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Abstract

We study the complexity of several of the classical graph decision problems in
the setting of bounded cutwidth and how imposing planarity affects the complexity.
We show that for 2-coloring, for bipartite perfect matching, and for several variants
of disjoint paths the straightforward NC1 upper bound may be improved to AC0[2],
ACC0, and AC0 respectively for bounded planar cutwidth graphs. We obtain our upper
bounds using the characterization of these circuit classes in tems of finite monoids
due to Barrington and Thérien. On the other hand we show that 3-coloring and
Hamilton cycle remain hard for NC1 under projection reductions, analogous to the
NP-completeness for general planar graphs. We also show that 2-coloring and (non-
bipartite) perfect matching are hard under projection reductions for certain subclasses
of AC0[2]. In particular this shows that our bounds for 2-coloring are quite close.

1 Introduction

We consider several of the classical graph decision problems, namely those of deciding ex-
istence of 2- and 3-colorings, perfect matchings, Hamiltonian cycles, and disjoint paths.
For these problems we are interested in their complexity in the setting of bounded pla-
nar cutwidth. The cutwidth of a graph G = (V,E) with n = |V | vertices is defined in
terms of linear arrangements of the vertices. A linear arrangement is simply a 1-1 map
f : V → {1, . . . , n}, and its cutwidth is the maximum over i of the number of edges between
Vi = {v ∈ V | f(v) ≤ i} and V \ Vi. The cutwidth of G is the minimum cutwidth of a linear
arrangement. Similarly, if the graph G is planar we can define a notion of planar cutwidth.
Given a linear arrangement f we consider a planar embedding where vertex v is placed at
coordinate (f(v), 0). The planar cutwidth of this embedding is then the maximum number of
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edge-crossings at a vertical line in the plane. We define the planar cutwidth as the minimum
planar cutwidth of such a linear arrangement and an embedding.

All the problems we consider can be decided in NC1 for graphs of bounded cutwidth,
and they are in fact NC1-complete under projection reductions. Imposing planarity, or more
precisely considering graphs of bounded planar cutwidth, we are able to place several of the
problems in smaller classes such as AC0, AC0[2], and ACC0, while for some problems they
remain NC1-complete.

Before stating our results we review known complexity results about the graph problems
without restriction on cutwidth and the consequences of imposing planarity, for comparison
with our results in the bounded cutwidth setting. The 2-coloring problem is in L, as an easy
consequence of Reingold’s algorithm for undirected connectivity[17], whereas 3-coloring is
NP-complete and remains so for planar graphs by the existence of a cross-over gadget[11].
The complexity of deciding if a graph has a perfect matching is still not known. It belongs to
P, but it is an open problem if it belongs to NC. For planar graphs the problem is known to
be in NC as shown by Vazirani based on work of Kasteleyn[14, 20]; for planar bipartite graphs
the problem was shown to be in UL by Datta et al.[7]. The Hamiltonian cycle problem is
NP-complete and as shown by Garey et al. it remains so for planar graphs[12], and Itai et al.
showed it is NP-hard even for grid graphs[13].

The disjoint paths problem has numerous variations. In the general setting we are given
pairs of vertices (s1, t1), . . . , (sk, tk) in a graph G, and are to decide whether disjoint paths
between si and ti for each i exists. Here disjoint may mean either vertex-disjoint or edge-
disjoint, but either variant is reducible to the other. We shall consider only the case of
constant k. When G is an undirected graph a polynomial time algorithm was given by
Robertson and Seymour[18], as a result arising from their seminal work on graph minors.
When G is a directed graph the problem is NP-complete already for k = 2 as shown by
Fortune et al.[10]. On the other hand, when G is planar Schrijver[19] gave a polynomial
time algorithm for the vertex-disjoint paths problem. The reduction between the vertex-
disjoint and the edge-disjoint versions of the problem does not preserve planarity, and it is
an open problem the edge-disjoint paths problem in planar directed graphs is NP-complete
or solvable in polynomial time[6]. It can however be solved in polynomial time for (not
necessarily planar) directed acyclic graphs[10].

