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ABSTRACT

KEYWORDS: Hamiltonian Cycle, Optical Transpose Interconnection Sys-

tems, Fault Tolerance, Independent Spanning Tree, Longest

Path, Absolute Approximation, Biconvex Graphs

In this thesis we will discuss about two well known graph theoretic problems: Hamil-

tonicity and Longest Path Problem.

Hamiltonicity is an important property of any graph and is of special interest in

parallel and distributed computation. Existence of Hamiltonian cycle allows efficient

emulation of distributed algorithms on a network wherever such algorithm exists for

linear-array and ring. Hamiltonicity can also be used for construction of independent

spanning tree and leads to designing fault tolerant protocols. Optical Transpose In-

terconnection Systems (OTIS) is a widely studied interconnection network topology

with n2 nodes is constructed by taking n copies of an n-node basis graph, and ap-

plying simple rule for connecting inter-cluster edges. Surprisingly, to our knowledge,

only one strong result is known regarding Hamiltonicity of OTIS - showing that OTIS

graph built of Hamiltonian basis graph are Hamiltonian. In this work we consider

Hamiltonicity of OTIS networks, built on Non-Hamiltonian bases and answer some

important questions. Firstly, we prove that Hamiltonicity of base graph is not a

necessary condition for the OTIS to be Hamiltonian. We further show that, it is not

sufficient for the basis graph to have Hamiltonian path for the OTIS constructed on

it to be Hamiltonian. We thoroughly investigate the Hamiltonicity of OTIS graphs

formed on generalized Butterfly graphs as basis. We also give constructive proof of

Hamiltonicity for a large class of Butterfly-OTIS. This proof also leads to an alter-

nate linear time algorithm for two rooted independent spanning trees on this class of

OTIS graphs.
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The longest path problem is the problem of finding a simple path of maximum

length in a graph. Longest path algorithms find various applications across diverse

fields. The longest path in program activity graph is known as critical path, which

represents the sequence of program activities that take the longest time to execute.

Longest path algorithm is required to calculate critical paths. The well-known Trav-

eling Salesman problem is also a special case of Longest Path problem. Polynomial

solutions for this problem are known only for special classes of graphs, while it is

NP-hard on general graphs. In this work we are proposing an O(n6) time algorithm

to find the longest path on biconvex graphs, where n is the number of vertices of the

input graph. We also propose an O(n4) time absolute approximation algorithm for

the same problem.
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CHAPTER 1

Introduction

1.1 Hamiltonian Cycle Problem

1.1.1 Dining Table Dilemma

Let us consider an interesting piece of puzzle. Alf, Bob, Colin, Dave, Euan, Frank

and George are holding a dinner party. They are to sit in a circular table and dine.

But, sadly enough, all of them are not ready to sit next to each other. Alf does not

like sitting next to Bob or Colin. Bob will not sit next to Colin, Euan or George.

Colin minds sitting next to Dave or George. Euan will not sit next to George. Apart

from these constraints, they are happy sitting next to anyone else. The question now

is, is there any feasible way to seat them around the table at all? Let us represent

the compatibility network as a graph where the nodes represent the people (A)lf,

(B)ob, (C)olin, (D)ave, (E)uan, (F)rank and (G)eorge. Two nodes are connected by

an edge if they have no problem in sitting next to each other (Fig 1.1(a)). Now, if

we can find a cycle in the graph which covers all the nodes exactly once, we basically

find an arrangement around the table! (Fig 1.1(b))

The problem we just introduced is a very well known problem in Graph Theoretic

literature. This is known as Hamiltonian Cycle Problem. Named after Sir William

Rowan Hamilton, traces its origins to the 1850s. The problem was known as “The

Travelers Dodecahedron”. We find its description in a chapter on Hamilton’s Game

in volume 2 of Édouard Lucas’ “Récréations Mathématiques” and another mention

in the 3rd edition of Ahrens’ German work on Recreational Mathematics. The orig-

inal puzzle is as follows:



C

E

A

G

D

F

B

C

E

A

G

D

F

B

Figure 1.1: (a)The Graph representing the dinner table situation (b)The Cycle is
shown in bold edges

The graph in Fig 1.2 is a two-dimensional projection on the plane of a dodecahedron

(a three-dimensional solid with twelve pentagonal faces). Each vertex on the graph

represents the respective vertex of the dodecahedron, and each line between any two

points - the respective edge. The object of this puzzle is to visit all the twenty points

on the graph starting at any point, visiting every point exactly once, and coming

back to the starting point.

Figure 1.2: Dodecahedron

Now we will formally introduce the problem.
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1.1.2 Formal Introduction

A Hamiltonian cycle is a spanning cycle in a graph, i.e., a cycle through every ver-

tex, and a Hamiltonian path is a spanning path.1 A graph containing a Hamiltonian

cycle is said to be Hamiltonian. It is clear that every graph with a Hamiltonian

cycle has a Hamiltonian path but the converse is not necessarily true. The study of

Hamiltonian cycles and Hamiltonian paths in general and special graphs has been

motivated by practical applications and by the issues of complexity. The problem

of finding whether a graph is Hamiltonian is proved to be NP-complete for general

graphs. [Garey and Johnson, 1979] The problem remains NP-Complete, even when

restricted to special graph classes, like bipartite graphs, planar, cubic, 3-connected,

and has no face with fewer than 5 edges, square of a graph, or even when a Hamilto-

nian path for the graph is given as part of the input instance. [Garey and Johnson,

1979] The problem of finding Hamiltonian path is also NP-Complete on the first

two mentioned special classes. There are several other classes on which both these

problems remain intractable. Naturally, this problem has been an active area of re-

search in Graph Theory and Algorithms. The problem, apart from being of immense

theoretical interest, is of great practical importance too.

There are different lines of research in the area of Hamiltonicity. One line of attempt

is to show that a graph is Hamiltonian, without finding a Hamiltonian Cycle. Prov-

ing that a graph is Non-Hamiltonian is also Hard. Several necessary and sufficient

conditions are known for Hamiltonicity [Gould, 1991]. However, no necessary and

sufficient condition is known except Ore’s condition [Broersma, 2002]. Let G = (V,E)

be a simple graph with n vertices and u, v be distinct nonadjacent vertices of G with

degree(u) + degree(v) ≥ n. Ore’s condition states that G is Hamiltonian if and

only if G + (u, v) is Hamiltonian. Another important point to note is that, most

1All definitions and notations used here and in the subsequent sections are defined in Chapter 2
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of the sufficiency conditions hold for dense graphs. Very few results are known for

Hamiltonicity on sparse graphs.

A different line of research in this field is to design efficient randomized algorithms

for Hamiltonicity detection with very high probability. A very recent result by An-

dreas Björklund in FOCS 2010 presents a Monte Carlo algorithm for Hamiltonicity

detection in an n-vertex undirected graph running in O∗(1.657n) time [Bjöandrklund,

2010]. This is the first superpolynomial improvement on the worst case runtime for

the problem since the O∗(2n) bound established for TSP almost fifty years ago (Bell-

man 1962, Held and Karp 1962). For bipartite graphs, the bound is improved to

O∗(1.414n) time. Both the bipartite and the general algorithm can be implemented

to use space polynomial in n .

1.1.3 Importance of Hamiltonian Cycle in Distributed Com-

puting

Fault tolerance is an important aspect of parallel and distributed systems. Two major

kinds of hardware faults that can occur in networks are dead processor fault (due to

failure of processor or support chip) and dead interprocessor communication (due to

failure of communication hardware). These faults can be abstracted as the failure of

nodes and of edges in the underlying network graph. Hence, an important parameter

to measure the fault tolerance of a distributed system, is to count the number of

Independent Spanning Trees in the graph, which ensures the presence of parallel,

node-disjoint paths between nodes of the network. Let us briefly define Independent

Spanning Trees here. For a tree T and x, y ∈ V , let T [x, y] denote the unique path

from x to y in T . A rooted tree is a tree with a specified vertex called the root of

T . Let G be a graph, let r ∈ V , and let T and T ′ be trees of G rooted at r. We

say that T and T ′ are independent if for every x ∈ V (T ) ∩ V (T ′), the paths T [r, x],

T ′[r, x] have no vertex in common except r and x. Hamiltonicity is an important

property in any hierarchical interconnection network that is closely related to fault

4



tolerance, as, the presence K edge disjoint Hamiltonian cycles in a network implies

2K Independent Spanning Trees in that network. Hamiltonicity is also important to

ensure deadlock freedom in some routing algorithms [Carpenter, 1990] and to allow

efficient emulation of linear-array and ring algorithms. Algorithms, such as all-to-all

broadcasting or total exchange, relies on a Hamiltonian cycle for its efficient execution

[Parhami, 2006].

1.2 Longest Path Problem

1.2.1 Entanglement Puzzle game

One of the most popular computer games, hosted by Google chrome webstore is the

Entanglement puzzle game made by the Gopherwood Studios. The game requires

players to try to make the longest path possible by rotating and placing hexago-

nal tiles etched with paths to extend the path without running into walls. This is

constrained version of the well known Longest Path problem.

1.2.2 Formal Introduction

The longest path problem is the problem of finding a simple path of maximum length

in a graph. It is easy to see that Hamiltonian Path problem is a special case of

Longest Path problem. As Hamiltonian path problem is NP-Hard on general graphs,

so obviously solving the longest path problem is also NP-Hard. In fact, it has been

shown that there is no polynomial-time constant-factor approximation algorithm for

the longest path problem unless P=NP [Karger et al., 1997].

The Hamiltonian Path problem remains NP-complete even when restricted to some

small classes of graphs such as split graphs, chordal bipartite graphs, strongly chordal

graphs, circle graphs, planar graphs, and grid graphs [Golumbic, 2004] [Ioannidou

et al., 2009]. However it becomes polynomial time solvable on certain classes of

5



graphs, like, interval graphs, co-comparability graphs, circular-arc graphs and con-

vex bipartite graphs [Ioannidou et al., 2009] and it is meaningful to investigate the

Longest Path problem on special graph classes, for which Hamiltonian Path problem

is polynomial time solvable. But surprisingly, there are a very few known polynomial

time solutions for the Longest Path problems.

1.2.3 Application of Longest Path Algorithms

Longest path algorithms find various applications across diverse fields. The well-

known Traveling Salesman problem is also a special case of Longest Path problem

[Hardgrave and Nemhauser, 1962]. The longest path in program activity graph is

known as critical path (Fig 1.4) which represents the sequence of program activities

that take the longest time to execute. Longest path algorithm is required to calculate

critical paths. The critical path method is as follows:[Sedgewick and Wayne, 2002]

We consider the parallel precedence-constrained job scheduling problem: Given a

Figure 1.3: Jobs and precedence

set of jobs of specified duration to be completed, with precedence constraints that

specify that certain jobs have to be completed before certain other jobs are begun,

how can we schedule the jobs on identical processors (as many as needed) such

that they are all completed in the minimum amount of time while still respecting the

constraints? This problem can be solved by formulating it as a longest paths problem

6



in an edge-weighted Directed Acyclic Graph (DAG): Create an edge-weighted DAG

with a source s, a sink t, and two vertices for each job (a start vertex and an end

vertex). For each job, add an edge from its start vertex to its end vertex with weight

equal to its duration. For each precedence constraint v→w, add a zero-weight edge

from the end vertex corresponding to v to the beginning vertex corresponding to w.

Also add zero-weight edges from the source to each job’s start vertex and from each

job’s end vertex to the sink. Now, schedule each job at the time given by the length

of its longest path from the source.

Figure 1.4: Critical Path on Program Activity Graph

1.3 Contribution of this Thesis

We organize the thesis in two parts2.

Figure 1.5: Butterfly or Bowtie network

2All definitions and notations used here and in the subsequent sections are defined in Chapter 2
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• In the first part, we address some important aspects of Hamiltonicity of

Optical Transpose Interconnection System networks.

– We investigate whether Hamiltonicity of base graph is also a necessary

condition for the OTIS to be Hamiltonian. We answer this in negative.

– We further investigate whether it is sufficient for the base graph to have

Hamiltonian path, for the OTIS to be Hamiltonian. We answer this also

in negative.

