
Testing Polynomial Equivalence
by Scaling Matrices

Markus Bläser1(B), B.V. Raghavendra Rao2, and Jayalal Sarma2

1 Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
mblaeser@cs.uni-saarland.de
2 IIT Madras, Chennai, India

{bvrr,jayalal}@cse.iitm.ac.in

Abstract. In this paper we study the polynomial equivalence problem:
test if two given polynomials f and g are equivalent under a non-singular
linear transformation of variables.

We begin by showing that the more general problem of testing whether
f can be obtained from g by an arbitrary (not necessarily invertible) lin-
ear transformation of the variables is equivalent to the existential theory
over the reals. This strengthens an NP-hardness result by Kayal [9].

Two n-variate polynomials f and g are said to be equivalent up to scal-
ing if there are scalars a1, . . . , an ∈ F\{0} such that f(a1x1, . . . , anxn) =
g(x1, . . . , xn). Testing whether two polynomials are equivalent by scaling
matrices is a special case of the polynomial equivalence problem and is
harder than the polynomial identity testing problem.

As our main result, we obtain a randomized polynomial time algo-
rithm for testing if two polynomials are equivalent up to a scaling of
variables with black-box access to polynomials f and g over the real
numbers.

An essential ingredient to our algorithm is a randomized polynomial
time algorithm that given a polynomial as a black box obtains coeffi-
cients and degree vectors of a maximal set of monomials whose degree
vectors are linearly independent. This algorithm might be of indepen-
dent interest. It also works over finite fields, provided their size is large
enough to perform polynomial interpolation.

1 Introduction

The polynomial equivalence problem (PolyEq), i.e., testing if two given polyno-
mials are equivalent under a non-singular change of coordinates is one of the fun-
damental computational tasks related to polynomials. More precisely, two poly-
nomials p(x1, x2, · · · , xn) and q(x1, x2, · · · , xn) are said to be linearly equivalent
if there is an invertible linear transformation, A such that for yi =

∑
j Aijxj ,

p(y1, y2, . . . yn) = q(x1, . . . xn). When A is not restricted to be invertible, the
problem is referred to as polynomial projection problem (PolyProj).

Indeed, observing that only a polynomial with all coefficients equal to zero
can be equivalent to the zero polynomial, PolyEq is a generalization of the
well studied polynomial identity testing problem which has close connections to
c© Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 111–122, 2017.
DOI: 10.1007/978-3-662-55751-8 10



112 M. Bläser et al.

arithmetic circuit lower bounds [7]. Further, since a non-singular change of coor-
dinates is one of the fundamental geometric primitives, PolyEq is of primary
importance to computational algebraic geometry.

Saxena [14] showed that the graph isomorphism problem is polynomial time
many one reducible to the case of PolyEq where the polynomials are of degree
three. Thus, the problem simultaneously generalizes the graph isomorphism
problem and the polynomial identity testing problem. Further, if the change
of coordinates (the matrix A) is not restricted to be invertible, that is, A need
not be invertible, then the problem PolyProj is NP-hard under polynomial
time many-one reductions [9]. We first strengthen this hardness result over R (in
fact, also over any integral domain) as follows:

Theorem 1. Given two sparse polynomials f, g ∈ R[x1, . . . , xn], deciding
whether there is a matrix A such that f(x) = g(Ax) is as hard as the existential
theory over the reals.

Both PolyProj and PolyEq can be solved in polynomial space over R and
C in the Blum-Shub-Smale model of algebraic computation [4] using existential
theories over these fields. Since the best upper bound for existential theory over
reals is PSPACE, the above hardness result indicates that the PolyProj is
possibly harder than just being NP-hard. However, the hardness result does
not apply to when A is restricted to be non-singular, and the complexity of
the PolyEq problem remains elusive. Over finite fields the problem is in NP ∩
co-AM [17]. However, over the field of rational numbers, it is not known if the
problem is decidable [14].