1.1 Results and techniques

A convenient way to obtain an NC1 upper bound is through monadic second order (MSO)
logic. Elberfeld et al.[8] showed that MSO-definable problems can be decided in NC1 when
restricted to input structures of bounded treewidth, when a tree decomposition of bounded
width is supplied in the so-called term representation. We shall not formally define the tree-
width of a graph, but we will note that the treewidth of a graph is bounded from above by
the cutwidth of the graph[5]. Furthermore, given as input a linear arrangement of bounded
cutwidth k, a tree decomposition of tree width k can be constructed by an AC0 circuit. Thus
we have the following meta-theorem as an easy consequence.
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Theorem 1. Any graph property definable in monadic second order logic with quantification
over sets of vertices and edges can be decided by NC1 circuits on graphs of bounded cutwidth
if a linear arrangement of bounded cutwidth is supplied as auxiliary input.

Actually to obtain this we may proceed more directly avoiding the challenges dealt with
in [8], since the tree decomposition computed above is actually a path decomposition. We
may thus also use standard finite automata rather than tree automata.

All the graph properties we consider can easily be expressed in monadic second order logic,
thereby establishing NC1 upper bounds. We can show that all these problems are in fact also
hard for NC1 under projection reductions. This is based on Barrington’s characterization of
NC1 in terms of bounded width permutation branching programs[2].

We first discuss the general technique behind our upper bounds that improve upon the
generic NC1 bound. Namely our upper bounds are based on reducing to word problems on
appropriately defined finite monoids. By results of Barrington and Thérien, we then directly
get circuit upper bounds depending on the group structure of the given monoid. For general
graphs the improved complexity bounds obtained when imposing planarity are obtained by
very different algorithms. In our setting of constant cutwidth, when imposing planarity we
instead obtain the improvements in a uniform way by obtaining an algebraic understanding
of the respective problems. The general idea is as follows. We consider grid-planar graphs
(defined later) of a fixed width w for which we want to decide a certain graph property, and
we may view these as a free semigroup under concatenation. We then define an appropriate
finite monoid M. For each grid-planar graph G we associate a monoid element GM. In
the simplest setting we will be able to determine if the graph property under consideration
holds for the graph G directly from the monoid element GM. We will also have defined
the elements of M and the monoid operation in such a way that the map G 7→ GM is a
homomorphism. What then remains is to analyze the groups inside M. For the disjoint
paths problem we show that all groups are trivial, and this gives AC0 circuits. For 2-coloring
we characterize the groups as being isomorphic to groups of the form Zl2, and this gives
AC0[2] circuits. For perfect matching in bipartite graphs we are not able to fully analyze the
groups of the corresponding monoid. We are however able to rule out groups of order 2, and
thus by the celebrated Feit-Thompson theorem all remaining groups must be solvable, and
this gives ACC0 circuits.

When considering the graph properties for graphs of bounded planar cutwidth we supply
as additional input the corresponding embedding of bounded cutwidth of the graph. But
before dealing with this issue, we consider special classes of such graphs where such an
embedding is implicit. We consider a grid Λ = {1, . . . , l}× {1, . . . , w} of width w and length
l. A grid graph G = (V,E) of width w and length l is a graph where V ⊆ Λ and all edges are
of Euclidean length 1. We think of the vertices with the same first coordinate to be in the
same layer. A grid graph with (planar) diagonals allows edges of Euclidean length < 2, but
no crossing edges. We relax these requirements further, defining the class of constant width
grid-planar graphs. A grid-planar graph G = (V,E) of width w and length l is a graph
where V ⊆ Λ and if two vertices (a, b) and (c, d) are connected by an edge, then |a− b| ≤ 1
and the edge is fully contained in the region [a− 1, a]× [1, w] or the region [a, a+ 1]× [1, w].
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If we consider bipartite grid-planar graphs we assume that the bipartition is defined by the
parities of the sums of coordinates of each vertex. All our lower bounds hold for grid graphs
or grid graphs with diagonals, and all our circuit upper bounds hold for grid-planar graphs.

Just as 3-coloring and Hamiltonian cycle remain NP-complete for planar graphs, 3-
coloring remains hard for NC1 on constant width grid graphs with diagonals and Hamiltonian
cycle remains hard for NC1 on constant width grid graphs. We show that 2-coloring on con-
stant width grid-planar graphs is in AC0[2]. This is complemented by an AND ◦ XOR ◦ AC0

lower bound for grid graphs with diagonals. This lower bound is in some sense not far from
the AC0[2] upper bound. Namely by the approach of Razborov[16] we have that quasipolyno-
mial size randomized XOR◦AND is equal to quasipolynomial AC0[2]. Furthermore Allender
and Hertrampf[1] show that in fact quasipolynomial size AND ◦OR ◦XOR ◦AND is equal to
quasipolynomial size AC0[2].