– Two kinds of butterfly graphs are known in literature. The first one is

a 5-vertex graph which is also known as bowtie graph. We consider the

generalization of this butterfly/bowtie graph, where we consider two cycles

Cm, Cn connected at a cutvertex and denote in as BF (n,m) . We consider

BF (n,m) as base network, and investigate the Hamiltonicity on the OTIS

network. To avoid ambiguity, we denote the OTIS network formed on

BF (n,m) as Bowtie-OTIS.

– A different type of butterfly graph of dimension n is defined as a 4-regular

graph, BF (n) , on n2n vertices as follows [Barth and Raspaud, 1994]:

∗ The vertex set, V (BF (n)) is the set of couples (α;xn−1, . . . , x0), where

α ∈ {0, . . . , (n− 1)} and xi ∈ {0, 1},∀i ∈ {0, . . . , (n− 1)}.

∗ [(α;xn−1, . . . , x0), (α′;xn−1
′, . . . , x0

′)] is an edge of BF (n) if α′ ≡ α +

1(mod n) and if xi = xi
′∀i 6= α′.

We also investigate Hamiltonicity on the OTIS network built on this base

network.

– We give constructive proofs for Hamiltonicity, on Bowtie-OTIS ofBF (2m+

1, 2n+1) and BF (2m+1, 2k), where m,n, k ∈ N. This construction leads

to an efficient alternate linear time rooted Independent Spanning Tree

construction algorithm on this class of Bowtie-OTIS graphs. This algo-

rithm is linear in the number of vertices, as opposed to the generalized

tree construction algorithm was proposed by Itai and Rodeh [Itai and

8



Rodeh, 1988], which is linear in number of edges of the graph. So if we

make BF (2m+1, 2n+1) or BF (2m+1, 2k) denser by introducing chords

inside the cycles C2m+1, C2n+1 or C2k such that at least one of the ver-

tices retain degree 2, our algorithm shows better performance than the

generalized one.

• In the second part, we present A Polynomial Time Algorithm for Longest

Paths in Biconvex Graphs. We also present a more efficient approximation

algorithm with Constant additive error to find longest path on biconvex graphs.

More formally, we can say, let Lmax be the longest path length declared by the

approximation algorithm and L′max be the correct longest path length on the

given graph. Then either Lmax = L′max or Lmax = L′max − 1

Most of the graph theoretic problems of practical interest, in their fullest gen-

erality, are NP-Complete, which means, it is very unlikely that efficient poly-

nomial time solution can be found for these problems. One of the most popu-

lar and effective approaches to tackle with NP-Completeness is to restrict the

class of inputs. Exploiting this approach, we can see that certain intractable

problems become polynomial time solvable on some special graph classes.On a

similar line of approach, we present a polynomial time algorithm [O(n6) time

algorithm] to find the Longest Path on Biconvex Graphs, where n is the num-

ber of vertices of the input graph. Polynomial solutions for this problem are

known only for special classes of graphs, while it is NP-hard on general graphs.

Biconvex graphs are superclass of bipartite permutation graphs,[Brandstädt

et al., 1999] on which the Longest Path problem is polynomial time solvable,

and subclass of chordal bipartite graphs [Spinrad et al., 1987], on which, this

problem is NP-Hard. Naturally it was interesting to investigate the status of

the problem on Biconvex graph class.
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1.4 Outline

In this section we present a brief outline of the thesis. In Chapter 2, we discuss the

basics of complexity classes, approximation algorithms, some basics of graph theory

and special graph classes and their characteristics. In Chapter 3, we present the

literature survey and our results on Fault Tolerance and Hamiltonicity of Optical

Transpose Interconnection Systems. In Chapter 4, we present literature survey and

our results on the Longest Path problem on Biconvex graphs. In Chapter 5 we

conclude mentioning some related open problems and further direction that can be

pursued.
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CHAPTER 2

Preliminaries

In this chapter, we discuss basic definitions and theorems in computational complex-

ity and graph theory. In Section 2.1, we discuss about basic definitions in graph

theory. In Section 2.2, we discuss about basic complexity classes P and NP . In Sec-

tion 2.3, we briefly discuss about approximation algorithms. In Section 2.4 we define

Biconvex Graphs and in Section 2.5 we define Optical Transpose interconnection

Systems.

2.1 Graph Theoretic Preliminaries

Now we move to graph theoretic basics. In this thesis we work with simple and

undirected graphs.

A graph G = (V,E) consists of a finite set V (G) of vertices and a collection E(G)

of 2-element subsets of V (G) called edges. An undirected edge is a pair of distinct

vertices u, v ∈ V (G), and is denoted by uv. We say that the vertex u is adjacent

to the vertex v or, equivalently, the vertex u sees the vertex v, if there is an edge

uv ∈ E(G). Let S be a set of vertices of a graph G. Then, the cardinality of the set

S is denoted by |S| and the subgraph of G induced by S is denoted by G[S]. The set

N(v) = {u ∈ V (G) : uv ∈ E(G)} is called the neighborhood of the vertex v ∈ V in G,

the set N [v] = N(v)∪ {v} is called the closed neighborhood of the vertex v ∈ V (G).

A simple path of a graph G is a sequence of distinct vertices v1, v2, · · · , vk such that

vivi+1 ∈ E(G) ∀1 ≤ i ≤ k − 1 and is denoted by (v1, v2, · · · , vk). Throughout the

paper all paths considered are simple. For a vertex v ∈ V (G), by deg(v) we shall

denote the degree of v in G. The maximum degree among the vertices of G is denoted



by ∆(G) and the minimum degree by δ(G). diam(G) denote the diameter of G and it

is defined as the maximal distance between any two nodes in G. The connectivity of

G, κ(G) denotes the minimum number of vertices, which when removed, disconnects

G.

2.2 Basic Complexity Classes P and NP

The theory of NP-Completeness is designed to be applied to decision problems only.

Before formally introducing the notion of NP-Completeness, let us briefly discuss

about decision and optimization version of a problem.

Decision problems have only two possible solutions, either the answer is “yes” or the

answer is “no”. If the optimization problem asks for a structure of certain type that

has “minimum” cost among all such structures, we can associate with that problem,

the decision problem that includes a numerical bound k as an additional parameter

and asks whether there exists a structure of the required type having cost no more

than k. Let us illustrate with an example. Vertex Cover is a well known graph

theoretic problem. The problem is the following:

Definition: A vertex-cover of an undirected graph G = (V,E) is a subset of V ′

of V such that ∀(u, v) ∈ E either u or v (or both) belongs to V ′ .

Problem: Finding minimum size vertex cover in a given undirected graph.

Figure 2.1: The vertices shown in dark shade constitute the minimum vertex cover
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The optimization version of this problem is: What is the size of minimum Vertex

Cover for a given graph G?

The decision version of this problem is: Does there exist a Vertex Cover of size k for

a given graph G, where k is a fixed integer?

Decision problems can be derived from maximization problems in an analogous way,

simple by replacing “no more than” by “at least”.

2.2.1 NP-Hardness and NP-Completeness

The notations followed in this section are from [Papadimitriou, 1994]. For basic def-

initions like Turing machines refer [Papadimitriou, 1994; Garey and Johnson, 1979].

The set of problems for which polynomial time algorithms exists belong to class P or

the set of all languages decidable in polynomial time by Turing machines is denoted

by P [Papadimitriou, 1994] i.e., P = TIME(nk) where n is size of input and k ≥ 1.

The set of languages decided by nondeterministic Turing machines within time nk is

denoted by NP i.e., NP = NTIME(nk) where n is the size of the input and k ≥ 1.

Famous open question is P
?
= NP .

Definition 2.1 [Papadimitriou, 1994] Let C be a complexity class. We say that L is

C-hard if any language L′ ∈ C can be reduced to L.

Definition 2.2 [Papadimitriou, 1994] Let C be a complexity class, and let L be a

language in C. We say that L is C-complete if any language L′ ∈ C can be reduced

to L.

A problem p is NP -complete if p ∈ NP and p is NP -hard. Cook introduced the

first NP-complete problem, the Boolean Satisfiability, in 1971. Now there exists

thousands of NP-complete problems. A polynomial time lower bound for any one of

these problems would imply that P = NP . A super polynomial lower bound for any

one of these problems would imply that P 6= NP .
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2.3 Approximation Algorithms

In this section, we look at some basic definitions related to approximation algorithms.

If we know that a problem is NP-hard then we can work on the problem in the fol-

lowing ways:

1. Restricted class of Inputs: Here the input is restricted to a subset of the orig-

inal class. Sometimes a problem can be solved in polynomial time if we restrict the

input to subset of the original class. For example Vertex Cover is NP -complete

on general graphs. If we restrict our input to bipartite graphs this can be solved in

polynomial time.

2. Approximation Algorithms: Here we design an algorithm which finds an ap-

proximate solution with a small error bound instead of finding the exact solution.

Let P be a problem and I be an instance of the problem and F ∗(I) be the value

of an optimal solution to I. An approximate algorithm generally produces a feasi-

ble solution to I whose values F (I) is less than (or greater than) F ∗(I) if P is a

maximization (minimization) problem.

Definition 2.3 [Sahani et al., 2007] Let P be a problem and I be an instance of

the problem and F ∗(I) be the value of an optimal solution to I. An approximate

algorithm generally produces a feasible solution to I whose values F (I) is less than

(or greater than) F ∗(I) if P is a maximization (minimization) problem.

An optimization problem can be either a maximization or a minimization problem.

Definition 2.4 [Sahani et al., 2007] A is an absolute approximation algorithm for

problem P if and only if for every instance I of P , |F ∗(I) − F (I)| ≤ C for some

constant C.
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Definition 2.5 [Sahani et al., 2007] A is an ρ(n)-approximation algorithm for prob-

lem P , if and only if for every instance I of size n, |F ∗(I)−F (I)|/F ∗(I) ≤ ρ(n) for

F ∗(I) > 0.

For some problems it is possible to develop approximation algorithms with constant

approximation difference and for some problems the best possible polynomial time

approximation ratio depends on the size of the input.

2.4 Biconvex Graphs

A bipartite graph G=(S, T, E) is convex on the vertex set S if S can be ordered so

that for each element t in the vertex set T the elements of S connected to t form

an interval of S; this property is called the adjacency property. G is biconvex if it

is convex on both S and T [Abbas and Stewart, 2000a]. Fig 2.2 demonstrates an

example. The vertices which violate adjacency property, i.e., whose neighborhood

does not form an interval in the other partition, are shown in bold. The dotted

edges are not present in the graph. This illustrates one possible ordering and there

can be other possible orderings as well. However recognition of this graph class and

achieving an ordering preserving the adjacency property are polynomial time [Abbas

and Stewart, 2000a].

2.5 Optical Transpose Interconnection Network

We will use standard graph theoretic terminology. Let G = (V,E) be a finite undi-

rected simple graph with vertex set V (G) and edge set E(G).

The OTIS network denoted as OTIS(G), derived from the base or basis or factor

graph GB = (VB, EB), is a graph with vertex set:

V (OTIS(GB))
∆
= {〈u, v〉 |u, v ∈ V (GB)} ,
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Figure 2.2: The vertices which violate adjacency property are shown in bold.

And edge set:

E(OTIS(GB))
∆
= {(〈v, u〉 , 〈v, u′〉)|v ∈ V (GB), (u, u′) ∈ E(GB)}∪

{(〈v, u〉 , 〈u, v〉)|u, v ∈ V (GB), u 6= v} .

