

## Key Establishment

Chester Rebeiro
IIT Madras

## Multi Party secure communication



- N parties want to communicate securely with each other
( $\mathrm{N}=6$ in this figure)
- If $U$ sends a message to $V(U \neq V$ and $U, V \varepsilon\{a, b, c, d, e, f\})$
- Only $V$ should be able to read the message
- No other parties (even if they cooperate) should be able to read the message


## Adversary Assumptions



- Passive Attacker (evesdropper)
- Active Attacker
- Aim :
fool $A$ and $B$ into accepting an invalid key
( invalid key : expired key, a key chosen by the attacker)
fool A / B into believing that they have exchanged a key with the other get partial information about the key exchanged between $A$ and $B$
- Modus-Operandi :
- alter messages
- save messages and replay later
- masquerade


## Adversary Assumptions



- Attackers can collude to get the secrets
- k-party colluding attacks
- K attackers collude


## Types of Keys

- Long lived keys
- Generally used for authentication, setting up session keys
- Could be either a key corresponding to a symmetric cipher
- Or a private key corresponding to a public key cipher
- Session keys
- Used for a brief period of time such as a single session.
- Typically session key corresponds to a symmetric key cipher
- and requires to be changed periodically
- Derived from LL keys


## Example (the keys in GSM)

- Long lived (LL) keys
- SIM contains a individual subscriber authentication key ( $\mathrm{k}_{\mathrm{i}}$ )
- It is never transmitted or the network.
- A copy of $k_{i}$ is also stored in databases in the base station
- $\mathrm{k}_{\mathrm{i}}$ is used to authenticate the SIM using an algorithm called A3
- Session keys ( $\mathbf{k}_{\mathrm{c}}$ )
- Created at the time of a call changed periodically during the call
- It is created using $\mathrm{k}_{\mathrm{i}}$ and an algorithm A8
- Voice and Signals are encrypted using the session key ki using a cipher A5


## Why use Session Keys?

- Limit the amount of ciphertext an attacker sees.
- Limit exposure when device is compromised.
- Limits the amount of long term information that needs to be stored on device.


## Distributing LL Keys

## Non-interactively

- LL keys are stored in the device (such as TPMs)
- Or computed from stored secrets (such as PUFs)


## Interactively

- Could also be sent to the device by a trusted authority (TA)
- Trusted Authority
- Verifies identities of users
- Issues certificates
- Has a secure link with each user
- Distribution schemes from TA
- Using public key constructs
- User's store private keys
- User certificates stored by TA contains the public keys
- Using symmetric key constructs
- TA has a secure channel to distribute secret keys to pairs of users



## Key Predistribution

## Definition

A Key Predistribution Scheme is a mechanism of distributing information among a set of users in such away that every user in a group in some specified family is able to compute individually a common key associated with that group.

Defining Feature: Key Pre-distribution affects all users

slide borrowed from Hossein Hajiabolhassan(SBU)

## Key Predistribution Scheme



Slide borrowed from Hossein Hajiabolhassan(SBU)

## Solution using symmetric key cryptography (Naïve Scheme)



- TA generates a key and sends it securely to $A$ and $B$.
- Storage in each user : N-1
- Maximum secure links : N
- Network Overheads : $\binom{N}{2}$ transfers
can we reduce the overheads?


## Trading Security for reduced Overheads



- The naïve scheme protects against $\mathrm{N}-2$ colluding users
- What if we reduce this assumption to say $\mathrm{k}(<\mathrm{N}-2)$ colluding users?
- Security reduces
- But overheads may also reduce.