We show that perfect matching is in ACC0 for bipartite grid-planar graphs, and we have
an AC0 lower bound. For non-bipartite grid-planar graphs we have a AND ◦OR ◦XOR ◦AND
lower bound. For the disjoint paths problem in constant width grid-planar graphs we give
AC0 upper bounds for the following 3 settings: (1) node-disjoint paths in directed graphs. (2)
edge-disjoint paths in upward planar graphs. (3) edge-disjoint paths in undirected graphs.
We leave open the case of edge-disjoint paths in directed graphs. For all the settings we have
an AC0 lower bound. All these results are summarized in Figure 1.

Problem Upper bound Lower bound (projections)
2-coloring AC0[2] AND ◦ XOR ◦ AC0

3-coloring NC1 NC1

Bipartite perfect matching ACC0 AC0

Perfect matching NC1 AND ◦ OR ◦ XOR ◦ AC0

Hamiltonian cycle NC1 NC1

Disjoint paths variants AC0 AC0

Figure 1: Complexity of problems on constant width grid-planar graphs

We shall now discuss extending the upper bounds above from constant width grid-planar
graphs to the larger classes of graphs of bounded planar cutwidth. Whereas the embedding
was implicitly given for grid-planar graphs, for graphs of bounded planar cutwidth we will
supply a representation of the embedding in addition to the linear arrangement of the ver-
tices. A simple way to represent both the linear arrangement and the planar embedding of
a graph G = (V,E) of bounded planar cutwidth is to provide instead a grid-planar graph
G′ = (V ′, E ′), where V ⊆ V ′, where the vertices V are placed on a horizontal line and the
vertices V ′ \ V are dummy vertices describing the embedding of the edges. When given
this representation as input, our upper bounds are easily adapted. Namely, for the disjoint
paths problems an edge can be replaced by a path, and we may simply promote the dummy
vertices to regular vertices. For 2-coloring and perfect matching an edge can be replaced
by a path of odd length, but this can be done by an AC0 circuit making locally use of the
coordinates of vertices. Namely, we can just ensure that the path alternates between vertices
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of the implicit bipartition, except possibly at the end.

2 Preliminaries

Boolean circuits We give here standard definitions of the Boolean functions and circuit
classes we consider. As is usual, when considering a Boolean function f : {0, 1}n → {0, 1},
unless otherwise specified we always have a family of such functions in mind, one for each
input length. AC0 is the class of polynomial size constant depth circuits built from un-
bounded fanin AND and OR gates. AC0[m] allows in addition the function MODm given
by MODm(x1, . . . , xk) = 1 if and only if

∑k
i=1 xi 6≡ 0 (mod m). We shall also denote the

function MOD2 by XOR. The union of AC0[m] for all m is the class ACC0. NC1 is the class
of polynomial size circuits of depth O(log n) built from fanin 2 AND and OR gates.

A class of Boolean functions immediately defines a class of Boolean circuits as families of
single gate circuits. Given two classes of circuits C1 and C2 we denote by C1 ◦ C2 the class of
circuits consisting of circuits from C1 that is fed as inputs the output of circuits from C2. For
instance, AND ◦ XOR ◦ AC0 is the class of polynomial size constant depth circuits that has
an AND gate at the output, followed by XOR gates that in turn take as inputs the output
of AC0 circuits.

Semigroups, monoids and programs A semigroup is a set S with an associative binary
operation. A monoid M is a semigroup with a two-sided identity. A subset G of M is a
group inM if it is a group with respect to the operation ofM. We also say thatM contains
G. A monoid is aperiodic if every group it contains is trivial; it is solvable if every group it
contains is solvable. A monoid which is not solvable is called unsolvable.

We consider the program over monoid [4] formalism for computing Boolean functions.
Let M be a monoid and n an input length. An instruction is a triple 〈j, a0, a1〉, where j ∈ [n]
and a0, a1 ∈ M . A program over M is a pair (P,A) where A ⊂ M is the accepting set and
P = (I1, . . . , I`) is a list of instructions. The length of the program is `. Let x ∈ {0, 1}n. The
output I(x) of an instruction I = 〈j, a0, a1〉 is axj . The (Boolean) output of the program is

is 1 if and only if
∏`

i=1 Ii(x) ∈ A. As with circuits we consider families of programs, one for
each input length.