If the basis network GB has n nodes, then OTIS(G) is composed of n node-disjoint

subnetworks called clusters, each of which is isomorphic to GB (Fig 2.3). We assume

that the processor/nodes of the basis network is labeled [n] = {1, . . . , n}, and the

processor/node label 〈g, u〉 in OTIS network OTIS(G) identifies the node indexed

u in cluster g, and this corresponds to vertex 〈g, u〉 ∈ V ((GB)). Subsequently, we

shall refer to g as the cluster address of node 〈g, u〉 and u as its processor address.
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Figure 2.3: (a) Base Network(b) OTIS network
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CHAPTER 3

Fault Tolerance and Hamiltonicity of the Optical

Transpose Interconnection System

3.1 Optical Transpose Interconnection Systems

Optical Transpose Interconnection Systems (OTIS) is a widely studied interconnec-

tion network topology in parallel and distributed computing. OTIS(Swapped) Net-

work was first proposed by Marsden et al. in 1993 [Marsden et al., 1993]. A number of

computer architectures have subsequently been proposed in which the OTIS concept

was used to connect new optoelectronic computer architectures efficiently exploiting

both optical and electronic technologies. In this architecture, processors are divided

into groups (called clusters), where processors within the same group are connected

using electronic interconnects, while optical interconnects are used for intercluster

communication. The OTIS architecture has been used to propose interconnection

networks for multiprocessor systems. Krishnamoorthy et al. have shown that the

power consumption is minimized and the bandwidth rate is maximized when the

number of processors in a cluster equals the number of clusters [Krishnamoorthy

et al., 1992].



3.1.1 Related Results

OTIS (Swapped) have been extensively studied. Chen et al. have shown if the base

graph is k connected than OTIS will have k-vertex disjoint paths between any pair

of vertices, and this is defined as a notion of maximal fault tolerance by them [Chen

et al., 2009]. Surprisingly, to our knowledge, very few results are known regarding

Hamiltonicity of OTIS networks. The only significant result known about Hamiltonic-

ity of OTIS, is by Parhami, that proves that OTIS networks built of Hamiltonian

basis networks are Hamiltonian [Parhami, 2005]. The result by Hoseinyfarahabady

et al. [Hoseinyfarahabady and Sarbazi-Azad, 2007] shows that the OTIS-Network

is Pancyclic and hence Hamiltonian, if its base network is Hamiltonian-connected.

However, by the fact that any Hamiltonian connected base graph is definitely Hamil-

tonian, this is a weaker result.

3.1.2 Our Contribution

We address some important aspect of Hamiltonicity on OTIS graphs.

• We investigate whether Hamiltonicity of base graph is also a necessary condition

for the OTIS to be Hamiltonian. We answer this in negative.

• We further investigate whether it is sufficient for the base graph to have Hamil-

tonian path, for the OTIS to be Hamiltonian. We answer this in negative as

well.
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• Two kinds of butterfly graphs known in literature. The first one is a 5-vertex

graph (Fig 3.1) which is also known as bowtie graph. We consider the gener-

alization of this butterfly/bowtie graph, where we consider two cycles Cm, Cn

connected at a cutvertex and denote in as BF (n,m) . We consider BF (n,m) as

base network, and investigate the Hamiltonicity on the OTIS network. To avoid

ambiguity, we denote the OTIS network formed on BF (n,m) as Bowtie-OTIS.

• A different type of butterfly graph of dimension n is defined as a 4-regular

graph, BF (n) , on n2n vertices as follows [Barth and Raspaud, 1994]:

– The vertex set, V (BF (n)) is the set of couples (α;xn−1, . . . , x0), where

α ∈ {0, . . . , (n− 1)} and xi ∈ {0, 1},∀i ∈ {0, . . . , (n− 1)}.

– [(α;xn−1, . . . , x0), (α′;xn−1
′, . . . , x0

′)] is an edge of BF (n) if α′ ≡ α+1(mod

n) and if xi = xi
′∀i 6= α′.

We also investigate Hamiltonicity on the OTIS network built on this base net-

work.

• We give constructive proofs for Hamiltonicity, on Bowtie-OTIS of BF (2m +

1, 2n + 1) and BF (2m + 1, 2k), where m,n, k ∈ N. This construction leads

to an efficient alternate linear time Independent Spanning Tree construction

algorithm on this class of Bowtie-OTIS graphs. This algorithm is linear in the

number of vertices, as opposed to the generalized tree construction algorithm

proposed by Itai and Rodeh [Itai and Rodeh, 1988], which is linear in number of

edges of the graph. So if we make BF (2m+1, 2n+1) or BF (2m+1, 2k) denser

20



by introducing chords inside the cycles C2m+1, C2n+1 or C2k such that at least

one of the vertices retain degree 2, our algorithm shows better performance

than the generalized one.
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Figure 3.1: (a) Butterfly or Bowtie Graph BF (3, 3) (b) OTIS on BF (3, 3)

3.1.3 Organization

We will discuss our results under the following sections. In section 3.2, we give some

preliminaries, in section 3.3 we give a brief outline of our work, in section 3.4, we dis-

cuss the proof for Hamiltonicity on OTIS(BF (2m+1, 2n+1)) and OTIS(BF (2m+

1, 2k)) thereby, proving that Hamiltonicity of base graph is not a necessary condition

for the OTIS to be Hamiltonian. We further show that OTIS network built on the

other class of Butterfly graphs, [Barth and Raspaud, 1994] is Hamiltonian. In sec-

tion 3.5 we prove that OTIS(BF (4, 4)) and OTIS(BF (4, 6)) are non-Hamiltonian,

which proves that it is not sufficient for the base graph to have Hamiltonian path, for

the OTIS to be Hamiltonian. We discuss our algorithm to create two Independent

Spanning Trees in time linear in the number of vertices in section 3.6.

21



3.2 Preliminaries

We will use standard graph theoretic terminology. Let G = (V,E) be a finite undi-

rected simple graph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G),

by deg(v) we shall denote the degree of v in G. The maximum degree among the

vertices of G is denoted by ∆(G) and the minimum degree by δ(G). diam(G) denote

the diameter of G and it is defined as the maximal distance between any two nodes

in G. The connectivity of G, κ(G) denotes the minimum number of vertices, which

when removed, disconnects G. The OTIS network denoted as OTIS(G), derived

from the base or basis or factor graph GB = (VB, EB), is a graph with vertex set:

V (OTIS(GB))
∆
= {〈u, v〉 |u, v ∈ V (GB)} ,

And edge set:

E(OTIS(GB))
∆
= {(〈v, u〉 , 〈v, u′〉)|v ∈ V (GB), (u, u′) ∈ E(GB)}∪

{(〈v, u〉 , 〈u, v〉)|u, v ∈ V (GB), u 6= v} .

If the basis network GB has n nodes, then OTIS(G) is composed of n node-disjoint

subnetworks called clusters, each of which is isomorphic to GB. We assume that

the processor/nodes of the basis network is labeled [n] = {1, . . . , n}, and the pro-

cessor/node label 〈g, u〉 in OTIS network OTIS(G) identifies the node indexed u in

cluster g, and this corresponds to vertex 〈g, u〉 ∈ V ((GB)). Subsequently, we shall
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refer to g as the cluster address of node 〈g, u〉 and u as its processor address.

The vertices of the base graph BF (m,n), [m,n ∈ N] of OTIS(BF (m,n)), is

labeled with indices {1, 2, . . . , c, c + 1, . . . , i} ⊂ N, where c denotes the label of the

cutvertex, and i denotes the label of the last vertex in the base graph and hence,

i = |V (GB)|,m = c, n = i− c+ 1. (Fig 3.2)

c-1

12

c-2

c

c+1 c+1

i i-1

Figure 3.2: Labeling BF (m,n), where i = |V (GB)|,m = c, n = i− c+ 1

To enhance readability, sometimes we will mention a cluster g and denote edges

for which, both endpoints are within g, as (x, y) which denote edges (〈g, x〉, 〈g, y〉).

A vertex is called “saturated” if its Hamiltonian neighbours, i.e, neighbours in a

Hamiltonian Cycle, are explicitly identified.

Based on the existing results following properties hold for OTIS(G):

Proposition 3.2.1 ([Chen et al., 2009]) Given basis graph G = (V,E), with |V | =

n, ∆(G) = ∆, δ(G) = δ, diam(G) = d, and κ(G) = k, following holds for OTIS(G):

1. deg(〈u, v〉) = deg(v) + 1 when u 6= v, and deg(v) otherwise.
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2. ∆(OTIS(G)) = ∆ + 1.

3. δ(OTIS(G)) = δ.

4. diam(OTIS(G)) = 2d+ 1.

3.3 Outline of the Work

We first investigate the Hamiltonicity ofOTIS(BF (2m+1, 2n+1)) andOTIS(BF (2m+

1, 2k)), where m,n, k ∈ N and prove that both of them are Hamiltonian. We give ex-

plicit constructions of Hamiltonian Cycles on these two classes. Thus we answer the

question that, the base graph need not be Hamiltonian, for the OTIS-network to be

Hamiltonian, as the generalized bowtie graphs, BF (2m+1, 2n+1) andBF (2m+1, 2k)

are clearly Non-Hamiltonian.

Lemma 3.1 Number of edge-disjoint Hamiltonian Cycles on a simple graph with

minimum degree δ is at most
⌊
δ
2

⌋
.

Proof: Any vertex v has deg(v) number of edges incident on it. If possible, let there

be Hi number of edge-disjoint Hamiltonian cycles on the graph. Each Hamiltonian

Cycle will use exactly two of the deg(v) edges incident on vertex v. Hence, v can be

included in at most deg(v)
2

Hamiltonian Cycles, if deg(v) is even, deg(v)−1
2

Hamiltonian

Cycles, if deg(v) is odd. Hence it is easily seen that Hi is upperbounded by
⌊
δ
2

⌋
.

The crucial observation that will be exploited for Hamiltonian Cycle construction on

OTIS(BF (2m+ 1, 2n+ 1)) and OTIS(BF (2m+ 1, 2k)) is the following:
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Observation 3.3.1 There are only 4 kinds of vertex-degrees in the Bowtie-OTIS,

2, 3, 4, 5 and the Bowtie-OTIS is 2-edge connected. Also there is exactly one vertex

of degree 4, namely 〈c, c〉, exactly (|VB| − 1) vertices of degree 2 (〈x, x〉 where x 6= c)

and (|VB| − 1) vertices of degree 5 (〈x, c〉 : ∀x ∈ ({1, 2, . . . , |VB|}\c)) . Rest of the

vertices are all of degree 3.

The correctness of this observation follows from Proposition 3.2.1

Using Lemma 3.1 and Observation 3.3.1, it is easily seen the number of edge-disjoint

Hamiltonian Cycles on OTIS(BF (2m+ 1, 2n+ 1)) and OTIS(BF (2m+ 1, 2k)) can

be at most
⌊

2
2

⌋
= 1. We give construction for Hamiltonian Cycle and discuss how

these constructions can be used to generate two Independent Spanning Trees on

OTIS(BF (2m+1, 2n+1)) and OTIS(BF (2m+1, 2k)) in time linear in the number

of vertices of the OTIS-network (in section 3.6).]

Next we address the question whether it is sufficient for the base graph to have

Hamiltonian path, for the OTIS to be Hamiltonian. We answer this in negative,

proving that the OTIS(BF (4, 6)) and OTIS(BF (4, 4)) are both Non-Hamiltonian.

It is easy to see that the base graph, in both the cases, admits Hamiltonian Path.

Lastly, we consider the the OTIS network built of butterfly graph mentioned in

[Barth and Raspaud, 1994].
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3.4 Proof of Hamiltonicity of OTIS(BF (2m+1, 2n+

1)) and OTIS(BF (2m + 1, 2k))

We give constructive proofs for both OTIS(BF (2m+1, 2n+1)) and OTIS(BF (2m+

1, 2k)). First we state two Inference Rules that will be used to construct Hamiltonian

Cycles.

IR 1: If a vertex of degree ≥ 3, gets saturated, the rest of its edges, not used in the

saturation, becomes Non-Hamiltonian edges and are deleted from the graph.

IR 2: If (〈g1, u〉, 〈g2, v〉) is an edge between the vertices 〈g1, u〉 and 〈g2, v〉, both of

degree 3, and if the edge (〈g1, u〉, 〈g2, v〉) is identified as Non-Hamiltonian, then

all other edges incident to the vertices 〈g1, u〉 and 〈g2, v〉 are forced to be Hamil-

tonian.

Once the edge (〈g1, u〉, 〈g2, v〉) is identified as Non-Hamiltonian, it is dropped

from the potential set of edges required to construct Hamiltonian cycle. So

now, exactly 2 potential edges are incident to each 〈g1, u〉 and 〈g2, v〉 and hence

are forced to be Hamiltonian edges.

The steps in the construction are as follows:

Step 1: We identify the key Non-Hamiltonian edges whose endpoints lies within the

same cluster, explicitly and delete them.

