CS5691: Pattern Recognition and Machine Learning: 15 credits

1. Basics of Probability, Random Processes and Linear Algebra (recap)
 - Probability: independence of events, conditional and joint probability, Bayes' theorem
 - Linear Algebra: Inner product, outer product, inverses, eigen values, eigen vectors, singular values, singular vectors.

2. Linear Regression
 - Polynomial regression
 - Ridge regression
 - Lasso regression
 - Bias-variance decomposition
 - Bayesian Linear Regression

Short Exam 1
Programming Assignment 1

3. Bayes Decision Theory
 - Minimum-error-rate classification
 - Classifiers, Discriminant functions, Decision surfaces
 - Normal density and discriminant functions
 - Discrete features

4. Parameter Estimation Methods
 - Maximum-Likelihood estimation: Gaussian case
 - Maximum a Posteriori estimation
 - Bayesian estimation: Gaussian case
 - Score normalisation – ROC, DET, DCF

Short Exam 2
Programming Assignment 2

5. Unsupervised learning and clustering
 - Criterion functions for clustering
 - Algorithms for clustering: K-Means, Hierarchical and other methods
 - Cluster validation

6. Gaussian Mixture Models
 - Gaussian mixture models
 - Expectation-Maximization method for parameter estimation
 - Maximum entropy estimation
 - UBM-GMM

7. Sequential Pattern Recognition
 - Hidden Markov Models (HMMs)
 - Discrete HMMs
 - Continuous HMMs

Short Exam 3
Programming Assignment 3

8. Nonparametric techniques for density estimation
 - Parzen-window method
 - K-Nearest Neighbour method

9. Linear discriminant functions
• Logistic regression
• Perceptron, multilayer perceptron
• Gradient descent procedures, backpropagation
• Support vector machines – a brief introduction

10. **Dimensionality reduction**
• Principal component analysis – its relationship to eigen analysis
• Fisher discriminant analysis – Generalised eigen analysis
• Multiple discriminant analysis
• PPCA, JFA, NMF – if time permits

11. **Non-metric methods for pattern classification**
• Non-numeric data or nominal data
• Decision trees: Classification and Regression Trees (CART).
• Random forests

12. **Ensemble Methods for classification**
• Bagging, Boosting, Gradient boosting

Short Exam 4
Programming Assignment 4/Project

Text Books:
bish C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
duda R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, John Wiley, 2001

References:
papers Some relevant papers/notes will be put up on the website from time-to-time.
haykin Simon Haykin, Neural Networks: A Comprehensive foundation to Neural Networks or Neural Networks and Learning Machines, any edition will do.
kout S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press,

Course Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Probability and & Random Processes (A recap) bish, class notes</td>
</tr>
<tr>
<td>2</td>
<td>Linear Algebra (A recap) bish, class notes</td>
</tr>
<tr>
<td>3</td>
<td>Regression bish, class notes</td>
</tr>
<tr>
<td>4-5</td>
<td>Bayesian Decision Theory duda</td>
</tr>
<tr>
<td>5</td>
<td>Parametric estimation methods duda, kout, bish</td>
</tr>
<tr>
<td>6</td>
<td>Unsupervised clustering methods bish</td>
</tr>
<tr>
<td>7</td>
<td>Gaussian Mixture Models bish</td>
</tr>
<tr>
<td>8</td>
<td>Sequential Pattern recognition class notes, duda, bish, Some papers</td>
</tr>
<tr>
<td>9</td>
<td>Non Parametric Methods duda</td>
</tr>
<tr>
<td>10-11</td>
<td>Linear discriminant functions duda, bish, haykin</td>
</tr>
<tr>
<td>12</td>
<td>Dimensionality reduction duda, Some papers</td>
</tr>
<tr>
<td>13</td>
<td>Non-metric methods for classification class notes</td>
</tr>
<tr>
<td>14</td>
<td>Ensemble methods for classification class notes</td>
</tr>
<tr>
<td>15</td>
<td>Revision</td>
</tr>
</tbody>
</table>

Teaching Assistants (Tentative):
Mari Ganesh Kumar Ph: 2257-5371 email: mariganeshkumar@gmail.com
Nauman Daulatabad Ph: 2257-5364 email: nauman.daulatabad@gmail.com
Rajat Chawla Ph: 2257-5371 email: cs18M045@smail.iitm.ac.in
Vinay Kashyap Ph: 2257-5371 email: cs18M060@smail.iitm.ac.in
Ashish Mishra Ph: 2257-5371 email: mishra@cse.iitm.ac.in

Instructor: Hema A Murthy (e-mail: hema@cse.iitm.ac.in, Phone number: 2257-4364)

Evaluation: MidSem (20), Endsem exam (25), Short exams (15), Programming assignments (may include a project) (40)

Assignments: These must be submitted as reports on moodle. Please create an account in moodle for yourself. Ideally done in pairs of two (depends on class size)

Note: Please check the moodle website for cs5691 regularly.