Barrington and Thérien[4] showed that several circuit classes are exactly captured by
programs over finite monoids of polynomial length.

Theorem 2 (Barrington and Thérien). Let L ⊆ {0, 1}n.

• L is in AC0 if and only if L is computed by a polynomial length programs over a finite
aperiodic monoid.

• L is in AC0[m] if and only if L is computed by a polynomial length program over a
finite solvable monoid in which all groups have orders dividing a power of m1.

1This equivalence is not stated explicitly in [4], but follows from the given proof.
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• L is in ACC0 if and only if L is computed by a polynomial length program over a finite
solvable monoid.

• L is in NC1 if and only if L is computed by a polynomial length program over a finite
unsolvable monoid.

We shall use only one direction of this characterization, and for this reason it is convenient
to reformulate as follows. LetM be a finite monoid. The word problem overM is to compute
the product x1 · · ·xm when given as input x1, . . . , xm ∈M. When M is aperiodic the word
problem is in AC0, whenM is solvable and all groups inM have orders dividing a power of
m the word problem is in AC0[m], whenM is solvable the word problem is in ACC0, and we
always have the word problem is in NC1.

3 Upper bounds

We first state a geometric lemma that we shall make use of in our results about bipartite
matching and disjoint paths. Consider a piecewise smooth infinite simple curve C such that
C is contained entirely in the strip {(x, y) | 1 ≤ y ≤ w}. We say that C is periodic with
period p if the horizontally shifted curve C + (p, 0) coincides with C.

Lemma 3. Let C be a curve that is periodic with period p and let C ′ = C + (q, 0) be a
horizontal shift of the curve C. Then C and C ′ intersect.

Proof. Map the region R = {(x, y) | 0 ≤ x ≤ p, 1 ≤ y ≤ w} into the plane by the map
φ(x, y) = (y cos(2πx/p), y sin(2πx/p)). Then φ(C) and φ(C ′) are closed simple curves in
the plane both containing the origin. By the Jordan curve theorem each of these curves
divide the plane into an inside set and an outside set. If they do not intersect then either
φ(C) encloses φ(C ′) or φ(C ′) encloses all of φ(C). In particular this means that the two
curves enclose sets of different areas. However φ(C ′) is just a rotation of φ(C) around the
origin, and must in particular enclose the exact same area as φ(C). We conclude the curves
intersect.

3.1 2-coloring

We prove here our upper bound for 2-coloring.

Theorem 4. Testing whether a given grid-planar graph is 2-colorable can be done in AC0[2].

We prove this result by reducing 2-coloring to the word problem over a finite monoidM.
We then show that all groups in M are solvable and of order a power of 2. By Theorem 2
this gives us our AC0[2] upper bound.
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G(A)

G(B)

G(C)

G(A) ◦G(B)

G(A) ◦G(C)

A = {({1, 3}, φ), ({2, 3}, {1, 2, 3})}

B = {({1, 2}, {1}), ({2, 3}, {2, 3}), ({1}, {1}), ({3}, {2, 3})}

A.B = φ

A.C = {({1, 3}, {2, 3}), ({1}, {2, 3}), ({2, 3}, {1}), ({2}, {1})}

C = {({1, 2, 3}, {1}), ({1, 3}, {1}), ({2}, {2, 3}), (φ, {2, 3})}

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 2: Monoid for 2-coloring

Reduction to a Monoid Word Problem: A grid-planar graph G gives rise to a binary
relation R(G) ⊆ 2{1,...,w}× 2{1,...,w}. Here {1, . . . , w} are the numbering of the vertices in the
layers of the graph. We have that (S, T ) ∈ R(G) if and only if there is a 2-coloring of G
such that the vertices in the first layer colored 1 is the set S and the vertices in the last layer
colored 1 is the set T . Some examples are shown in Figure 2. Let M be the monoid of all
such relations under normal composition of relations. Let G ◦ H denote the concatenation
of the graphs G and H.

Lemma 5. R(G ◦H) = R(G)R(H)

Proof. ⊆: Let (S, T ) ∈ R(G ◦ H). Consider any 2-coloring of G ◦ H that witnesses this.
Under this coloring all vertices in S in the first layer and all vertices in T in the last layer
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are assigned color 1. Let U be the set of vertices that get color 1 on the layer that G and H
meet. Then obviously (S, U) ∈ R(G) and (U, T ) ∈ R(H) which means (S, T ) ∈ R(G)R(H).
⊇: Let (S, T ) ∈ R(G)R(H). Then there exists U such that (S, U) ∈ R(G) and (U, T ) ∈

R(H). Let σ and π be 2-colorings of G and H, respectively, that witness this. Then we can
get a 2-coloring of G ◦H by σπ, i.e., by coloring G using σ and then extending it via π on
H.