Given the lack of progress in the general problem PolyEq, it is natural
to solve special instances of the problem. A natural restriction is to study the
problem when the input polynomials are restricted. When both polynomials
are restricted to quadratic forms (homogeneous degree 2 polynomials), we know
about the structure of equivalent polynomials and this also leads to a polynomial
time algorithm for testing equivalence of such polynomials (see Witt’s equiva-
lence theorem [12]). As indicated above the problem already becomes harder
when the degree is allowed to be even three. Agrawal and Saxena [1] showed
that ring isomorphism testing problem, reduces to the PolyEq problem when
the degree of the polynomials is at most three. 1 Patarin [13] even designed
a cryptosystem which assumes the hardness of the degree bounded (by three)
version of the problem to prove security guarantees.

Instead of simultaneously restricting both of the polynomials in the problem,
it is even interesting to study the problem when one of the polynomials is fixed to
be a well-structured family and the other polynomial is allowed to be arbitrary.
In this direction, Kayal [8] obtained randomized polynomial time algorithms to
test if a given polynomial (as a black-box) is equivalent to either an elementary
symmetric polynomial or to the power symmetric polynomial of a given degree.

1 For a (partial) converse, they [1] also showed that deciding equivalence of degree k
polynomials having n variables over Fq (such that k and q − 1 are co-prime), can be
reduced to the ring isomorphism problem.



Testing Polynomial Equivalence by Scaling Matrices 113

Further, Kayal [9] obtained similar algorithms when one of the polynomials is
fixed to be either the permanent polynomial or the determinant polynomial.
More recently, Kayal et al. [10] obtained randomized polynomial time algorithm
for PolyEq when one of the polynomials is the iterated matrix multiplication
polynomial.

Another possibility of obtaining restrictions of PolyEq is by restricting the
structure of change of coordinates. Grigoriev [6] considered the problem of testing
equivalence of polynomials under Taylor shifts2: given two polynomials f and
g, are there a1, . . . , an ∈ K such that f(x1 + a1, . . . , xn + an) = g? Grigoriev
obtained a polynomial time algorithm to the problem when the polynomial is
given in the sparse representation. The algorithm is deterministic polynomial
time if K is algebraically closed, randomized polynomial time if K = Q and
quantum polynomial time if K is finite. More recently, Dvir et al. [5] showed that
the shift equivalence problem is polynomial time equivalent to the polynomial
identity testing problem in the black-box as well as non-black-box setting.

In this paper, we restrict the structure of the matrices under which the equiv-
alence is tested, to diagonal matrices. We obtain a randomized polynomial time
algorithm for testing if two polynomials are equivalent up to a scaling of vari-
ables with black-box access to polynomials f and g. More precisely, we prove
the following theorem:

Theorem 2 (Main). Given f, g ∈ R[x1, . . . , xn] as a blackbox, there exists
a randomized algorithm that tests if there is an invertible diagonal matrix A
such that f(X) = g(AX). The algorithm runs in time poly (n,Δ,L), where the
degree of f and g is bounded by Δ and all of the coefficients of f and g can be
represented by at most L bits.

As mentioned above, Kayal [9] designed randomized polynomial time algo-
rithms for testing equivalence if one of the polynomials comes from a well-
structured family of polynomials like the permanent family or determinant fam-
ily. These algorithms follow the following general scheme: First, the general prob-
lem is reduced to permutation and scaling equivalence testing by studying the
Lie algebra of the input polynomial. Then permutation and scaling equivalence
testing is reduced to scaling equivalence testing. Our result shows that this last
step can always be done in randomized polynomial time, even when one of the
polynomials does not come from a nice family but is arbitrary. Thus, the hard-
ness of PolyEq most likely lies in the first step, since we need a large enough
Lie algebra to make the approach work. The Lie algebra of a random polynomial
is trivial [9].

As an ingredient to our proof of Theorem 2, we obtain a randomized polyno-
mial time algorithm that given a polynomial as a black box obtains coefficients
of a maximal set of monomials whose degree vectors are linearly independent,
this might be of independent interest.

2 which is strictly speaking not a (homogeneous) linear change of coordinates.



114 M. Bläser et al.

Theorem 3. There is a randomized algorithm, that given a polynomial f ∈
R[x1, . . . , xn] by black box access outputs a maximal collection of

{(m,α) | α �= 0, and α is the coefficient of the monomial m in f}

such that the set of degree vectors is linearly independent over R. The running
time is polynomial in the degree Δ of f , the number of variables n, and the bit
size L of the representation of the coefficients.