## Blom's Key PreDistribution Scheme

## Aim : each pair of users requires a unique key

- Unconditionally secure key distribution in a k-party colluding network ( $k<N-2$ )
- At-most $k$ parties can collude
(k parties acting together will not be able to determine the key for anyone else)
- Maximum secure links N (no change here)
- Network Transfers : N(k+1)

$$
\text { (reduced from }\binom{N}{2} \text { ) }
$$

- Storage : Each user stores ( $k+1$ ) elements
(reduced from N-1)


## Blom's Key Distribution Scheme (for $k=1$ )

- Public parameters:
(1) prime $\boldsymbol{p}(>\boldsymbol{N})$ and (2) for each user a distinct value (public) $\boldsymbol{r}_{u} \boldsymbol{\varepsilon} \boldsymbol{Z}_{\boldsymbol{p}}$
- Trusted Authority

1. Choose secret $a, b, c \in Z_{p}$ and forms the polynomial

$$
\begin{aligned}
f(x, y) & =(a+b(x+y)+c x y) \bmod p \\
& =(a+b y)+(b+c y) x \bmod p
\end{aligned}
$$

2. For each user $u$, the TA transmits two elements $(2=k+1)$ to user $\boldsymbol{U}$ over a secure channel

$$
a_{U}=\left(a+b r_{U}\right) \bmod p \text { and } b_{U}=\left(b+c r_{U}\right) \bmod p
$$

- Usage : if ' $U$ ' and ' $V$ ' want to communicate
- $\quad \mathbf{U}$ : has $f\left(x, r_{u}\right)$, computes $K_{\mathrm{vu}}=f\left(r_{v}, r_{u}\right)$
- V : has $f\left(x, r_{v}\right)$, computes $\mathrm{K}_{\mathrm{Uv}}=f\left(r_{u} r_{v}\right)=f\left(r_{v}, r_{u}\right)=\mathrm{K}_{\mathrm{vu}}$


## Blom's Key Distribution Scheme (for k=1, U, V, W)

- Public parameters:
(1) $p=17$
(2) $r_{u}=12 ; r_{v}=7 ; \quad r_{w}=1$
- Trusted Authority

1. Choose secret $\boldsymbol{a}=\mathbf{8}, \boldsymbol{b}=\mathbf{7}, \boldsymbol{c = 2}$ and forms the polynomial

$$
\begin{aligned}
f(x, y) & =(a+b(x+y)+c x y) \bmod p \\
& =(a+b y)+(b+c y) x \bmod p
\end{aligned}
$$

2. $a_{U}=\left(8+7^{*} 12\right) \bmod 17=7$ and $b_{U}=(7+2 * 12) \bmod 17=14$
$a_{v}=6$ and $b_{v}=4$
$a_{v}=15$ and $b_{v}=9$

- Usage : if ' $U$ ' and ' $V$ ' want to communicate
- $K_{\mathrm{vu}}=f\left(r_{v}, r_{u}\right)=7+14 * 7 \bmod 17=3$
- $K_{\mathrm{Uv}}=f\left(r_{u} r_{v}\right)=6+4 * 12 \bmod 17=3$


## Blom's Key Distribution Scheme (for $\mathbf{k}=1$ )

- Public parameters:
(1) nrime $n\left(>N /\right.$ and (2) for each user a distinct value (public) $r_{\mu} \varepsilon \mathbb{Z}_{0}$
$a, b, c$ are the only secrets. If an attacker can compute these,
then the system is broken!
$f(x, y)$ is symmetric. Interchanging $x$ and $y$ values will not alter results.
Choose secrei $0, b, c \varepsilon Z_{p}$ and forms the polvnomial

$$
\begin{aligned}
f(x, y) & =(a+b(x+y)+c x y) \bmod p \\
& =(a+b y)+(b+c y) \times \bmod p
\end{aligned}
$$

2. For each user $u$, the TA computes $f\left(x, r_{u}\right)$ and transmits two elements $(k+1)$ to user $U$ over a secure channel

$$
a_{U}=\left(a+b r_{u}\right) \bmod p \text { and } b_{U}=\left(b+c r_{u}\right) \bmod p
$$

- Usage : if 'U' and 'V' want to communicate
- U : has $f\left(x, r_{u}\right)$, computes $\mathrm{K}_{\mathrm{vu}}=f\left(r_{v}, r_{u}\right)$
- V : has $f\left(x, r_{v}\right)$, computes $\mathrm{K}_{\mathrm{UV}}=f\left(r_{u}, r_{v}\right)=f\left(r_{v}, r_{u}\right)=\mathrm{K}_{\mathrm{Vu}}$

This is an Affine transformation. There are three unknowns ( $a, b, c$ ). Therefore requires 3 equations to solve. However, each user has only $a_{u}$ and $b_{u}$.
Needs more information!!