The proof of the upper bound is now completed by the following result.

Proposition 6. Every group G ⊆M is isomorphic to Z`2 for some `.

Proof. For a graph G, let us identify the nodes in the first layer with the set {1, . . . , w} and
the nodes in the last layer with the set {1′, . . . , w′}.

The observation that makes the proof possible is the following: Suppose G and H are
both 2-colorable graphs and R(G) = R(H). Then for any u, v ∈ {1, . . . , w}∪{1′, . . . , w′} we
have that u and v are connected in G if and only if u and v are connected in H. Furthermore
if u and v are connected in G by an odd (even) length path then u and v are connected in
H by an odd (even) length path.

Assume that G is 2-colorable. Then every connected component of G can be 2-colored
in exactly two different ways. This means that R(G) can be reconstructed from only the
following information about G: Which nodes from {1, . . . , w}∪{1′, . . . , w′} are connected in
addition to a single 2-coloring of those vertices.

Let G ⊆M be a nontrivial group with identity E. For any element A in G fix a grid-planar
graph G(A) such that R(G(A)) = A. Note that each such G(A) is 2-colorable. Otherwise
A is the empty relation, and since that behaves as a zero element in M, the group G would
be the trivial group consisting just of the empty relation (since each element of G must have
an inverse).

Let (i ∼ j) ∈ G denote that i and j are connected via a path in G.

Claim 1. Let A,B ∈ G. Then (i ∼ j) ∈ G(A) if and only if (i ∼ j) ∈ G(B), and (i′ ∼ j′) ∈
G(A) if and only if (i′ ∼ j′) ∈ G(B).

Proof. It is enough to prove the claim for the case when B is just the identity element E.
Assume (i ∼ j) 6∈ G(A). Since EA = A and that R(G(E) ◦G(A)) = EA = A by Lemma 5,
there cannot be a path between i and j in G(E) ◦ G(A) since otherwise the color of i and
j will depend on each other and we know that this is not the case since (i ∼ j) 6∈ G(A).
Therefore (i ∼ j) 6∈ G(E) ◦ G(A) which in particular implies (i ∼ j) 6∈ G(E). For the
other direction assume that (i ∼ j) 6∈ G(E). We have AA−1 = E. Using Lemma 5 we get
R(G(A) ◦ G(A−1)) = AA−1 = E. This implies that there is no path between i and j in
G(A)◦G(A−1) since otherwise the colors of i and j will depend on each other in G(E) which
we know is not the case. Therefore (i, j) 6∈ G(A) ◦ G(A−1) and hence (i, j) 6∈ G(A). This
shows that (i, j) ∈ G(E) if and only if (i, j) ∈ E(A). To show that (i′ ∼ j′) ∈ G(A) if and
only if (i′ ∼ j′) ∈ G(E) we consider equations AE = A and A−1A = E and use a similar
argument as above.
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Let A ∈ G and consider the graph G(A). For any set S ⊆ G(A) let
←−
V (S) = S∩{1, . . . , w}

and
−→
V (S) = S∩{1′, . . . , w′}. We define L(A) to be the set of all connected components C in

G(A) such that
←−
V (C) 6= ∅ and

−→
V (C) = ∅. Similarly let R(A) denote the set of all connected

components C such that
←−
V (C) = ∅ and

−→
V (C) 6= ∅. We now let VL(A) = {←−V (C) : C ∈ L(A)}

and VR(A) = {−→V (C) : C ∈ R(A)}. Define M(A) to be the set of connected components that
are neither in L(A) nor in R(A) and have vertices on both sides of G(A). We then define

V M
L (A) = {←−V (C) : C ∈M(A)} and V M

R (A) = {−→V (C) : C ∈M(A)}. ve

Claim 2. The following properties hold.

(i) VL(A) = VL(E) and VR(A) = VR(E). Furthermore, for any pair of i and j that are in
the same component in L(A), the lengths of all paths between i and j in G(A) have
the same parity and that is the same as in G(E). Similarly for every pair i′ and j′ that
are in the same connected component in R(A), the length of all paths between i′ and
j′ are of the same parity and that is the same as in G(E).