We remark that the latter algorithm also works over finite fields provided
they are large enough. Here large enough means p(Δ,n) for some polynomial p
for small degree.

2 Preliminaries

In this section, we fix the notations that we use throughout the paper.
For a monomial m = xd1

1 · · · · · xdn
n let Deg(m) = (d1, . . . , dn) denote the

degree vector of m. For a polynomial f ∈ K[x1, . . . , xn], let Mon(f) denote the
set of monomials that have non-zero coefficients in f . A degree-basis for f is a
maximal collection S = {(m,α) | α �= 0 is the coefficient of monomial m in f}
such that the set {Deg(m) | (m,α) ∈ S, for some α �= 0} is linearly independent
over Q or equivalently R.

Isolating Monomials: Klivans and Spielman [11] obtained a randomized poly-
nomial time algorithm that tests if a polynomial given as a black-box is identi-
cally zero or not. Their algorithm involves a randomized polynomial time algo-
rithm that isolates a monomial in the given polynomial if it is not identically
zero. We state the result below:

Theorem 4 (Klivans and Spielman [11]). There is a probabilistic algorithm
that given a non-zero polynomial f ∈ K[x1, . . . , xn] (by blackbox access) outputs
a monomial m of f , its degree vector Deg(m) and its coefficient α in f with
probability ≥ 1 − ε in time polynomial in n, Δ, and 1/ε.

Theorem 4 is going to be a building block for our proof of Theorem 3. We
need a bit more insight into the proof of Theorem 4 listed as follows:

– The algorithm in [11] first replaces the variables xi by yai where the ai are
numbers with O(log(nΔ/ε)) bits. We get a new univariate polynomial f̂ .
Monomials of f get mapped to monomials in f̂ and are grouped together.
The substitution has the property that with probability ≥ 1− ε, there is only
one monomial of f getting mapped to the (non-zero) monomial of f̂ having
minimum degree. Since we have only black-box access to f , this substitution
is only conceptual and is simulated when later on plugging values into the
blackbox.



Testing Polynomial Equivalence by Scaling Matrices 115

– Then we interpolate f̂ by evaluating it at poly(n,Δ, 1/ε) many values. That
is, we plug in values vai for each xi for polynomially many values v. The
lowest nonzero coefficient of f̂ is also a coefficient of f , however, we do not
know the degree pattern of this monomial (yet).

– Then we modify the substituion in the first step by replacing x1 by 2ya1 . In
this way, the lowest nonzero coefficient of f̂ will get multiplied by 2d1 where
d1 is the x1-degree of the unique monomial in f that is mapped to the lowest
degree monomial of f̂ . Doing this for all xi, we can also extract the degree
vector of the monomial.

Tensors and Tensor Rank: We also fix notations and state the preliminary
results about tensors that we need in the paper. We call t = (ti,j,�) ∈ R

n×n×n

a tensor. A rank one tensor is a tensor that can we written as u ⊗ v ⊗ w with
u, v, w ∈ R

n. The minimum number of such rank-one-tensors such that t can be
written as the sum of them is called the rank of t. For an introduction to this
problem, the reader is referred to [2,3].

With a tensor t, we can associate the trilinear form

F (x, y, z) =
n∑

i,j,�=1

ti,j,�xiyjz�.

The so called unit tensor er ∈ R
r×r×r is given by the trilinear form

Er =
r∑

i=1

xiyizi

The following fact is well known :

Proposition 1 (see [3]). Let t = (ti,j,�) ∈ R
n×n×n be a tensor. The tensor

rank of t is bounded by r if and only if there are matrices S, T, U ∈ R
r×n such

that
F (x, y, z) = Er(Sx, Ty, Uz).

3 Hardness of the PolyProj Problem

Testing whether there is an arbitrary matrix A such that f(x) = g(Ax) is a hard
problem. In this section, we prove Theorem 1. As mentioned in the introduction,
this improves the hardness result shown in [9].

Theorem 1. Given two polynomials f, g ∈ R[x1, . . . , xn], as a list of monomials
and their coefficients, deciding whether there is a matrix A (not necessarily non-
singular) such that f(x) = g(Ax) is as hard as the existential theory over the
reals.