Step 2: In this process some vertices becomes saturated; we apply IR 1 on these vertices.
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Step 3: The previous step, in turn decides Hamiltonian edges of the remaining ver-

tices(due to IR 2).

Observation 3.4.1 The constructions can be implemented as algorithm to construct

Hamiltonian Cycles on OTIS(BF (2m+ 1, 2n+ 1)) and (OTIS(BF (2m+ 1, 2k)) in

time O(m|VB|), i.e., in time linear in the number of vertices of the OTIS graph.

[|VB| = number of clusters].

This observation follows from the fact that, the number of intracluster edges,

deleted per cluster, in these constructions, is O(m), assuming m > n,m > k, without

any loss of generality. In Step 1 of the construction, non-Hamiltonian intracluster

edges are explicitly identified for all the clusters. Therefore, this step takes time

proportional to the number of clusters, i.e., O(|VB|). Hence the Hamiltonian Cycle

construction takes time O(m|VB|), i.e., in time linear in the number of vertices in the

base graph.

3.4.1 Hamiltonicity of OTIS(BF (2m+ 1, 2n+ 1))

We identify the key non-Hamiltonian edges (Step 1 of the construction) in three

parts. First we identify the key Non-Hamiltonian edges for OTIS(BF (3, 2n + 1)),

n > 1 . Then identify the key Non-Hamiltonian edges for OTIS(BF (2m+1, 2m+1)),

m > 1. 1 Lastly, we identify the key Non-Hamiltonian edges for any OTIS(BF (2m+

1, 2n + 1)), where m > 1, n > 3 and n > m.2 This completes the proof that

1We give explicit construction for m = 1
2We give explicit construction for m = 2, n = 3
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any OTIS(BF (2m + 1, 2n + 1)) [m,n ∈ N] is Hamiltonian. Note that, in these

computations, the label 0 is same as label c.

Here we show the construction of OTIS(BF (2m+ 1, 2m+ 1)), m > 1 and argue

its correctness. The correctness of the constructions for OTIS(BF (3, 2n+1)), n > 1

and OTIS(BF (2m + 1, 2n + 1)), where m > 1, n > 3 and n > m can be argued

similarly.

Key non-Hamiltonian edges for OTIS(BF (c = 3, 2n+ 1))

We determine the key non-Hamiltonian intracluster edges for each cluster.

Cluster 1: The set S1 = {(c+2, c+3), (c+4, c+5), . . . , (i−2, i−1)} and (c, i), (c, c−1)

and (c, c+ 1).

Cluster 2: (c, 1) and (c, c+ 1) and the set S2 = {(6, 7), (i− 3, i− 2)} iff 7 > i, else

ignore this set.

Cluster 3: (c, 1), (c, c+ 1).

Cluster (c+ 1): (c, 1), (c, c− 1), (c, i) and (c+ 2, c+ 3), (i− 2, i− 1)

Cluster (i− 1): (c, 1), (c, i) and the set S(i−1) = {(4, 5), (6, 7), (i− 3, i− 2)} iff 5 <

(i− 4), else ignore this set.

Also ∀ cluster x, 1 ≤ x ≤ i, delete edges (x− 2, x− 1) and (x+ 1, x+ 2).
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Key non-Hamiltonian edges for OTIS(BF (2m+ 1, 2m+ 1)), m > 1.

We determine the key non-Hamiltonian intracluster edges for each cluster.

Cluster 1: The sets S1 = {(2, 3), (4, 5), . . . , (c, c−1)}, S2 = {(c+2, c+3), (c+4, c+

5), . . . , (i− 2, i− 1)} and (c, i), (c, c− 1) and (c, c+ 1).

Cluster (c+ 1): The sets S1 = {(2, 3), (4, 5), . . . , (c, c−1)}, S2 = {(c+2, c+3), (c+

4, c+ 5), . . . , (i− 2, i− 1)} and (c, i), (c, c− 1)and (c, 1).

Cluster (c− 1): The set S3 = {(2, 3), (4, 5), . . . , (c− 3, c− 2)}, (c, c + 1), (c, 1) and

(c+ 3, c+ 4) iff (c+ 4) 6= i.

Cluster (c− 2): The set S4 = {(1, 2), (3, 4), . . . , (c−1, c)}, (c, c+1) and (c+3, c+4)

iff (c+ 4) 6= i.

Cluster i: The set S5 = {(c+ 2, c+ 3), . . . , (c− 3, c− 2)}, (c, c+ 1), (c, 1) and (3, 4)

iff (c− 1) 6= 4.

Cluster (i− 1): The set S6 = {(c+1, c+2), . . . , (c, i)}, (c, 1) and (3, 4) iff (c−1) 6= 4.

For Clusters {2, 4, 6, . . . (c − 1)} and {(c + 2), (c + 4), . . . , i}, delete edges (c, 1)

and (c, c+ 1).

For Clusters {1, 3, 5, . . . (c− 2)} delete edges (c, c− 1) and (c, c+ 1).

For Clusters {(c+ 1), (c+ 3), . . . (i− 1)} delete edges (c, 1) and (c, i).

Also ∀ cluster x, 1 ≤ x ≤ i, delete edges (x− 2, x− 1) and (x+ 1, x+ 2).
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Correctness Argument for Hamiltonicity for OTIS(BF (2m + 1, 2m + 1)),

m > 1.

Claim 3.1 All the Hamiltonian edges of OTIS(BF (2m+1, 2m+1)) can be inferred

by deleting the Key edges mentioned and using the inference rules IR 1 and IR 2.

Proof: First we concentrate on the clusters {2, 4, 6, . . . (c− 1)}.

1. We mark the intercluster edges (〈1, p〉, 〈p, 1〉), (〈c − 1, p〉, 〈p, c − 1〉) and (〈c −

2, p〉, 〈p, c− 2〉) as Hamiltonian edges (Using IR 1) ∀p ∈ {2, 4, 6, . . . (c− 1)}.

2. In clusters {3, 5, 7, . . . (c − 2)}, applying IR 2 for the vertex 2, we infer that

the intercluster edges (〈2, p〉, 〈p, 2〉) ∀p ∈ {3, 5, 7, . . . (c − 2)} are Hamiltonian

edges.

3. We also know that (〈p, x−2〉, 〈x−2, p〉), (〈p, x−1〉, 〈x−1, p〉), (〈p, x+ 2〉, 〈x+

2, p〉), (〈p, x+1〉, 〈x+1, p〉) and the edges (〈p, x−3〉, 〈p, x−2〉), (〈p, x+3〉, 〈p, x+

2〉) are Hamiltonian edges (Using IR 2) ∀p ∈ {2, 4, 6, . . . (c− 1)}.

4. Using (2) and (3) and IR 2, we infer set of non-Hamiltonian edges in clusters

{2, 4, 6, . . . (c− 1)}:

• The set Se1 = {(x − 2, x − 1), (x − 4, x − 3), . . . (2, 3)} when (x − 2) 6= c.

Else ignore this set.3

• The set Se2 = {(x+1, x+2), (x+3, x+4), . . . (c−2, c−1)} when (x+1) 6= c.

Else ignore this set. 4

3For Cluster 2, this set is ignored.
4For Cluster (c− 1), this set is ignored.
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This completes the description of non-Hamiltonian edges within the clusters

{2, 4, 6, . . . (c − 1)}, which decides all the Hamiltonian neighbours of the vertices

within these clusters. Below we illustrate with the example of Cluster 2.

• Hamneighbour〈2, 1〉 = 〈2, 2〉, 〈1, 2〉.

• Hamneighbour〈2, 2〉 = 〈2, 1〉, 〈1, 3〉.

• Hamneighbour〈2, 3〉 = 〈2, 2〉, 〈3, 2〉.

• Hamneighbour〈2, 4〉 = 〈2, 5〉, 〈4, 2〉.

• Hamneighbour〈2, 5〉 = 〈2, 4〉, 〈5, 2〉.

...

• Hamneighbour〈2, (c− 3)〉 = 〈2, (c− 2)〉, 〈(c− 3), 2〉.

• Hamneighbour〈2, (c+ 3)〉 = 〈2, (c+ 2)〉, 〈(2, (c+ 4)〉.

...

• Hamneighbour〈2, (i− 1)〉 = 〈2, (i− 2)〉, 〈(2, i〉.

• Hamneighbour〈2, i〉 = 〈2, (i− 1)〉, 〈(2, c〉.

By similar arguments, we infer set of non-Hamiltonian edges in clusters {1, 3, 5, . . . (c−

2)}, which are as follows:

• The set So1 = {(x− 2, x− 1), (x− 4, x− 3), . . . (1, 2)} when (x− 2) 6= c. Else

ignore this set.5

5For Cluster 1, this set is ignored.
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• The set So2 = {(x+ 1, x+ 2), (x+ 3, x+ 4), . . . (c− 3, c− 2)} when (x+ 1) 6= c.

Else ignore this set.

This completes the description of non-Hamiltonian edges within the clusters {1, 3, 5, . . . (c−

2)}. By symmetry, we can infer the set of non-Hamiltonian edges in clusters {(c +

2), (c+ 4), . . . , i} and {(c+ 1), (c+ 3), . . . (i− 1)}.

c-1

c

123

c-3 c-2

c+1 c+2

i i-1

Figure 3.3: BF (2m + 1, 2m + 1): This figure shows how the labels of the vertices
with with symmetric local and global behavious can be mapped to each
other. The bold solid arrows represent the mapping.

Hence, all the Hamiltonian edges of OTIS(BF (2m+1, 2m+1)) can be inferred using

be deleting the Key edges mentioned and using the inference rules IR 1 and IR 2.
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Key non-Hamiltonian edges for OTIS(BF (2m + 1, 2n + 1)), where m > 1,

n > 3 and n > m

Cluster 1: (c, c− 1), (c, c+ 1), (c, i) and the sets S1l = {(2, 3), (4, 5), . . . , (c− 1, c)}.

S1r = {(c+ 2, c+ 3), (c+ 4, c+ 5), . . . , (i− 2, i− 1)}.

Cluster 2: (c, 1), (c, i), (c − 2, c − 1)and the set S2 = {(c + 5, c + 6), (c + 7, c +

8), . . . , (i− 5, i− 4)} where (i− 5) ≥ (c+ 5). Else ignore the set S2.

Cluster 3: (i − 1, i − 2), (c, c − 1), (c, c + 1) and the set S3 = {(c + 5, c + 6), (c +

7, c+ 8), . . . , (i− 5, i− 4)} where (i− 5) ≥ (c+ 5). Else ignore the set S3.

Cluster 4, . . . , (c− 3): (c, 1), (c, c+ 1), (i− 2, i− 1)

Cluster (c− 2): (c, c− 1), (c, c+ 1), (i− 2, i− 1).

Cluster (c− 1): (c, 1), (c, i), (2, 3) and the set S6 = {(c+4, c+5), (c+6, c+7), . . . , (i−

2, i− 1)}

Cluster c: (c, 1), (c, c+ 1).

Cluster (c+ 1): (c, 1), (c, c− 1), (c, i) and (c+ 2, c+ 3), (i− 2, i− 1).

Cluster (c+ 2): (c, c− 1), (c, c+ 1), (i− 1, i).

Cluster (c+ 3): (c, 1), (c, c+ 1), (i− 1, i).

Cluster (c+ 4): (c, c− 1), (c, 1), (i− 1, i).

Cluster (c+ 5) to (i− 4): (2, 3) [only where (i − 5) ≥ (c + 5), else do not delete

this edge.] (c, 1), (c, c− 1) and (i, i− 1).
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Cluster (i− 3): (c, 1), (c, c− 1), (i− 1, i).

Cluster (i− 2): S(i−2) = {(3, 4), (5, 6), . . . , (c − 2, c − 1)} and (c, 1), (c, c + 1) and

(i, i− 1).

Cluster (i− 1): The set S(i−1)l = {(3, 4), (5, 6), . . . , (c−2, c−1) and (c, 1), (c, i) and

the set S(i−1)r = {(c+ 1, c+ 2), (c+ 3, c+ 4), . . . , (i− 3, i− 2)}.