## Blom's scheme is unconditionally secure

- What does this means? Any other user W (not U or V) cannot get any information about $\mathrm{K}_{\mathrm{UV}}$ apriori probability of $\mathrm{K}_{\mathrm{UV}}=$ aposteriori probability of $\mathrm{K}_{\mathrm{UV}}$
$=1 /\left|Z_{p}\right|$
Given all of Blom's public parameters and $f\left(x, r_{w}\right)$

Two equations; three unknowns ( $a, b, c$ ) This is an underdetermined system therefore number of solutions possible is $|\mathrm{Zp}|$.

Aposteriori probability of $K_{U V}=1 /\left|Z_{p}\right|$

## 2-party Colluding Attackers

- If two attackers (say W and X) collude, then

4 equations present and 3 unknowns
This will result in a unique solution for a,b,c ... system broken!!!

What ' $W$ ' and ' $X$ ' have?
$a_{w}=a+b r_{w}$
$b_{w}=b+c r_{w}$


2-party coalition attackers
$a_{x}=a+b r_{x}$
$b_{x}=b+c r_{x}$

Thus, the scheme is not secure against 2 (or more) party colluding attacks

## Generalizing Blom's Scheme

- More complex polynomial so that secret coefficients cannot be retrieved
- For a k-party colluding network
$f(x, y)=\sum_{i=0}^{k} \sum_{j=0}^{k} a_{i, j} x^{i} y^{j} \bmod p$
where $a_{i, j} \in Z_{p} \quad(0 \leq i, j \leq k)$ and $a_{i, j}=a_{j, i}$ for all $i, j$


## Limits of Blom's Scheme

Pairwise keys cannot be changed
i.e. $U$ and $V$ cannot change their keys

To change keys, all users need to be reconfigured

Thus, it is difficult to implement this scheme for session keys

## Key Distribution Patterns

- suppose we have a $T A$ and a network of $n$ users, $\mathcal{U}=\left\{U_{1}, \ldots, U_{n}\right\}$
- the $T A$ chooses $v$ random keys, say $k_{1}, \ldots, k_{v} \in \mathcal{K}$, where $(\mathcal{K},+)$ is an additive abelian group, and gives a (different) subset of keys to each user (This is a secret operation).
- a key distribution pattern is a public $v$ by $n$ incidence matrix, denoted $M$, which has entries in $\{0,1\}$
- $M$ specifies which users are to receive which keys: user $U_{j}$ is given the key $k_{i}$ if and only if $M[i, j]=1$


## Key Distribution Patterns

(Trivial Example)

## Suppose

- There are $n$ users $(\mathrm{n}=4)$
- and v keys ( $\mathrm{v}=6$ )
$U_{1}$ has keys $k_{1}, k_{2}, k_{3}$
$U_{2}$ has keys $k_{1}, k_{4}, k_{5}$
$U_{3}$ has keys $k_{2}, k_{4}, k_{6}$
$U_{4}$ has keys $k_{3}, k_{5}, k_{6}$
$M=\left[\begin{array}{cccc}U_{1} & U_{2} & U_{3} & U_{4} \\ {\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]} \\ \cdots-\cdots\end{array}\right.$


## Group Keys

$$
P \subseteq U
$$

- Consider that a subset of users $\mathrm{P}(|\mathrm{P}| \geq 2)$ want to communicate together
- Define, $\operatorname{keys}(P)=\bigcap_{U_{j} \in P} \operatorname{keys}\left(U_{j}\right)$

$$
\begin{aligned}
& \operatorname{keys}\left(U_{1}\right)=\left\{k_{1}, k_{2}, k_{3}\right\} \\
& \operatorname{keys}\left(U_{2}\right)=\left\{k_{1}, k_{4}, k_{5}\right\}
\end{aligned}
$$

$$
\operatorname{keys}(P)=\operatorname{keys}\left(U_{1}\right) \cap \operatorname{keys}\left(U_{2}\right)=k_{1}
$$