116 M. Bläser et al.

Proof. We proceed by reducing the tensor rank problem to PolyProj problem.
Given a tensor t = (ti,j,�) ∈ R

n×n×n, we observe that Proposition 1 suggests two
polynomials of the form f(x) = g(Ax). However, there are two issues. Firstly,
we have three sets of variables and secondly, the matrices S, T , and U are not
square matrices. The second problem is easy to circumvent. We consider F as
a polynomial in the variables x1, . . . , xr, y1, . . . , yr, and z1, . . . , zr instead and
extend the matrices S, T , and U by zero rows.

To address the first problem, we modify the problem we reduce from. A
tensor is called symmetric, if ti,j,� = ti,�,j = . . . for all six permutations of the
indices. In the same way as for general tensors, we can associate a trilinear form
with symmetric tensors, too:

F ′(x) =
n∑

i,j,�=1

ti,j,�xixjx�.

Definition 1 (Symmetric Rank). The symmetric or Waring rank of a sym-
metric tensor t is the smallest r such that there is an r × n matrix A with
F ′(x) = E′

r(Ax) where

E′
r =

r∑

i=1

x3
i .

Shitov [16] recently proved that the problem of deciding whether a symmet-
ric tensor t has symmetric rank r is as hard as the existential theory over the
underlying ground field. The same is true for the ordinary tensor rank. (Inde-
pendently, Schaefer and Stefankovic proved a similar result [15], but only for the
tensor rank.) ��

We remark that, since Shitov’s result [16] holds over any integral domain,
the above theorem is also true for any integral domain.

4 Extracting a degree-basis of a Polynomial

In this section we obtain a randomized polynomial time algorithm that given a
polynomial f as a black-box computes a degree-basis for f . We re-state Theorem 3
for readability:
Theorem 3. There is a randomized algorithm, that given a polynomial f ∈
R[x1, . . . , xn] by black box access outputs a maximal collection of

{(m,α) | α �= 0, and α is the coefficient of the monomial m in f}
such that the set of degree vectors is linearly independent over R. The running
time is polynomial in the degree Δ of f , the number of variables n, and the bit
size L of the representation of the coefficients.

Proof. Algorithm 1 is our proposed algorithm. It starts with extracting a first
monomial using the algorithm by Klivans and Spielman (Theorem 4). Then it
proceeds iteratively and extends the set one by one.



Testing Polynomial Equivalence by Scaling Matrices 117

Now assume we have already extracted monomials m1, . . . ,mt of f such that
the corresponding degree vectors v1, . . . , vt are linearly independent. Let t < n.
We describe a procedure that finds a new monomial mt+1 such that its degree
vector vt+1 is not contained in the span of v1, . . . , vt or reports that there does
not exists such a vt+1.

Let v1, . . . , vt̂ be a basis of the R-vector space spanned by all degree vectors
of f , that is, we extend v1, . . . , vt to a basis. Let p be a prime such that v1, . . . , vt̂

stay linearly independent over Fp. By the Hadamard bound for the determinant,
the matrix formed by v1, . . . , vt has a non vanishing minor whose absolute value
is bounded by (Δn)n. And by the prime number theorem, a prime number of
size O(npolylog(Δn)) will have the property stated above with high probability.
Note that we only know the vectors v1, . . . , vt so far, but since we simply choose
p uniformly at random, we do not need to know the vectors v1, . . . , vt̂ at all.

Let u1, . . . , un−t be linearly independent vectors such that viuj = 0 over Fp

for all 1 ≤ i ≤ t, 1 ≤ j ≤ n − t, where viuj denotes the standard scalar product.
If w is a vector not contained in the span of v1, . . . , vt, then there is a j such
that wuj �= 0 over Fp. Consider the substitution xi → yuj,ixi, 1 ≤ i ≤ n, where
uj,i are the entries of uj . This substitution maps every monomial m of f to some
monomial of the form ydm. Let fj be the resulting polynomial.