Cluster i: (1, 2), (c, c − 1), (c, c + 1) and the set Si = {(c + 2, c + 3), (c + 4, c +

5), . . . , (i− 2, i− 1)}.

In addition to this, ∀ cluster x, 1 ≤ x ≤ (c − 1), delete edges (x − 2, x − 1) and

(x+ 1, x+ 2).

3.4.2 Construction of Hamiltonian Cycle for OTIS(BF (2m+

1, 2k))

Here we identify the key non-Hamiltonian edges in two parts.

First we identify the key Non-Hamiltonian edges for OTIS(BF (3, 2k)) and then

for OTIS(BF (2m+ 1, 2k)), where m > 1.

Key Non-Hamiltonian edges for OTIS(BF (3, 2k))

Cluster 1: (3, 2), (3, 4), (3, i)

Cluster 2: (3, 1), (3, 4) And the set S2 = {(5, 6), (7, 8), . . . , (i− 1, i)}
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Cluster 3: (3, 1), (3, 4)

Cluster 4: (3, 1), (3, 2), (3, i)

Cluster 5, 6, . . . , (i− 1): (3, 2), (3, i)

Cluster i: (3, 1), (3, 2) and the set Si = {(4, 5), (6, 7), . . . , (i− 2, i− 1)}

Now join the intercluster edges at the at both endvertices of the deleted intercluster

edges. This completes the Hamiltonian Cycle.

Illustration with OTIS(BF (3, 2k)), k = 2

The graph OTIS(BF (3, 4)) is shown in Fig 3.4. First the specified set of intracluster

edges as mentioned in 3.4.2 are removed (Fig 3.5). So the intracluster edges shown

in Fig 3.5 are all forced edges, i.e., edges which are identified as Hamiltonian edges.

Now, as we can see in Fig 3.6, IR 1 applies to all unsaturated vertices of Fig 3.5 and

hence we complete the Hamiltonian Cycle by adding the intercluster edges forced by

IR 1.

Key Non-Hamiltonian edges for OTIS(BF (2m+ 1, 2k)), where m > 1

Cluster 1: (c, c − 1), (c, c + 1), (c, i) and the set S1 = {(2, 3), (4, 5), (6, 7), . . . , (c −

1, c)}.

Cluster 2: (c, 1), (c, c + 1), (c − 2, c − 1) and the set 2 = {(c + 2, c + 3), (c + 4, c +

5), . . . , (i− 3, i− 2)} where i ≥ (c+ 3). Else ignore the set S2.
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Figure 3.4: Intercluster edges are not shown explicitly to maintain clarity

Cluster 3: (c, c− 1), (c, c+ 1) and the set S3 = {(c+ 2, c+ 3), (c+ 4, c+ 5), . . . , (i−

3, i−2)} where i ≥ (c+3). Else ignore the set S3. Delete (i−1, i) if 4 < (c−1).

Cluster 3, 4, . . . , (c− 3): (i− 1, i) if 4 < (c− 1)

Cluster 4, 5, . . . , (c− 3): (c, 1), (c, c+ 1) if 4 < (c− 3)

Cluster (c− 2): (c, c− 1), (c, c+ 1)

Cluster (c− 1): (c, 1), (c, i), (2, 3) and the set S(c−1) = {(c + 1, c + 2), (c + 3, c +

4), . . . , (i− 2, i− 1)}

Cluster c: (c, 1), (c, c+ 1).

Cluster (c+ 1): (c, 1), (c, c − 1), (c, i) and the set S(c+1) = {(2, 3), (4, 5), . . . , (c −

3, c− 2)}

Cluster (c+ 2) to (i− 2): (c, c− 1), (c, i) and the edge (2, 3) if (c+ 3) < i.
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Figure 3.5: After execution of Step 1

Cluster (i− 1): (c, c− 1), (c, i) and the set Si−1 = {(3, 4), (5, 6), . . . , (c − 4, c − 3)}

if 4 < (c− 1)

Cluster i: (c, 1), (c, c − 1) and the sets Sil = {(3, 4), (5, 6), . . . , (c − 4, c − 3)} and

Sir = {(c+ 1, c+ 2), (c+ 3, c+ 4), . . . , (i− 2, i− 1)}

In addition to this, ∀ cluster x, 1 ≤ x ≤ (c − 1), delete edges (x − 2, x − 1) and

(x+ 1, x+ 2).

3.4.3 Explicit constructions for OTIS(BF (3, 3)) and OTIS(BF (5, 7))

We show the explicit constructions forOTIS(BF (3, 3)) (Fig 3.7) andOTIS(BF (5, 7))

(Fig 3.8).
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Figure 3.6: After execution of Step 2

3.4.4 OTIS(BF (n)) is Hamiltonian

It has been shown in the paper[Barth and Raspaud, 1994] that BF (n) has two edge-

disjoint Hamiltonian Cycles, by giving a recursive method of construction of the

cycles. Hence the base network of OTIS(BF (n)) is Hamiltonian. Combining this

result, with [Parhami, 2005], it is easily seen that OTIS(BF (n)) is Hamiltonian.
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Figure 3.7: Hamiltonian Cycle on OTIS(BF (3, 3)) shown in red color

12

3
4

5

6 7 8

9

1011

5

12

3
4

5

6 7 8

9

1011

4

12

3
4

5

6 7 8

9

1011

3

12

3
4

5

6 7 8

9

1011

2

12

3
4

5

6 7 8

9

1011

1

12

3
4

5

6 7 8

9

1011

7

12

3
4

5

6 7 8

9

1011

8

12

3
4

5

6 7 8

9

1011

9

12

3
4

5

6 7 8

9

1011

10

12

3
4

5

6 7 8

9

1011

6

12

3
4

5

6 7 8

9

1011

11

Figure 3.8: Joining the intercluster edges incident on the unsaturated vertices com-
pletes the Hamiltonian Cycle on OTIS(BF (5, 7))

39



3.5 Proof of Non-Hamiltonicity of OTIS(BF (4, 4))

and OTIS(BF (4, 6))

3.5.1 Proof that OTIS(BF (4, 4)) is not Hamiltonian

We present the proof of non-Hamiltonicity using counting argument.

First, let us count the total number of edges in the graph. Total number of edges

in OTIS(BF (4, 4)) is

n∑
i=1

di

2
= 77, where di denotes degree of vertex i and n =

|V (OTIS(BF (4, 4)))|. If a Hamiltonian Cycle exists, it will use up 49 edges, as

n = 49. So there are exactly (77− 49) = 28 non-Hamiltonian edges in the graph.

Now, let us count the number of non-Hamiltonian edges in a different way. Let

us look into OTIS(BF (4, 4)) carefully. There are six degree 5 vertices, namely,

< 1, 4 >,< 2, 4 >,< 3, 4 >,< 5, 4 >,< 6, 4 > and < 7, 4 >. Neighbours of these

six vertices are disjoint. Also there is exactly one, degree 4 vertex: < 4, 4 > These

vertices together will contribute to 6 · 3 + 2 = 20 non-Hamiltonian edges. Now let us

look into the subgraph induced by vertices of degree 3 only, which do not have any

degree 5 or degree 4 neighbour (Fig 3.9). Maximum Independent Subset induced

by these vertices is of cardinality = 9. Hence, these vertices, accounts for 9 non-

Hamiltonian edges which have not been counted yet. Hence, the total number of

non-Hamiltonian edges = 20 + 9 = 29, which does not agree with the previous count,

28. Hence a contradiction. So OTIS(BF (4, 4)) is not Hamiltonian.
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Figure 3.9: OTIS(BF (4, 4)):Vertices of degree 3 vertices, with no degree 5 and 4
neighbours are shown in red.

However, this argument cannot be used to prove that OTIS(BF (4, 6)) is Non-

Hamiltonian, as OTIS(BF (4, 6)) has a cycle cover of length 2.

3.5.2 Proof that OTIS(BF (4, 6)) is not Hamiltonian

We prove our claim in parts. Firstly we identify the forced edges in a Hamiltonian

Cycle, assuming that one exists. Then we make a choice of picking one edge as

Hamiltonian from an option of two, without any loss of generality. Finally, we arrive

at a contradiction.

Claim 3.2 Vertex 〈4, 4〉 cannot have both (〈4, 1〉, 〈4, 4〉) and (〈4, 3〉, 〈4, 4〉) as Hamil-

tonian edges.

Proof: If possible let both 〈4, 1〉 and 〈4, 3〉 be Hamiltonian neighbours of 〈4, 4〉.Now,

vertex 〈4, 2〉 has to have either of (〈4, 1〉, 〈4, 2〉) and (〈4, 2〉, 〈4, 3〉) as its Hamiltonian
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Figure 3.10: OTIS(BF (4, 6)): The intercluster edges are not shown to maintain
clarity

edges. Without loss of generality, let (〈4, 2〉, 〈4, 3〉) be the Hamiltonian edge.This

forces the following edges,

Cluster 1: (2, 3)

Cluster 2: (1, 4)

Intercluster edges: (〈4, 1〉, 〈1, 4〉), (〈4, 2〉, 〈2, 4〉), (〈1, 3〉, 〈3, 1〉)

This in turn, forces the following edges:

Cluster 3: (1, 4)

Intercluster edges: (〈3, 2〉, 〈2, 3〉)
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This clearly forms a forced subcycle. So both (〈4, 1〉, 〈4, 4〉) and (〈4, 3〉, 〈4, 4〉) cannot

be Hamiltonian edges of 〈4, 4〉. Hence the only possibility is either of (〈4, 1〉, 〈4, 4〉)

and (〈4, 3〉, 〈4, 4〉) is Hamiltonian edge. Without loss of generality (due to the sym-

metric structure), let (〈4, 3〉, 〈4, 4〉) be the Hamiltonian edge.
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Figure 3.11: OTIS(BF (4, 6)):The vertices and edges shown in red are saturated ver-
tices and forced edges respectively

Now, in Fig 3.11 the vertices which have already obtained both of its Hamiltonian

neighbours, i.e., saturated vertices, are shown in red. We see that 〈2, 4〉 and 〈4, 4〉 are

the vertices which have obtained exactly one of its Hamiltonian neighbours and rest

of the vertices are either completely saturated, or not saturated. So a Hamiltonian

cycle exists if and only if, there exists a path between 〈2, 4〉 and 〈4, 4〉 spanning all

the unsaturated vertices.
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Vertex 〈4, 4〉 has to have either of 〈4, 5〉, 〈4, 9〉 as its Hamiltonian neighbour. Without

any loss of generality, let us assume 〈4, 9〉 is its Hamiltonian neighbour. This again

forces a set of edges and makes certain vertices saturated. In the following figure,

the forced edges and saturated vertices are marked in red (Fig 3.12).
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Figure 3.12: OTIS(BF (4, 6)):The vertices and edges shown in red are saturated ver-
tices and forced edges respectively

Now, we see in cluster 9, vertex 2, has to have either of 〈9, 1〉 or 〈9, 3〉 as it Hamiltonian

edge. Without loss of generality, let 〈9, 3〉 be its Hamiltonian edge. This again forces

a set of edges (Fig 3.13).

Now, vertex 〈2, 6〉 has to adopt any one of 〈2, 7〉, 〈6, 2〉 as its Hamiltonian neighbours.

Let us study both the cases.

Case 1: Let vertex 〈2, 6〉 choose 〈6, 2〉 as its Hamiltonian neighbour. Then the

following edges become forced:
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Figure 3.13: (OTIS(BF (4, 6)):The vertices and edges shown in red are saturated
vertices and forced edges respectively

Cluster 2: (7, 8)

Cluster 8: (2, 1), (2, 3)

Intercluster edges: (〈2, 7〉, 〈7, 2〉)

Now, In cluster 6, vertex 2, has to have either of 〈2, 1〉 and 〈2, 3〉 as its Hamil-

tonian edge. Without loss of generality, let us take 〈2, 1〉 as its Hamiltonian

edge. This, in turn forces the following edges:

Cluster 6: (3, 4).