In this case, $\mathrm{k}_{\mathrm{P}}=\operatorname{keys}(\mathrm{P})=\mathrm{k}_{1}$ can be used as the key

- Each user in $P$ can compute keys $(P)$ independently because $M$ is public

$$
\text { If }|\operatorname{keys}(P)|>2, \text { then define } k_{P}=\sum_{i \in k e y s(P)} k_{i} \bmod K
$$

## Security of Group Keys

- Consider another subset of users $F$, who want to collaborate to determine the group key $\mathrm{k}_{\mathrm{p}}$
(1) If $F \cap P \neq \phi$, then there exists some $U_{j} \in F$ who can compute $k_{P}$
(2) Assume $F \cap P=\phi$

If $\left(\operatorname{keys}(P) \subseteq \bigcup_{U_{j} \in F} \operatorname{keys}\left(U_{j}\right)\right)$
then there exists a subset in $F$ who can cooperate to compute $k_{P}$
If such a subset does not exist, then the system in unconditionally secure

## Another Example

- $M: n=7, v=7$
- $\quad$ Storage in each user is 4

$$
M=\left(\begin{array}{lllllll}
\theta_{1} & U_{2} & 1 & 0 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)_{k_{7}}^{k_{1}} \quad \begin{aligned}
& \operatorname{keys}\left(U_{1}\right)=\{1,4,6,7\}, \text { keys }\left(U_{2}\right)=\{1,2,5,7\}, \text { and } \\
& \operatorname{keys}\left(U_{1}, U_{2}\right)=\{1,7\}, \text { so } k_{\left\{U_{1}, U_{2}\right\}}=k_{1}+k_{7} \text {. }
\end{aligned}
$$

No other user has both $\mathrm{k}_{1}$ and $\mathrm{k}_{7}$.
$\mathrm{U}_{3}$ has $\mathrm{k}_{1}$ but not $\mathrm{k}_{7}$ $\mathrm{U}_{4}$ has $\mathrm{k}_{7}$ but not $\mathrm{k}_{1}$
Therefore the scheme is secure against single party attackers

The scheme is not secure against two (or more) party attackers

If $U_{3}$ and $U_{4}$ collaborate, they can compute $k_{1}+k_{7}$

## Key Distribution Pattern (Trivial Example)

- If there are n users,
- For each pair to communicate securely, the matrix size is
- Each user must store n-1 keys
- Security Guarantee:

The system is secure against a coalition of size $n-2$.
i.e. to get the key between Alice and Bob, everyone remaining must cooperate

Maximum security guarantees, but huge of storage requirements.
Can we trade security for lower storage?

## Fiat-Naor Key Distribution Patterns

- Consider $n$ users : $\mathrm{U}=\left\{\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}\right\}$.
- How do we construct a key pattern matrix $M$ which can resist attacks from w collating users ( $1 \leq w \leq n$ )
(w is called the security parameter)

1. Compute: $v=\sum_{i=0}^{w}\binom{n}{i}$
2. Compute the matrix $M(v \times n)$

- The columns are the users $\left(\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots . ., \mathrm{U}_{\mathrm{n}}\right)$
- Each row corresponds incidence vector of a subset of users with cardinality at-least n-w


## Example

- Number of users is 6
- Security Parameter w=1


$$
\begin{aligned}
& \left\{U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, U_{6}\right\} \\
& \left\{U_{1}, U_{2}, U_{3}, U_{4}, U_{5}\right\} \\
& \left\{U_{1}, U_{2}, U_{3}, U_{5}, U_{6}\right\} \\
& \left\{U_{1}, U_{2}, U_{4}, U_{5}, U_{6}\right\} \\
& \left\{U_{1}, U_{3}, U_{4}, U_{5}, U_{6}\right\} \\
& \left\{U_{2}, U_{3}, U_{4}, U_{5}, U_{6}\right\}
\end{aligned}
$$