By construction, we have:

Lemma 1. 1. The degree of fj is bounded by O(Δnpolylog (Δn)) for all j.
2. If a monomial m is contained in the span of v1, . . . , vt, then for every j, p|d

where ydm is the image of m in fj.
3. If a monomial m is not contained in the span of v1, . . . , vt, then there is a j

such that p � |d where ydm is the image of m in fj. ��
We continue with the proof of the theorem. The strategy is now clear: We

treat each fj as a univariate polynomial in y with coefficients from K[x1, . . . , xn].
Then we use the algorithm from Theorem 4 to extract a monomial from the
coefficient polynomial of a power yd with p � |d. If we find a monomial then we
set vt+1 to be its degree vector. If we do not find such a monomial, then v1, . . . , vt

is a maximal linearly independent set.
Let fj =

∑Δj

d=0 gd · yd. To be able to apply Theorem 4, we have to provide
blackbox access to the gd’s but we have only blackbox access to f . We simulate
this as follows:

– Given blackbox access to f , it is easy to simulate blackbox access to fj .
– Now assume we want to evaluate gd at a point ξ ∈ Kn.
– We evaluate fj at the points (ξ, αi) ∈ Kn+1, 0 ≤ i ≤ Δj , where the αi

are pairwise distinct, that is, we compute values fj(ξ, αi) =
∑Δj

d=0 gd(ξ)αd
i .

From these values, we interpolate the coefficients of fj , viewed as a univariate
polynomial in y. The coefficient of yd is gd(ξ).

It is clear from construction that Algorithm 1 returns the correct result if no
errors occur in the randomized computations. Thus, if we make every error



118 M. Bläser et al.

Algorithm 1. Gen-Mon(f)
Input: Black box access to polynomial f ∈ K[x1, . . . , xn]
Output: A degree-basis for f

S ← ∅.
t ← 1
if f is not identically 0 then

Extract a monomial m1 of f (using Theorem 4) with coefficient α1.
Let v1 be the degree vector.
S ← S ∪ {(m1, α1)}.
while TRUE do

Randomly choose a prime p of size O(npolylog(Δn)).
Compute linearly independent vectors u1, . . . , un−t such that viuj = 0 over Fp

for all 1 ≤ i ≤ t, 1 ≤ j ≤ n − t.
Let fj(x1, . . . , xn) = f(x1y

uj,1 , . . . , xnyuj,n), 1 ≤ j ≤ n − t.

Write fj(x, y) =
∑Δj

d=0 hj,dyd.
Try to extract a monomial of every hj,d using Theorem 4, 1 ≤ j ≤ n − t, p � |d.
Let mt+1 be the first such monomial found, αt+1 be its coefficient and let vt+1

be its degree vector. Set S = S ∪ {(mt+1, αt+1)}.
If no such monomial mt+1 is found, then output S and HALT.

end while
end if

probability of every randomized subroutine polynomially small in Algorithm 1,
then by the union bound, it will compute the correct result with high probability.
For the running time observe that the while loop is executed at most n−1 times.
The degrees Δj are bounded by poly(n,Δ) by the bound on p. All numbers
occurring as coefficients have length bounded by poly(n,Δ,L), since the degrees
of all polynomials are bounded by poly(n,Δ). ��

5 Testing for Equivalence by Scaling

Let f(X) and g(X) be polynomials in R[x1, . . . , xn] given by black box access.
We assume that the degree of f and g is bounded by Δ and that all coefficients
of f and g can be represented by at most L bits.

Assume there is a non-singular diagonal matrix A such that f(X) = g(AX).
Let (a1, . . . , an) denote the entries of A on the diagonal. Clearly, if f(X) =
g(AX) with A diagonal, f and g should have the same set of monomials. We
first treat the case that the degree basis has maximum cardinality n.

Lemma 2. Let S = {(mi, αi) | 1 ≤ i ≤ n} be a degree-basis of f . If f(X) =
g(AX) for a non-singular diagonal matrix A, then such an A can be computed
deterministically in time polynomial in n, Δ and L, where the ai are represented
by polynomial size expressions with roots.

Proof. Let αi �= 0 and βi �= 0 be the coefficient of mi in f and g, respectively.
Suppose f(X) = g(AX) for some non-singular diagonal matrix A with diagonal
(a1, . . . , an). We have n polynomial equations



Testing Polynomial Equivalence by Scaling Matrices 119

αi = βi

n∏

j=1

a
di,j

j

where vi = Deg(mi) =: (di,1, . . . , di,n). Taking logarithms on both sides, we have

log αi = log βi +
n∑

j=1

di,j log aj .