Intercluster edges: (〈3, 6〉, 〈6, 3〉) and hence (〈3, 7〉, 〈7, 3〉). This forces the

following edges:

Cluster 3: (7, 8)
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Cluster 8: (3, 2), (3, 4). Hence (1, 4) cannot be an edge in this cluster. This

forces the following set of edges:

Intercluster edges: (〈8, 1〉, 〈1, 8〉), and hence (〈1, 7〉, 〈7, 1〉) and the following

edges:

Cluster 1: (7, 6)

Cluster 6: (1, 4), (5, 6), (8, 9)

Intercluster edges: (〈5, 6〉, 〈6, 5〉) and (〈6, 9〉, 〈9, 6〉). This in turn forces the

following edges:

Cluster 4: (6, 7)

Cluster 9: (7, 8)

Intercluster edges: (〈7, 9〉, 〈9, 7〉)

Cluster 8: (4, 9). Note that, (9, 8) is already a forced edge as this edge is

incident to a vertex of degree 2. Therefore, this forces the edge (5, 6), and

the following edge:

Intercluster edge: (〈5, 8〉, 〈8, 5〉)

Now, since both the vertices 〈5, 6〉 and 〈5, 8〉 have become saturated, the edges

(〈5, 6〉, 〈5, 7〉) and (〈5, 8〉, 〈5, 7〉) have to be dropped from the Hamiltonian Cy-

cle assuming one exists. This leaves vertex 〈5, 7〉 with degree 1 and hence a

Hamiltonian Cycle is not possible.

Case 2: Let vertex 〈2, 6〉 choose 〈2, 7〉 as its Hamiltonian neighbour. Then the edges
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(〈6, 2〉, 〈6, 1〉) and (〈6, 2〉, 〈6, 3〉) become forced. Now notice that in Cluster 6,

both the vertices 〈6, 1〉 and 〈6, 3〉 cannot have intercluster edges incident on

then as Hamiltonian edges or as non-Hamiltonian edges, as both these cases

forces subcycle formation. So exactly one of them has to have the intercluster

edge incident on it, as Hamiltonian edge. Without loss of generality, let vertex

〈6, 1〉 has the edge (〈6, 1〉, 〈1, 6〉) as Hamiltonian. Now, this forces the following

edges:

Cluster 6: (3, 4)

Cluster 1: (7, 8)

Intercluster edges: (〈1, 7〉, 〈7, 1〉)

Cluster 8: (1, 2), (1, 4)

Intercluster edges: (〈3, 7〉, 〈7, 3〉) and (〈3, 8〉, 〈8, 3〉) [In Cluster 3, (7, 8) can-

not be an edge, as this would force subcycle formation in Cluster 8]

Now vertex 〈5, 7〉 can choose any two of its three incident edges as Hamiltonian

edges. e consider all three possible cases and show that Hamiltonian Cycle

formation is impossible.

Case 1: 〈5, 7〉 chooses 〈5, 6〉 and 〈5, 8〉 as its Hamiltonian neighbours.

In this case, the edges (5, 4) and (5, 6) becomes forced in Cluster 6, 7 and 8. In

clusters 6 and 8, this saturates vertex 4. This, in turn forces the intercluster

edges (〈6, 9〉, 〈9, 6〉) and (〈8, 9〉, 〈9, 8〉). Now, since both the vertices 〈9, 6〉 and
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Figure 3.14: OTIS(BF (4, 6)):The verices and edges shown in red are saturated ver-
tices and forced edges respectively

〈9, 8〉 have become saturated, the edges (〈9, 6〉, 〈9, 7〉) and (〈9, 8〉, 〈9, 7〉) have

to be dropped from the Hamiltonian Cycle assuming one exists. This leaves

vertex 〈9, 7〉 with degree 1 and hence a Hamiltonian Cycle is not possible.

Case 2: 〈5, 7〉 chooses 〈5, 6〉 and 〈7, 5〉 as its Hamiltonian neighbours.

In this case, the intercluster edge (〈5, 8〉, 〈8, 5〉) become forced. In cluster 6,

edges (4, 5) and (5, 6) gets forced. This saturates vertex 〈6, 4〉 hence forcing

the following edges: (〈4, 6〉, 〈4, 7〉), (〈6, 9〉, 〈6, 8〉) and (〈6, 9〉, 〈9, 6〉). This, in

turn, forces edges (〈9, 7〉, 〈9, 8〉), (〈7, 9〉, 〈9, 7〉) and (〈8, 4〉, 〈8, 9〉).Now, vertex

〈8, 4〉 gets saturated, hence forcing the following edges in cluster 8: (2, 3) and

(5, 6), and the edge (7, 8) in cluster 4. Now, note that (〈8, 6〉, 〈6, 8〉) cannot

be a Hamiltonian edge, as it forces subcycle. Therefore, in cluster 8, (6, 7) is
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an edge. This in turn forces the edge (9, 8) in cluster 7. Now in cluster 7,

(4, 1) and (4, 3) becomes forced. Now, since both the vertices 〈7, 1〉 and 〈7, 3〉

have become saturated, the edges (〈7, 2〉, 〈7, 1〉) and (〈7, 2〉, 〈7, 3〉) have to be

dropped from the Hamiltonian Cycle assuming one exists. This leaves vertex

〈7, 2〉 with degree 1 and hence a Hamiltonian Cycle is not possible.

Case 3: 〈5, 7〉 chooses 〈5, 8〉 and 〈7, 5〉 as its Hamiltonian neighbours.

Following similar argument, as above, we identify the following forced edges

(Fig 3.14).
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Figure 3.15: OTIS(BF (4, 6)):The vertices and edges shown in red are saturated ver-
tices and forced edges respectively

Now, note that vertex (〈7, 4〉 cannot have both 〈7, 5〉 and 〈7, 9〉 as its Hamilto-

nian neighbours as this forces subcycle. Without loss of generality, let 〈7, 5〉 be

its Hamiltonian neighbour, the other Hamiltonian neighbour being 〈4, 7〉. This
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forces the following edges (Fig 3.15).
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Figure 3.16: OTIS(BF (4, 6)):The vertices and edges shown in red are saturated ver-
tices and forced edges respectively

Now, since both the vertices 〈6, 4〉 and 〈9, 6〉 have become saturated, the edges

(〈6, 4〉, 〈6, 9〉) and (〈6, 9〉, 〈9, 6〉) have to be dropped from the Hamiltonian Cy-

cle assuming one exists. This leaves vertex 〈6, 9〉 with degree 1 and hence a

Hamiltonian Cycle is not possible.

This completes the proof.

3.6 Independent Spanning Trees Construction

Definition 3.1 [Khuller and Schieber, 1992] Two spanning trees of a graph G =

(V,E) are called vertex (respectively edge) independent if they are rooted at the same
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vertex r, and for each vertex u ∈ V , the two paths from u to r, one path in each tree,

are internally vertex (respectively edge) disjoint.

We explain with an example in Fig 3.17. Here he two spanning trees T1 and T2,

rooted at vertex 1, are independent.

Figure 3.17: T1 and T2 are two independent spanning trees of the underlying graph

We know that construction of Hamiltonian Cycle is linear in number of vertics of

the OTIS-network on OTIS(BF (2m+1, 2n+1)) and OTIS(BF (2m+1, 2k)) (From

observation 4.1).

Once the Hamiltonian Cycle is constructed, we can construct two rooted Inde-

pendent Spanning Trees in O(1) time as follows: (Fig 3.18)

• Pick any vertex as root and denote it as r

• Delete one edge incident to r. This gives a spanning Tree T1

• Now, retain the edge previously deleted, and delete the other edge incident to

r. This gives another spanning tree T2
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Figure 3.18: Independent spanning tree construction from Hamiltonian cycle

Clearly, for all vertices v in the graph, paths connecting r and v in T1 and T2 are

edge and vertex disjoint. Even if we make BF (2m + 1, 2n + 1) or BF (2m + 1, 2k)

denser by introducing chords inside the cycles C2m+1, C2n+1 or C2k such that at

least one of the vertices retain degree 2, the two rooted Independent Spanning Trees

constructed by this algorithm in will still be valid, which will run in time linear in

the number of vertices of the OTIS-graph. But the general algorithm by [Itai and

Rodeh, 1988] will show poor performance as it runs in time linear in the number of

edges.
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CHAPTER 4

Longest Path on Biconvex Graphs

The longest path problem is the problem of finding a simple path of maximum length

in a graph. Polynomial solutions for this problem are known only for special classes

of graphs, while it is NP-hard on general graphs. We are proposing a O(n6) time

algorithm to find the longest path on biconvex graphs, where n is the number of

vertices of the input graph. We have used Dynamic Programming approach. We also

present a more efficient absolute approximation algorithm with Constant C = 1 to

find longest path on biconvex graphs.

4.1 Biconvex Graphs

A bipartite graph G=(S, T, E) is convex on the vertex set S if S can be ordered so

that for each element t in the vertex set T the elements of S connected to t form

an interval of S; this property is called the adjacency property. G is biconvex if it is

convex on both S and T [Abbas and Stewart, 2000a].

4.1.1 Related Results

The class of Biconvex Graphs was first defined by Glover in 1967 [Glover, 1967].

Glover showed a practically important application of doubly convex-bipartite graphs

in industry. Lipski and Preparata [Lipski and Preparata, 1981] solved the maxi-

mum matching problem on both doubly convex-bipartite graphs and convex-bipartite

graphs. Dekel and Sahni [Dekel and Sahni, 1984] developed an efficient parallel al-

gorithm that finds maximum matchings in convex-bipartite graphs. Their result

may also be used to solve several scheduling problems. Abbas and Stewart showed



Figure 4.1: he vertices which violate adjacency property, i.e., whose neighborhood
does not form an interval in the other partition, are shown in dark. The
dotted edges are not present in the graph.

that the vertices of biconvex graphs have an ordering that they called a biconvex

straight ordering. This ordering preserves the biconvex property, and it generalizes

the strong ordering achievable for bipartite permutation graphs and such an ordering

can be achieved efficiently in parallel [Abbas and Stewart, 2000b]. They used this

ordering to solve the vertex ranking problem on biconvex graphs.

Longest Path Problem is one of the most well known NP-hard problems in Graph

Theoretic literature. Only approximate solutions is known to find paths of logarith-

mic length on Hamiltonian graphs [Karger et al., 1997]. In fact, Karger et al. show

that the problem of finding a path of length n−nε on a n-vertex Hamiltonian graph is

NP-Hard and there is no polynomial-time constant-factor approximation algorithm

for the longest path problem unless P=NP. Hence it is meaningful to investigate the

Longest Path problem on special graph classes, for which Hamiltonian Path prob-

lem is polynomial time solvable. But surprisingly, there are only a very few known

polynomial time solutions for the Longest Path problems. The Hamiltonian Path

problem remains NP-complete even when restricted to some small classes of graphs

such as split graphs, chordal bipartite graphs, strongly chordal graphs, circle graphs,

planar graphs, and grid graphs [Golumbic, 2004] [Ioannidou et al., 2009]. However

it becomes polynomial time solvable on some special graph classes, namely, inter-

54



val graphs, co-comparability graphs, circular-arc graphs and convex bipartite graphs

[Ioannidou et al., 2009]. But surprisingly, there are a very few known polynomial time

solutions for the Longest Path problems. The small graph classes on which Longest

path problem has a polynomial time solution includes weighted trees, block graphs,

cacti [Uehara and Uno, 2004], bipartite permutation graphs [Uehara and Valiente,

2007] and Ptolemaic graphs. Recently polynomial time solutions have been proposed

by Ioannidou et al. on interval graphs [Ioannidou et al., 2009] and co-comparability

graphs [Ioannidou and Nikolopoulos, 2010]. However, status of the Longest path

problem was left open for convex and biconvex graphs in [Ioannidou et al., 2009].

4.1.2 Organization

We will discuss our results under the following sections. In section 4.2, we give some

preliminaries, in section 4.3 we discuss about the biconvex ordering and monotonicity

of a path. This ordering in the most crucial part, exploiting which we design the

algorithm. In section 4.4 we discuss about the algorithm and argue its correctness.

In section 4.5 we analyse the time complexity of the algorithm. In section 4.6 we

discuss about the time-efficient additive approximation algorithm.