(ii) V M
L (A) = V M

L (E) and V M
R (A) = V M

R (E).

Proof. All these follow straightforwardly from A−1A = AA−1 = E and EA = AE = A.

(i) Consider a node i in G(E) which appears in some component in L(E). Note that
AA−1 = E. Since the color of i in G(E) does not depend on any node on the right side
of G(E) the same should hold for G(A) ◦ G(A−1). By Claim 1 we know that for any
j we have (i ∼ j) ∈ G(A) if and only if (i ∼ j) ∈ G(E). Therefore VL(E) = VL(A).
Considering A−1A = E and using a similar argument we can show that VR(E) = VR(A).
The parity of path lengths are preserved because since G(A)◦G(A−1) and G(E) admit
the same 2-colorings.

(ii) Let i and j be nodes in some set S ∈ V M
L (A). Consider H = G(E) ◦ G(A). Then by

Claim 1 we know that i and j are connected G(E). But they should also be connected
to some node on the right end layer of H, since H and G(A) admit the same colorings
on boundaries. This means that i and j are both in some set T ∈ V M

L (E). Conversely
let i and j be nodes in some set S ∈ V M

L (E). This time we let H = G(A) ◦ G(A−1).
Again by Claim 1, i and j are connected in G(A), but they are also connected to some
node on the right end layer of G(A−1). This means that they are also connected to some
nodes on the right end layer of G(A) and thus they belong to some set T ∈ V M

L (A).
This shows that V M

L (A) = V M
L (E). We can prove V M

R (A) = V M
R (E) similarly.

For each component in M(A) we pick two representatives, one from each side. We pick
the left representatives i1 < . . . < im arbitrarily. But for the right representatives if ik is
connected to i′k then we pick i′k as the representative of the k’th component, otherwise we
pick an arbitrary node in the component. Let the right representatives be j′1 < . . . < j′m.
We map the left representative of a component to its right representative. Since G(A) is
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planar, for every k we have that ik is mapped to j′k. This means that we can rename the
components in M(A) by C1, . . . , Cm such that all vertices in Ci appear after all vertices in
Ci−1.

Furthermore we know by above claim that in a group, these components are the same
on the boundaries of the graph of each group element. For any A ∈ G and any 1 ≤ k ≤ m
let πAk be the parity of the length of all paths between ik and j′k in G(A). We show that
there exists a sequence ε1, . . . , εm ∈ {0, 1}m such that for any A,B ∈ G and all 1 ≤ k ≤ m,
the parity of the paths between ik and j′k in G(A) ◦G(B) is given by πAk ⊕ πBk ⊕ εk. To see
this consider the graph G(A) ◦G(B) and rename the ik and j′k on the side where G(A) and
G(B) meet as i(1) and i(2) (i(1) = ik and i(2) = j′k). If j′k = i′k we set εk = 0. This clearly
satisfies the desired property, since to get from ik on the left layer of G(A) to i′k on the right
layer of G(B) we can first go to i′k on the right layer of G(A) and then to i′k on the right
layer of G(A). Any such path has clearly parity πAk + πBk . If j′k 6= i′k we note that the parity
between i(1) and i(2) is exactly the same as in G(E) ◦G(E) by Claim 2. We denote this by
εj. Now to color G(A) ◦ G(B) if we use color 0 on ij then we are forced to use color πAj on

i(2), and hence πAj ⊕ εj on i(1) and finally we should use πAj ⊕ εj ⊕ πBj on i′j. This means that
the parity between ij and i′j is πAj ⊕ πBj ⊕ εj as claimed.

We define a group Z(ε1,...,εm)
2 as follows. The elements are just the same as Zm2 , and the

group operation is defined as Zm2 but then adding the vector (ε1, . . . , εm) to the result. It is

clear that Z(ε1,...,εm)
2 and Zm2 are isomorphic. The above argument shows that G is isomorphic

to Z(ε1,...,εm)
2 and hence to Zm2

3.2 Bipartite matching

We prove here our upper bound for bipartite matching.

Theorem 7. Given a bipartite grid-planar graph G, we can decide whether G has a perfect
matching in ACC0.