$M=\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1\end{array}\right)$

## Example

- Number of users is 6
- Security Parameter w=1
- $v=7$

Consider $P=\left\{U_{1}, U_{3}, U_{4}\right\}$

$$
k_{\left\{U_{1}, U_{2}, U_{4}\right\}}=k_{1}+k_{2}+k_{3}+k_{6}
$$

$M=\left(\left.\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array} \right\rvert\, \begin{array}{lll}1 \\ 1 & 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 \\ 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1\end{array}\right) \longleftarrow$

Note that no other user (individually) has access to all keys $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$, and $\mathrm{k}_{6}$ Thus the system is secure against non-cooperating attackers

Session Keys
Are between pairs of users (e.g. Alice and Bob)

Distribution of Session Keys

- Makes use of the TA
- TA tells Alice and Bobthe secret key



## Setting : (shared keys with TA)



- TA shares a secret key with each user.
- This key is used to securely communicate between TA and a user.



Alice now has the secret session key K




## Denning-Sacco Attack on the NS Scheme

This is a known session key attack / replay attack, where the attacker has a previously used session key between $U$ and $V$, and can convinces $V$ to use this old session key Attacker

Input is a previously used session key $\mathrm{K}^{\prime}$, which was used between $A$ and $B$


## Denning-Sacco Attack on the NS Scheme

What is the flaw in the NS scheme?


## Attacker

## Bob



4
Fixed in Kerberos by adding a timestamp

Input is a previously used session key $\mathrm{K}^{\prime}$, which was used between $A$ and $B$



$$
\begin{array}{l|l}
\text { Only Alice can decrypt message } \mathrm{m}_{1} & \\
\text { Alice will verify } & \\
\text { * the current time to check for validity } & \\
\text { * if } \mathrm{R}_{\mathrm{A}} \text { matches } & \\
\text { * If } \mathrm{ID}(\mathrm{~B}) \text { is correct } & 40 \\
\hline
\end{array}
$$




## Limitations of Kerberos

- Requires all users and the TA to be synchronized due to the timestamp requirements.
- Not easily done
- Does not completely prevent replay attacks
- Replay attacks can still occur within the lifetime (L) of a key
- Is key confirmation (step 4) actually needed?
- Nobody else can decrypted the encrypted message anyways.

Bellare-Rogaway Scheme
TA $K_{A}, K_{B}$


Notice that Alice contacts Bob first. This is crucial to eliminate replay attacks

Bellare-Rogaway Scheme


Uses MAC, prevents double encryption.
No timestamps present

Bellare-Rogaway Scheme
TA $\mathrm{K}_{\mathrm{A},}, \mathrm{K}_{\mathrm{B}}$
Alice $\mathrm{K}_{\mathrm{A}}$

$\mathrm{Y}_{\mathrm{B}}=\left(\mathrm{E}_{\mathrm{K}_{B}}(\mathrm{~K}), \mathrm{MAC}_{\mathrm{B}}\left(\operatorname{ID}(\mathrm{A}), \operatorname{ID}(\mathrm{B}), \mathrm{R}_{\mathrm{B}}, \mathrm{E}_{\mathrm{K}_{B}}(\mathrm{~K})\right)\right.$ $y_{A}=\left(E_{K_{A}}(K), M A C_{A}\left(\operatorname{ID}(A), \operatorname{ID}(B), R_{A^{\prime}} E_{K_{A}}(K)\right)\right.$


2


Decrypt K;
Compute MAC. Verify ID (B), ID (A), $\mathrm{R}_{\mathrm{B}}, \mathrm{K}$

Replay attacks prevented. As Alice and Bob expect a key $K$ corresponding to $R_{A}$ and $R_{B}$
No key confirmation phase. Alice / Bob does not know if the other person has received the key.

## Security of Bellare-Rogaway Session Key Distribution Scheme

- The Bellare-Rogaway scheme is secure under the assumptions
- A, B, and TA are honest
- MACs generated are secure
- Secret keys are not known to anyone other than the required parties
- Random numbers are generated perfectly

Attacker Knows $r_{A}, r_{B}, \operatorname{ID}(A), \operatorname{ID}(B), y_{A}, y_{B}$
Attacker cannot get the $K$ because she doesn't have $K_{A}$ or $K_{B}$ that decrypts $Y_{A}, Y_{B}$ respectively

securely.