4.2 Preliminaries

We will use standard graph theoretic terminology. Let G = (V,E) be a finite undi-

rected simple graph with vertex set V (G) and edge set E(G). A simple path of a

graph G is a sequence of distinct vertices v1, v2, · · · , vk such that vivi+1 ∈ E(G)

∀1 ≤ i ≤ k − 1 and is denoted by (v1, v2, · · · , vk). We define the length of a

simple path P to be the number of edges in P and V (P ) to be the set of ver-

tices in the path P . vk is referred to as the right endpoint of the path P =

(v1, v2, · · · , vk). Moreover, let P = (v1, v2, · · · , vi−1, vi, vi+1, · · · , vj, vj+1, · · · , vk) and

P0 = (vi, vi+1, · · · , vj) be two paths of a graph. Sometimes, we shall denote the path
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P by P = (v1, v2, · · · , vi−1, P0, vj+1, · · · , vk). We define the sub path of P to be a

path P ′ such that V (P ′) ⊆ V (P ) and E(P ′) is the same as E(P ).

Let π be some ordering given on the indices of the vertices. We use the notation

vi ≺π vj to denote that index i occurs before index j in the given ordering π.

4.3 Biconvex Orderings and Monotone Paths

We introduce a new ordering on Biconvex graphs. In this section, we first define

two orderings σS and σT on the indices of the vertices of a biconvex graph and then

define Monotonicity of a path. We assume that π1 and π2 are the labellings of the

vertices of S and T partition respectively (in increasing order of indices), preserving

the adjacency property. Using these two orderings, π1 and π2, we create σS and σT

as follows.

4.3.1 Ordering of Vertices

Let π1 = (s1, s2, ...., sp) be the vertices of partition S, and similarly, π2 = (t1, t2, ...., tq)

be the vertices of partition T , where |S| = p and |T | = q and total number of vertices

n = p+ q. We introduce an ordering σS as follows:

Initially set σS = π1.

1. Traverse the vertices of π2 from left to right.

2. Find the leftmost endpoint and rightmost endpoint of the neighborhood interval

of every ti. Let sli and sri be the leftmost and rightmost endpoints of the

neighborhood interval of some ti respectively.

3. Update σS as follows: Insert ti immediately after its rightmost neighbor, i.e

after sri ∀1 ≤ i ≤ q.
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Hereafter we will denote by σS = (u1, u2, ...., un) the above ordering of the vertices

of graph G.

We denote by uf(ui) and uh(ui) the leftmost and rightmost neighbor of ui in σS re-

spectively, which appear before ui in σS.

In a similar fashion, we can start from the ordering π2 of T and relabel S and obtain

another ordering denoted by σT . (Fig 4.2)

Figure 4.2: Given π1 = (s1, s2, s3, s4, s5) and π2 = (t1, t2, t3, t4)
The ordering σS = (s1, s2, t1, s3, s4, t3, t4, s5, t2)
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4.3.2 Monotonic Path

We define S-Monotone and S-S path in the section. T-Monotone and T-T paths

fare defined symmetrically.

Definition 4.1 A S-Monotone path of a Biconvex graph G = (S ∪T,E) is a simple

path P = {sα1 , tβ1 , sα2 , . . . , tβj−1
, sαj

, tβj} such that sαk
≺σS sαk+1

∀ k 3 1 ≤k≤ j.

Symmetrically, we define T-Monotone path.

Definition 4.2 A path which starts from a vertex on S-partition and end on a vertex

in S-partition is called a S-S path.

Symmetrically, we define T-T path. We state and prove the lemma for S-S paths.

The same argument will hold good for T-T paths just by replacing the S-vertices

with T-vertices and vice versa.

First, we informally introduce the lemma. Informally, we claim that given any

simple path P = {sα1 , tβ1 , sα2 , tβ2 . . . , sαj−1
, tβj−1

, sαj
, tβj} of a biconvex graph, for

the longest S-S sub path of P we can construct an equivalent path P ′ such that,

P ′ = {sγ1 , t∗, sγ2 , t∗, · · · , sγj} where γ1 ≺σS γ2 ≺σS γ3 . . . ≺σS γj , where γi ∈

{α1, α2, . . . , αj} and t∗ denotes T-vertex of some index belonging to {β1, β2, . . . , βj}.

Lemma 4.1 Let P = {sα1 , tβ1 , sα2 , tβ2 . . . sαj−1
, tβj−1

, sαj
, tβj} be a simple path of a

biconvex graph G = (S, T,E). Let Pmax denote the longest S-S sub path of P . Then

the vertices in V (Pmax) can be reordered to get a path Pmax
′, which is S-Monotone.

Proof: We prove the lemma by induction on |S|.

Basis: To prove the basis, let P={sα, ta, sβ, tb, sγ} be a simple path which violates

the monotonicity property. We construct P ′ on the set of vertices of V (P ) such that

P ′ satisfies S-Monotonicity property. There are three possible cases.

• α � β � γ. Then P ′=PR.
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• α � β, β ≺ γ and α ≺ γ. It follows that β ≺ α ≺ γ. Now tb is adjacent to

sβ and sγ. Owing to the adjacency property, tb is also adjacent to sα. Hence

we have P ′={sβ, ta, sα, tb, sγ}. The other case β � α � γ can be dealt with

similarity to (1). (Fig 4.3) 1

Figure 4.3: (a) S-S path violating monotonicity property (b) S-Monotone path

• α � β, β ≺ γ and α � γ. It follows that β ≺ γ ≺ α. Now ta is adjacent to sα

and sβ. Owing to the adjacency property, sa is also adjacent to sγ. Hence we

have P ′={sβ, tb, sγ, ta, sα}. The other case β � γ � α can be dealt in a similar

way. Thus the lemma works when the path contains at least three S vertices.

(Fig 4.4)

Figure 4.4: (a) S-S path violating monotonicity property (b) S-Monotone path

Inductive hypothesis: For the longest S-S sub path of a simple path P={sα1 , tβ1 , sα2 , . . .

, tβj−1
, sαj

, tβj}, there exists a path P ′ = {sγ1 , t∗, sγ2 , . . . t∗, sγj} satisfying the

1Graphs considered here are undirected. In the diagram, the arrowheads simply represent the
vertex-traversal sequence in the path. The dotted lines represent the edges that have to present
owing to adjacency property.
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S-Monotonicity property.

Inductive Step: Let P1=P · sαj+1
.

Figure 4.5: (a) Non S-Monotone path P1=P · Sαj+1
(b) S-Monotone path P

Figure 4.6: (a)Non S-Monotone path P (b) S-Monotone path P1=P · Sαj+1

• If αj+1 � γj, then it follows that the longest S-S sub path of P1 is already

S-Monotone. No further reordering is required.

• If αj+1 ≺ γ1. This implies that the last T vertex tβj is also adjacent to sγ1 .

Then it follows that

P ′1=sαj+1
, tβj · {sγ1 , tβ1 , · · · , sγj}. (Fig 4.5)
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• If there exist some k 3 γk ≺ αj+1 ≺ γk+1, then in the path P = {sγ1 , tβ1 , . . . sγk , tβk ,

sγk+1
, . . . sγj tβj}. We see that tβk is adjacent to sαj+1

-(1). Now, αj+1 ≺ γk+1.

Also from Path P , we have γk+1 ≺ γj. Hence tβj is also adjacent to sγk+1
-

(2). From (1) and (2) we have P ′1={sγ1 , tβ1 , . . . , sγk , tβk , sαj+1
, tβj , sγk+1

, . . . , sγj}.

(Fig 4.6)

4.4 The Algorithm and Correctness

4.4.1 Some constructs and notations used in the algorithm

Definition 4.3 For every pair of indices i, j such that 1 ≤ i ≤ j ≤ n we define the

graph G(i, j) to be the subgraph G[A] of G induced by the set A = {ui, ui+1, ...., uj}\{uk ∈

T (G) : uf(uk) <σS ui}.

Definition 4.4 Let P be a path of G(i, j), 1 ≤ i ≤ j ≤ n.The path P is called

S − bimonotone if P is a S − Monotone path of G(i, j) and both endpoints of P

belong to S − partition.

Similarly we define T − bimonotone path symmetrically.

Notation

Let σS = (u1, u2, ...., un) be the ordering on G [ or σT = (u1, u2, ...., un) ]. ∀uk ∈ S(G)

[or ∀uk ∈ T (G) ] we denote by P (uk; i, j) the longest S-bimonotone [or T-bimonotone]

path of G(i, j) with uk as its right endpoint and by l(uk; i, j) the number of vertices

of P (uk; i, j).

4.4.2 Algorithm

In this section, we present our algorithm for solving the longest path problem on

biconvex graphs; it consists of three phases. Let S denote the partition with higher
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cardinality, i.e, |S| ≥ |T |. Therefore the length of the longest path is less than or

equal to 2|T |.

• Phase1:

Given the biconvex graphG = (S, T,E), generate the ordering σS = (u1, u2, · · · , un).

Now, for all si, sj, where, 1 ≤ i < j ≤ |S|, do the following:

1. Choose the subsequence σsij = (uk, uk+1, · · · , um) such that uk is the ver-

tex si and um is either sj or, um ∈ T (G) and it lies between sj and sj+1

in the ordering σS. If there are multiple T vertices lying between sj and

sj+1 in σS, then um is the rightmost of them. (Fig 4.7)

2. Run the “Longest path” routine for all σsij as the input ordering. There

i and j will replace indices 1 and n respectively.

3. Remember the maximum path length obtained over these iterations and

all the paths of that maximum length.

Figure 4.7: σS = (s1, s2, t1, s3, s4, t3, t4, s5, t2) and σS14 = (s1, s2, t1, s3, s4, t3, t4)
σS13 = (s1, s2, t1, s3)
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• Phase 2:

Symmetric to Phase 1, this phase is executed for vertices of T-partition with

the initial ordering σT = (u1, u2, · · · , un)

• Phase 3:

1. Let the path lengths obtained as output from Phase 1 and Phase 2 be x

and z respectively. Compute max{x, z} . Without loss of generality, let z

be the maximum.

2. Consider all the T-bimonotone paths of length z obtained from Phase2.

check if the end vertices of the paths have any unvisited neighbor, i.e.,

neighbor which does not occur on that path.

3. if such a neighbor exists, extend the path till that neighbor. Let P ′ denote

this extended path.

4. Output z + 1 as the maximum path length and P ′ as the longest path.

5. Else, output z as the maximum path length and the corresponding path

as the longest path.
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Algorithm 1 Longest Path (Phase 1 )

Input: The biconvex graph G and input ordering σs1n = (u1, u2, ...., un).
Output: A longest S-bimonotone path of G and the longest path length.

for j = 1 to n do
for i = j down to 1 do

if i = j and ui ∈ S(G) then
l(ui; i, i)← 1 ;P (ui; i, i)← (ui)

end if
if i 6= j then

for all uk ∈ S(G) , i ≤ k ≤ j− 1 do
l(uk; i, j)← l(uk; i, j − 1);
P (uk; i, j)← P (uk; i, j − 1);

end for
if uj ∈ S(G) then

l(uj; i, j)← 1 ;P (uj; i, j)← (uj)
end if
if uj is a T vertex i.e uj ∈ T (G) and i ≤ f(uj) then

execute process G(i,j)
end if

end if
end for

end for
compute the max{(uk; 1;n) : uk ∈ S(G)} and the corresponding path
P (uk; 1;n).Return (max {(uk; 1;n) : uk ∈ S(G)} -1) as the maximum path length
and P (uk; 1;n) as a longest path.
We carry out the second phase by re-running the algorithm with σt1n =
(u1, u2, ...., un). By replacing vertex set T with S and vice versa. The output
of second phase is a longest T-bimonotone path of G and the longest path length.
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Algorithm 2 The subroutine process(G(i,j))

for y = f(uj) + 1 to j − 1 do
for x = f(uj) to y − 1 do

if ux, uy ∈ S(G) then
w1 ← l(ux; i, j − 1); P ′1 ← P (ux; i, j − 1)
w2 ← l(uy;x+ 1, j − 1); P ′2 ← P (uy;x+ 1, j − 1)
if w1 + w2 + 1 > l(uy; i, j) then

l(uy; i, j)← w1 + w2 + 1;
P (uy; i, j) = (P ′1, uj, P

′
2);

end if
end if

end for
end for
return the value {l(uk; i, j)} and the path {P (uk; i, j),∀uk ∈ S(G(f(uj)+1, j−1))}

4.4.3 Illustration with Example

Let us consider the biconvex graph shown in Fig 4.8. We illustrate the first phase

of the algorithm with σS1n in Fig 4.9 and 4.10.

