \sum_{i=0}^{w} {n \choose i}$$

- 2. Compute the matrix M (v x n)
 - The columns are the users $(U_1, U_2,, U_n)$
 - Each row corresponds incidence vector of a subset of users with cardinality at-least n-w

Example

- Number of users is 6
- Security Parameter w = 1

Example

- Number of users is 6
- Security Parameter w = 1
- v = 7

Consider
$$P = \{U_1, U_3, U_4\}$$
 $k_{\{U_1, U_2, U_4\}} = k_1 + k_2 + k_3 + k_6$

Note that no other user (individually) has access to all keys k_1 , k_2 , k_3 , and k_6 Thus the system is secure against non-cooperating attackers

Session Keys

Are between pairs of users (e.g. Alice and Bob)

Distribution of Session Keys

- Makes use of the TA
 - TA tells Alice and Bob the secret key

Setting: (shared keys with TA)

- TA shares a secret key with each user.
- This key is used to securely communicate between TA and a user.

Bob K_B

Denning-Sacco Attack on the NS Scheme

This is a known session key attack / replay attack, where the attacker has a previously used session key between U and V, and can convinces V to use this old session key

Input is a previously used session key K', which was used between A and B

incorrect, reject

Denning-Sacco Attack on the NS Scheme

What is the flaw in the NS scheme? Bob has no way to know if t_R has been used previously. **Attacker** Bob Input is a previously used session key K', which was used between A and B Has a previously used Decrypt t_R using K_R $t_{R}' = E_{K_{R}}(K'|ID(U))$ and K' Pick a random number r_R Compute $y_2 = E_K(r_B)$ y_2 Decrypt y₂ using K to get r_B Fixed in Kerberos by Compute $y_3 = E_K(r_B - 1)$ adding a timestamp Decrypt y₃ and verify the correctness of r_B-1. If **y**₃

session key k

42

Limitations of Kerberos

- Requires all users and the TA to be synchronized due to the timestamp requirements.
 - Not easily done
- Does not completely prevent replay attacks
 - Replay attacks can still occur within the lifetime (L) of a key
- Is key confirmation (step 4) actually needed?
 - Nobody else can decrypted the encrypted message anyways.

Security of Bellare-Rogaway Session Key Distribution Scheme

- The Bellare-Rogaway scheme is secure under the assumptions
 - A, B, and TA are honest
 - MACs generated are secure
 - Secret keys are not known to anyone other than the required parties
 - Random numbers are generated perfectly

BR Scheme Analysis: When Attacker is Passive

Attacker Knows r_A , r_B , ID(A), ID(B), y_A , y_B

Attacker cannot get the K because she doesn't have K_A or K_B that decrypts Y_A , Y_B respectively

BR Scheme Analysis: When Attacker is Active and Impersonates Bob

Attacker Sends ID(M) instead of ID(B) to TA

Alice finds that the MAC she computes does not match the MAC sent by the TA

Attacker Sends ID(B) as usual

Attacker cannot decrypt y_B because she does not have the decryption key KB Messages sent from Alice encrypted with K, cannot be decrypted by the attacker

BR Scheme Analysis: When Attacker is Active and Impersonates Alice

Attacker sends ID(A), r_A to Bob

Attacker cannot decrypt y_A because she does not have the decryption key K_A Messages sent from Bob encrypted with K, cannot be decrypted by the attacker

Key Agreement Schemes

How does Alice and Bob agree upon a secret key without active use of a TA?

- Users use a public key algorithm
 - The secret key agreed on is a function of
 - Alices' public and private keys
 - Bob's public and private keys

Recall...

Diffie Hellman Key Exchange

Alice and Bob agree upon a prime **p** and a generator **g**. This is public information

compute $B = g^b \mod p$

Compute $K = A^b \mod p$

$$A^b \mod p = (g^a)^b \mod p = (g^b)^a \mod p = B^a \mod p$$

Diffie Hellman (Man in the Mi

(Man in the Middle Attack)

Α

For some m compute M = g^m mod p

choose a secret **b** compute **B** = **g**^b **mod p**

В

M

Compute $K_a = M^a \mod p$

Compute $K_a = A^m \mod p$ $K_b = B^m \mod p$

Compute $K_b = M^b \mod p$

Diffie Hellman (Man in the Mi

(Man in the Middle Attack)

choose a secret **a**compute **A** = **g**^a **mod p**

What's missing is Authentication!
Alice and Bob need to authenticate
each other before exchanging
messages

For some m

compute $M = g^m \mod p$

M

Α

Compute $K_a = M^a \mod p$

Compute $K_a = A^m \mod p$ $K_b = B^m \mod p$

choose a secret **b** compute **B** = **g**^b **mod p**

Compute $K_b = M^b \mod p$

55