Generate $\mathrm{R}_{\mathrm{B}}$

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{B}}=\left(\mathrm{E}_{\mathrm{K}_{\mathrm{B}}}(\mathrm{~K}), \mathrm{MAC}_{\mathrm{B}}\left(\operatorname{ID}(\mathrm{~A}), \operatorname{ID}(\mathrm{B}), \mathrm{R}_{\mathrm{B}}, \mathrm{E}_{\mathrm{K}_{B}}(\mathrm{~K})\right)\right. \\
& \mathrm{V}_{\mathrm{A}}=\left(\mathrm{E}_{\mathrm{K}_{\mathrm{A}}}(\mathrm{~K}), \mathrm{MAC}_{A}\left(\operatorname{ID}(\mathrm{~A}), \operatorname{ID}(\mathrm{B}), \mathrm{R}_{A^{\prime}} \mathrm{E}_{\mathrm{K}_{A}}(\mathrm{~K})\right)\right.
\end{aligned}
$$



Decrypt K;
Compute MAC. Verify ID(B),
$I D(A), R_{B}, K$

Attacker Sends ID(M) instead of ID(B) to TA
Alice finds that the MAC she computes does not match the MAC sent by the TA


Attacker Sends ID(B) as usual
Attacker cannot decrypt $y_{B}$ because she does not have the decryption key KB Messages sent from Alice encrypted with K, cannot be decrypted by the attacker


Attacker sends ID(A), $r_{A}$ to Bob
Attacker cannot decrypt $y_{A}$ because she does not have the decryption key $\mathrm{K}_{\mathrm{A}}$ Messages sent from Bob encrypted with $K$, cannot be decrypted by the attacker


## Key Agreement Schemes

How does Alice and Bob agree upon a secret key without active use of a TA?

- Users use a public key algorithm
- The secret key agreed on is a function of
- Alices' public and private keys
- Bob's public and private keys


## Recall...

## Diffie Hellman Key Exchange

Alice and Bob agree upon a prime $\mathbf{p}$ and a generator $\mathbf{g}$. This is public information
choose a secret a compute $\mathbf{A}=\mathbf{g}^{\mathrm{a}} \bmod \mathrm{p}$

Compute $K=B^{a} \bmod p$
choose a secret b compute $\mathbf{B}=\mathbf{g}^{\mathbf{b}} \bmod \mathbf{p}$

A

$$
A^{b} \bmod p=\left(g^{a}\right)^{b} \bmod p=\left(g^{b}\right)^{a} \bmod p=B^{a} \bmod p
$$

## Diffie Hellman

## (Man in the Middle Attack)


choose a secret a compute $A=g^{a} \bmod p$


For some m
choose a secret b compute $\mathbf{B}=\mathbf{g}^{\mathbf{b}} \bmod \mathbf{p}$

$$
-20+0
$$

Compute
$K_{a}=M^{a} \bmod \mathbf{p}$

Compute

$$
K_{a}=A^{m} \bmod p
$$

$$
K_{b}=B^{m} \bmod p
$$

B

Compute
$K_{b}=M^{b} \bmod p$

## Diffie Hellman

## (Man in the Middle Attack)


choose a secret a compute $\mathbf{A}=\mathbf{g}^{\mathrm{a}} \bmod \mathbf{p}$

What's missing is Authentication! Alice and Bob need to authenticate

Compute
$\mathrm{K}_{\mathrm{a}}=\mathbf{M}^{\mathrm{a}} \bmod \mathbf{p}$

each other before exchanging
messages
For some m
For somem
A compute $\mathbf{M}=\mathbf{g}^{m} \bmod \mathbf{p}$

Compute

$$
K_{a}=A^{m} \bmod p
$$

$K_{b}=B^{m} \bmod p$
choose a secret b compute $\mathbf{B}=\mathbf{g}^{\mathbf{b}} \bmod \mathbf{p}$