Reduction to a Monoid Word Problem For each grid-planar graph G of odd length
` that has no vertical edges in the rightmost layer, we define the corresponding monoid
element GM as the triple (X, Y,R) where X ⊆ [w] is the set of vertices in the leftmost layer
of G, Y ⊆ [w] is the set of vertices in the rightmost layer of G and R ⊆ 2X × 2Y is a binary
relation such that for any X1 ⊆ X, X2 ⊆ Y we have (X1, X2) ∈ R if and only if G has
a matching that matches all vertices in G except X1 in the leftmost layer and X2 in the
rightmost layer. The monoid product is defined as (X1, X2, R)(X3, X4, S) = (X1, X4, R ◦ S)
when X2 = X3 and ◦ is the usual composition of binary relations. When X2 6= X3, we define
the product to be an element 0 for which 0x = x0 = 0 for any x in the monoid. Now define
the monoidM = {GM : G is an odd length bipartite grid-planar graph} ∪ {0} ∪ {1}, where
1 is an added identity. It is easy to see that the monoid operation described corresponds to
concatenation of graphs (by merging the vertices in the rightmost layer of first graph with
the vertices in the leftmost layer of the second graph). So a perfect matching exists in G

10



G M1 = ({1, 2, 3}, {1}) M2 = ({1}, {1, 2, 3})

G3

Figure 3: Monoid for Bipartite Perfect Matching

if and only if GM = (X1, X2, R) and R contains the element (X1, X2). Some examples for
bipartite grid graphs and their corresponding elements in the monoid are shown in Figure 3.

We begin by considering an arbitrary group G ⊂ M, such that G 6= {0}. First, observe
that for any two elements (X1, X2, R) and (X3, X4, S) in the group X1 = X2 = X3 = X4

as 0 6∈ G. So we can identify any element (X1, X2, R) of the group by simply using R. Let
oG(R) denote the order of the element R in the group G. Let E be the identity element in
G. Now suppose an R ∈ G such that R 6= E exists. The proof outline is as follows. First we
relate oG(R) to length of primary cycles in R. Then we show that oG(R) 6= 2 for arbitrary
R ∈ G. We then use Proposition 8 and Theorem 9 to conclude that G is solvable.

Proposition 8. If G is a finite group of order 2k for some k ≥ 1, then there exists a ∈ G
such that a 6= e and a2 = e.

Proof. Let a1, . . . , a2k−1 be the non-identity elements in G. Pair each ai with its inverse aj.
There will be at least one ai such that ai = ai

−1. So ai
2 = e where e is the identity element

in G.

Theorem 9 (Feit-Thompson [9]). Every group of odd order is solvable.

Definition 10 (Primary Cycle). A cycle C = X1 → . . . Xn → X1 in the relation digraph of
R is called a primary cycle if and only if

1. The cycle C is the smallest cycle in R[C] (The subgraph induced by C).

2. The relation E does not contain (Xi, Xj) where i 6= j.

11



Lemma 11. Every R ∈ G where R 6= E must contain a primary cycle of length at least 2.

Proof. Let us observe the structure of relation digraph representing R. It is clear that R
must contain some cycle (not just self-loops). Suppose it does not, then let ` be the length
of the smallest simple path (in edges) in R (not taking self-loops). Then any edge in R`+1

must be obtained by taking a self-loop at least once. So if we take this self-loop one more
time, we can obtain this edge in R`+2. Similarly, for any edge in R`+2, we must take some
self-loop at least twice or it must take at least two self-loops. Therefore, taking one of these
self-loops one less time gives this edge in R`+1. So R`+1 = R`+2, which implies R /∈ G.

Now we will argue that R must have at least one primary cycle of length at least 2.
Notice that if R has some cycle then it must have some induced cycles. If all such cycles
have self-loops (i.e., for any cycle in the graph there is a chord or a self-loop on one of its
vertices), then by an argument similar to the one in the previous paragraph Rk = Rk+1

for some k which is a contradiction. So R must contain some induced cycle of length at
least 2. Now if for this cycle C, E contains (Xi, Xj) for i 6= j and Xi, Xj ∈ C, then using
RE = ER = R we conclude that C has a chord or a self-loop at one of the vertices and
hence it is not an induced cycle. Now since R ∈ G, we have for some k that Rk = E. Then
the relation E must have self-loops at all vertices in C. Therefore C is a primary cycle.

Now that we’ve established that any non-identity element must have at least one primary
cycle of length at least two, we present the following claim relating the order of an element
to its primary cycles.

Claim 3. oG(R) is a common multiple of the lengths of primary cycles in R.

Proof. Suppose there exists a primary cycle C of length n in R such that n does not divide
m = oG(R). Then Rm = E contains an edge (Xi, Xj) for some Xi, Xj ∈ C, i 6= j which
contradicts the assumption that C is a primary cycle.