(Formally, you have to choose an appropriate branch of the complex algorithm,
since the αi or βi can be negative. Since we exponentiate again in the end, the
actual choice does not matter.)

Since the vectors v1, . . . , vn are linearly independent over R, there are unique
values for log a1, . . . , log an satisfying the above equations. Now a1, . . . , an can
be obtained by inverse logarithms. This proves the uniqueness of a1, . . . , an.

Let D = (di,j). Then the ai are given by
⎛

⎜
⎝

log a1

...
log an

⎞

⎟
⎠ = D−1

⎛

⎜
⎝

log(α1/β1)
...

log(αn/βn)

⎞

⎟
⎠ .

So each ai =
∏n

j=1(αj/βj)d̄i,j where D−1 = (d̄i,j). ��
When the set of degree vectors of f has cardinality less than n, we can

still use Algorithm 1 to compute a linearly independent set of degree vectors
v1, . . . , vt of maximal size. Let vi = (di,1, . . . , di,n), 1 ≤ i ≤ t. Let m1, . . . ,mt

be the corresponding monomials with coefficients α1, . . . , αt. Let β1, . . . , βt be
the corresponding coefficients of the monomials of g. From these values, we can
set up a system of equations as in Lemma 2, however, this time there might be
more than one solution. The next lemma states that it actually does not matter
which of these solutions we choose:

Lemma 3. Let a1, . . . , an be any solution to

log αi = log βi +
n∑

j=1

di,j log aj , 1 ≤ i ≤ t,

and let A be the corresponding diagonal matrix. Let r(x) be a monomial with
coefficient δ and degree vector u = (e1, . . . , en) contained in the linear span of
v1, . . . , vt, i.e., u = λ1v1 + · · · + λtvt. Then the coefficient of r(Ax) is

δ ·
(

α1

β1

)λ1

· · ·
(

αt

βt

)λt

,

in particular, it is independent of the chosen solution for a1, . . . , an.



120 M. Bläser et al.

Algorithm 2. Scaling equivalence test
Input: Black box access to polynomials f, g ∈ K[x1, . . . , xn]

the degree vectors of f have full rank
Output: Nonsingular diagonal matrix A with f(x) = g(Ax) if such an A exists

Apply Gen-Mon with polynomial f as the black-box to get a set S.
Apply Gen-Mon to g using the same random bits as above to get a set S′.
If the monomials in the set S is not the same as S′ then Reject.
Solve for the entries of A using Lemma 2 (choosing any solution if there is more than
one).
Accept if and only if f(x) − g(Ax) is identically zero.

Proof. Let u =
∑t

i=1 λivi. Now

r(Ax) = δ · (a1x1)e1 · · · (anxn)en

= δ · ae1
1 · · · aen

n · xe1
1 · · · xen

n

= δ · a
∑t

i=1 λidi,1
1 · · · a

∑t
i=1 λidi,n

n · xe1
1 · · · xen

n

= δ · (ad1,1
1 · · · ad1,n

n )λ1 · · · (adt,1
1 · · · adt,n

n )λt · xe1
1 · · · xen

n

= δ ·
(

α1

β1

)λ1

· · ·
(

αt

βt

)λt

· xe1
1 · · · xen

n . ��

Thus for testing if there is a diagonal matrix A with f(X) = g(AX), it is
enough to compute the non-zero coefficients of at most n monomials m1, . . . ,mn

in f and g the degree vectors of which are linearly independent.
We complete the correctness of Algorithm 2 in the following Theorem, which

in turn completes the proof of Theorem 2.

Theorem 5. Algorithm 2 returns correct the correct answer with high probabil-
ity. It runs in time polynomial in Δ, n and L.

Proof. The algorithm calls two times the routine Get-Mon and makes one call
to a polynomial identity test. By making the error probabilities of these calls
small enough, we can controll the error probability of Algorithm 2 by the union
bound.