Figure 4.8: σS1n

=(s1, s2, t1, s3, s4, t3, t4, s5, t2)
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Figure 4.9: Path getting updated at call process(G(4, 6)) and x = 4, y = 5

4.4.4 Proof of Correctness

Candidates for Longest Path

There are four candidates for a longest path P , which starts in a vertex of S or T

and ends in a vertex of S or T . We denote these candidates as P SS, P ST , P TS, P TT ,

where PXY denotes a longest path among the set of paths starting from a vertex in

X and ending in a vertex in Y . Now the outline of our algorithm is as follows:

1. Compute the length of P SS and P TT from Phase 1 and Phase 2 of the algorithm

respectively.

2. Let x = |P SS| and z = |P TT | and let y = max(x, z).

3. As is evident from the Phase 3, the length of a longest path possible on the

graph is either y ( If P SS or P TT is the candidate) OR y + 1 (If P ST or P TS is

the candidate).
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Figure 4.10: Path getting updated at call process(G(1, 9)) with x = 5, y = 8

4.4.5 Correctness Argument

We shall prove two claims in order to prove the correctness.

Claim 4.1 The Algorithm (Phase 1) correctly computes a longest S-bimonotone

path(i.e, P SS path) of the graph G and Phase 2 correctly computes a longest T-

bimonotone path(i.e, P TT path) of the graph G.

The following observations hold for every induced subgraph G(i, j), 1 ≤ i ≤ j ≤ n

and is used for proving the correctness of Phase 1 of the algorithm. Similarly we can

state the observations by replacing σS with σT , partition S with T and vice versa

and prove the correctness of Phase 2 of the algorithm. he following properties hold

trivially:

Observation 4.4.1 Let G(i, j) be the induced subgraph of S-bimonotone graph G

and σS be the input ordering of G. Let P = (P1, uj, P2) be a S-bimonotone path of

G(i, j), and let uj be a S vertex of G(i, j). Then, P1 and P2 are S-bimonotone paths

of G(i, j).

67



Observation 4.4.2 Let G(i, j) be the induced subgraph of biconvex graph G and σS

be the input ordering of G. Let P1 be a S-bimonotone path of G(i, j) with ux as its

right endpoint, and let P2 be a S-bimonotone path of G(x + 1;j-1) with uy as its right

endpoint, such that V(P1)∩V(P2) =∅. Suppose that uj is a T vertex of G and that

ui ≺σS uf(uj) ≺σS ux Then, P = (P1, uj, P2) is a S-bimonotone path of G(i, j) with uy

as its right endpoint.

Now we shall prove our claim.

Proof: Let P be the longest S-bimonotone path of the subgraph G(i, j) with uy ∈

S(G(i, j)) as its rightmost endpoint. Consider the case when T (G(i, j)) = φ. Hence

the algorithm sets path P (uy; i, j) = uy and l(uy; i, j) = 1. Therefore, the lemma

holds for every induced subgraph G(i, j) for which T (G(i, j)) = φ.

Now consider the case where T (G(i, j)) 6= φ .

We will prove the correctness by induction on number of T-vertices.

Basis: Consider σS = (u1, u2, u3) where u1, u2 ∈ S(G(i, j)) and u3 ∈ (G(i, j) and u1

and u2 are the leftmost and rightmost neighbors of u3 respectively. process(G(i, j))

will be called and according to the algorithm, P (u2; i, j) = (u1, u3, u2) and S(u2; i, j) =

3 will be given as output which is indeed a longest S-bimonotone path.

Inductive Hypothesis: Let the algorithm generate the longest S-bimonotone path

when G(i, j) contain k number of T-vertices.

Induction Step: Now we consider the scenario where we G(i, j) contains k + 1 T-

vertices. Now according to the algorithm, all the neighbors of the newly added

T-vertex are considered and for all possible combinations of the neighbors say ux

and uy the length of path P (uy; i, j) is computed by considering the sub paths P1, a

longest S-bimonotone path in G(i, j − 1) with ux as the rightmost vertex and P2, a

longest S-bimonotone path in G(x + 1, j − 1) with uy as the rightmost vertex. (By

the principle of strong induction, P1 and P2 are longest S-Bimonotone paths, given

as output by the algorithm as in both the subgraphs G(i, j − 1) and G(x+ 1, j − 1)
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the number of T-vertices ≤ k. )

Now P is updated as follows: P (uy; i, j) = (P1, uj, P2) if l(P1) + l(P2) + 1 > l(P ),

where V (P1) ∩ V (P2) 6= ∅. This is evident from observation 2.

Hence the path computed by Phase 1 of the Algorithm is indeed a longest S −

bimonotone path on G with uy as its right endpoint.

Claim 4.2 At least one of the paths, obtained as output from Phase 1 and Phase 2

is extendible if and only if a longer path exists.

Proof: Forward Implication:

This follows from the correctness of the Algorithm (Phase 1 ),proved above.

Backward Implication

Here we need to prove the following implication: A longer path exists =⇒ It is the

extension of one of the paths obtained in Phase 1 and Phase 2.

As we have already discussed, there are 4 candidates for longest path, P SS, P TT ,P ST

and P TS. In Phase 1 and Phase 2 of the algorithm, all the longest S-bimonotone

and T-bimonotone paths (respectively) are generated.

So the only case, where a longer path might exist, is the case where the candidate

longest path is either a ST or a TS path.

Without Loss of Generality, let the longest path be a ST path. Now, from lemma

1, we know, for the longest S-S sub path of P, we can reorder the vertices, so that

the S-vertices follow the S-Monotonicity property. Let length of this ST path be x.

Then the length of its longest S-S sub path has to be x− 1.

Now, let the longest path length, given as output of Phase 1 (Generating longest

S-bimonotone path) be m.

If possible, let m 6= x− 1. Then there are two possibilities:
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• Ifm < x−1, this contradicts the correctness of Algorithm (Phase 1 ). Therefore,

m ≮ y.

• If m > x − 1, this implies ST is not the longest path. Hence a contradiction

again.

Hence m = x − 1. Since the Phase 1 of the algorithm has generated all possible

S-bimonotone paths of length m, hence the longest ST path has to be an extension

of any one of them.

Similar argument will follow if the longest path is a TS path.

4.5 Time Complexity

• The ordering σS (and similarly σT ) will take O(|E|) time, where |E| denotes

the number of edges in the graph.

• The subroutine process() takes O(|S|2) due to |S|2 pairs of neighbors ux and

uy of the T vertex in the graph G(i, j).

Additionally, the subroutine process() is executed at most once for each sub-

graph G(i, j) of G, 1 ≤ i ≤ j ≤ n, i.e, it is executed O(n2) times. Thus, time

complexity is O(|S|2|n|2) time for Phase 1 of the algorithm.Similarly for Phase

2 of the algorithm, time complexity is O(|T |2|n|2). Hence total complexity is

max {O(|S|2|n|2), O(|T |2|n|2)}, which is O(n4) where n is the total number of

vertices of the biconvex graph.

• Generating σsij [σtij ]from σS [and similarly σT ] will take linear time.

• Phase 1 of the algorithm will be executed for each ordered pair si, sj. There can

be O(|S|2) such ordered pairs. Similarly, Phase 2 can be executed for O(|T |2)

such ordered pairs. So the total time complexity is

max {O(|S|2|n|4), O(|T |2|n|4)}, which is O(n6) where n is the total number of

vertices of the biconvex graph.
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4.6 An O(n4)-time Approximation Algorithm with

Constant Additive Error

A simple observation from our algorithm leads to an absolute approximation to find

longest paths in biconvex graphs in time O(n4). Since the running time reduces sub-

stantially, (by a factor of n2), and the quality of approximation is considerably good,

this modified algorithm can be practically more useful. We discuss this modified

algorithm in this section.

The Algorithm:

1. Given the biconvex graph G = (S, T,E), generate the orderings σS and σT .

2. Run the Longest Path routine with σS and remember the longest path length

and the corresponding path; let us denote this length as maxS.

3. Run the Longest Path routine with σT and remember the longest path length

and the corresponding path; let us denote this length as maxT .

4. Declare max{maxS,maxT} as the longest path length and the corresponding

path as the longest path.
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Claim 4.3 Steps 2 and 3 correctly generate longest S-Bimonotone and T-Bimonotone

paths respectively.

Proof: The proof of this lemma trivially follows from Claim 4.1.

Claim 4.4 Let Lmax be the longest path length declared by the algorithm and L′max

be the correct longest path length on the given graph. Then either Lmax = L′max or

Lmax = L′max − 1

Proof: As we have already discussed, there are 4 candidates for longest path,

P SS, P TT ,P ST and P TS. In Step 2 and Step 3 of the algorithm, all the longest S-

bimonotone and T-bimonotone paths (respectively) are generated.

So the only case, where a longer path might exist, is the case where the candidate

longest path is either a ST or a TS path. Now from the backward Implication proof

of Claim 4.2, it is follows, that if a ST or a TS path is the longest path in the graph,

then its length is exactly one greater than the length of the longest S-Bimonotone or

T-Bimonotone paths. Hence, in that case, the path length given as output from the

modified algorithm, is exactly one less than the actual longest path length.

4.6.1 Time Complexity

• The ordering σS (and similarly σT ) will take O(|E|) time, where |E| denotes

the number of edges in the graph.

• The subroutine process() takes O(|S|2) due to |S|2 pairs of neighbors ux and

uy of the T vertex in the graph G(i, j).

Additionally, the subroutine process() is executed at most once for each sub-

graph G(i, j) of G, 1 ≤ i ≤ j ≤ n, i.e, it is executed O(n2) times. Thus, time

complexity is O(|S|2|n|2) time for Phase 1 of the algorithm.Similarly for Phase

2 of the algorithm, time complexity is O(|T |2|n|2). Hence total complexity is

max {O(|S|2|n|2), O(|T |2|n|2)}, which is O(n4) where n is the total number of

vertices of the biconvex graph.
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CHAPTER 5

Conclusions and Future Work

We have considered two well known problems on important special classes of graphs

in the thesis and have answered a few important open questions. We have studied

the Hamiltonian Cycle problem on Optical Transpose Interconnection Networks and

have shown that existence of Hamiltonian cycle on the base graph is not a sufficient

condition for the OTIS network to be Hamiltonian. We have shown two infinite

families of graph where, the OTIS network is Hamiltonian, but the base graph is not.

Further, we have relaxed the condition of Hamiltonian cycle to Hamiltonian path

and investigated if Hamiltonian path on the base graph is a sufficient condition for

the OTIS network to be Hamiltonian. We have answered the is negative. We have

also proposed an alternate algorithm for Independent Spanning Tree construction in

time linear in the number of vertices of the input graph.

It would be interesting to come up with a necessary condition of Hamiltonicity

on OTIS graphs. A necessary and sufficient condition would be even more useful.

Another important open direction is to see if the Independent Spanning Tree conjec-

ture holds on any k-connected OTIS network for arbitrary values of k, as this is a

most important aspect of fault tolerance is any distributed network.

We have also presented a polynomial time algorithm to find the longest path on a

biconvex graph. The class of biconvex graphs is theoretically interesting because, the

longest path problem is known to be NP-Hard on chordal bipartite graphs, which is a

superclass of biconvex graphs, and polynomial time on class of bipartite permutation

graphs, which is a subclass of biconvex graphs. The status of the problem was

unresolved on biconvex graphs. We have also proposed a more time efficient absolute

approximation algorithm for finding longest path on biconvex graphs.



We believe this algorithm can be extended to find Longest path on Convex graphs

and a subclass of Split Graphs as well. It would be interesting to explore further in

this direction. The status of the problem is still open on Convex graphs and it is

NP-Hard for general Split Graphs.
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4. Bjöandrklund, A., Determinant sums for undirected hamiltonicity. In Foundations of
Computer Science (FOCS), 2010 . 2010. ISSN 0272-5428.
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