Now we need to argue that if the polynomials f and g have the same set
of monomials, then the calls for Gen-Mon(f) and Gen-Mon(g) with same set of
random bits (i.e., by re-using the random bits) will result in sets S and S′ with
the same set of monomials.

Consider parallel runs of Get-Mon with f and g as inputs respectively such
that they use a common random string say R. If f and g have the same set of
monomials, then clearly hf

j,d and hg
j,d both have the same set of monomials at

every iteration of the two parallel instances of the algorithm.
Since the randomness is only used in the exponents, if f and g have the

same set of monomials, then the algorithm applied to f and to g with the same



Testing Polynomial Equivalence by Scaling Matrices 121

random bits will result in the same set of degree vectors. Therefore, we get the
appropriate coefficients of g.

Once we have the coefficients, we can find the the entries of a scaling matrix
using the set of equations in Lemma 2. By Lemma 3, it does not matter which
solution we choose. The algorithm is correct by construction. Each single step
of the algorithm can be performed in polynomial time. ��

Acknowledgments. The work was supported by the Indo-German Max Planck
Center for Computer Science.

References

1. Agrawal, M., Saxena, N.: Equivalence of F-algebras and cubic forms. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 115–126. Springer, Hei-
delberg (2006). doi:10.1007/11672142 8

2. Bläser, M.: Explicit tensors. In: Agrawal, M., Arvind, V. (eds.) Perspectives in
Computational Complexity. PCSAL, vol. 26, pp. 117–130. Springer, Cham (2014).
doi:10.1007/978-3-319-05446-9 6

3. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften, vol. 315. Springer, Heidelberg
(1997)

4. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago,
Illinois, USA, 2–4 May 1988, pp. 460–467 (1988)

5. Dvir, Z., Oliveira, R.M., Shpilka, A.: Testing equivalence of polynomials under
shifts. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8572, pp. 417–428. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43948-7 35

6. Grigoriev, D.: Testing shift-equivalence of polynomials by deterministic, probabilis-
tic and quantum machines. Theor. Comput. Sci. 180(1), 217–228 (1997)

7. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complex. 13(1/2), 1–46 (2004)

8. Kayal, N.: Efficient algorithms for some special cases of the polynomial equivalence
problem. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, 23–25 January
2011, pp. 1409–1421 (2011)

9. Kayal, N.: Affine projections of polynomials: extended abstract. In: Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New
York, NY, USA, 19–22 May 2012, pp. 643–662 (2012)

10. Kayal, N., Nair, V., Saha, C., Tavenas, S.: Reconstruction of full rank algebraic
branching programs. In: 32nd IEEE Conference on Computational Complexity
(CCC) (2017, to appear)

11. Klivans, A.R., Spielman, D.A.: Randomness efficient identity testing of multivari-
ate polynomials. In: Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, 6–8 July 2001, Heraklion, Crete, Greece, pp. 216–223 (2001)

12. Lang, S.: Algebra. Springer, Heidelberg (2002)
13. Patarin, J.: Hidden fields equations (HFE) and Isomorphisms of polynomials

(IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.
1007/3-540-68339-9 4

http://dx.doi.org/10.1007/11672142_8
http://dx.doi.org/10.1007/978-3-319-05446-9_6
http://dx.doi.org/10.1007/978-3-662-43948-7_35
http://dx.doi.org/10.1007/978-3-662-43948-7_35
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-68339-9_4


122 M. Bläser et al.

14. Saxena, N.: Morphisms of rings and applications to complexity. Ph.D. thesis,
Department of Computer Science, Indian Institute of Technology, Kanpur, India
(2006)

15. Schaefer, M., Stefankovic, D.: The complexity of tensor rank. CoRR,
abs/1612.04338 (2016)

16. Shitov, Y.: How hard is tensor rank? CoRR, abs/1611.01559 (2016)
17. Thierauf, T.: The isomorphism problem for read-once branching programs and

arithmetic circuits. Chic. J. Theor. Comput. Sci. 1998(1) (1998)


	Testing Polynomial Equivalence by Scaling Matrices
	1 Introduction
	2 Preliminaries
	3 Hardness of the PolyProj Problem
	4 Extracting a degree-basis of a Polynomial
	5 Testing for Equivalence by Scaling
	References