Claim 4. The monoid M is solvable.

Proof. We will prove that for any R, oG(R) 6= 2. Suppose oG(R) = 2, then using Lemma 11
and Claim 3 we can conclude that R has a primary cycle C = X1 → X2 → X1 of length 2.
Consider a graph G defining R, and let M1 be a matching in G corresponding to (X1, X2) ∈ R
and let M2 be a matching in G corresponding to (X2, X1) ∈ R. Consider now the graph
S = M1∪M2. The graph Sn is obtained by concatenating n copies of S. We note that for any
odd (even) n, the graph Sn is a union of two matchings. The matching M obtained by the
concatenation of matchings M1M2 . . . and the matching N obtained by the concatenation of
matchings M2M1 . . ..

We label the vertices on the left side on the ith copy of S as 1(i), . . . , k(i). The rightmost
vertices in Sn are labeled 1(n+1), . . . , k(n+1).

A path in Sn is called a blocking path if it connects some vertex in the leftmost layer to
some vertex in the rightmost layer.

Claim 5. For any n, the graph Sn must have a blocking path.
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Proof. Suppose Sn does not have any blocking path. Assume wlog n is even, then consider
the set VL of all vertices in Sn that are reachable from some vertex in the left end and the
set VR of all vertices in Sn that are reachable from some vertex in the right end. Put any
remaining vertices in the set VL. Since there is no blocking path VL and VR are disjoint. Now
we can obtain a matching (X1, X2) in Rn = E by using the matching M1 on the vertices in
VL and using the matching M2 on VR. This is a contradiction.

We say that a path P crosses a boundary in Sn if it has two consecutive edges e1 and
e2 such that they belong to different copies of S in Sn. Note that e1 and e2 must belong to
the same matching M1 or M2. If they do not, the vertex common to those edges must be in
X1 ∩X1 or X2 ∩X2.

Claim 6. For any n, the graph Sn cannot have a path from v(i) to v(i+1) for any i and v.

Proof. To simplify the proof, for a graph corresponding to a given monoid element we attach
length 2 horizontal paths to the vertices in the left and right side through two new layers.
Notice that this does not change the monoid element since the vertices in the graph cor-
responding to the monoid element which were originally matched inside the graph remains
matched inside the graph itself and vice versa.

Suppose such a path P from v(i) to v(i+1) exists. Suppose also that P connects to both
these vertices from the same side, left or right. Consider the shifted version P ′ of P in Sn+1

from v(i+1) to v(i+2). These path thus share an edge, but they must diverge at some vertex.
This means there exist a vertex of degree at least 3 in Sn+1 which is impossible since Sn+1 is a
union of two matchings. Thus P must connect to the two vertices v(i) to v(i+1) from opposite
sides. This means that it crosses boundaries an even number of times. By bipartiteness
the path is of even length, and together this means that the first and last edge can not be
from the same matching. This implies that v ∈ X1 ∩X1 or v ∈ X2 ∩X2, contradicting the
existence of P .

The following claim along with Claim 5 proves the theorem.

Claim 7. Sn does not have a blocking path for n ≥ k.

Proof. Assume that Sn has a blocking path for n ≥ k. This blocking path must pass each
of the n+ 1 boundaries (including left and right ends) at least once. Therefore we can find
integers i and j such that this blocking path has a segment P connecting v(i) to v(j) for some
1 ≤ v ≤ k. By Claim 6, we have j > i + 1. Now consider the graph Sn+1. This graph also
has this path P from v(i) to v(j) and also a path P ′ from v(i+1) to v(j+1) that is simply a
“shifted” version of P . By Claim 6, these paths are vertex disjoint. Because if they intersect
then we can construct a path from v(i) to v(i+1) in Sn+1. By using Lemma 3 we conclude
that the paths P and P ′ must intersect. This concludes the proof.
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3.3 Disjoint paths

We consider several different variants of the disjoint paths problem, but there is significant
overlap in the different approaches. In each case we define a monoid M and show it is
aperiodic. We can thus compute the word problem over M by AC0 circuits and we can use
these to solve the disjoint paths problem.

The monoids. We describe here the monoid in general terms. Elements of M consist of
a (downward closed) family of sets of edges between the set of vertices W = {1, . . . , w} ∪
{1′, . . . , w′}. Consider a grid-planar graph G. This may be either undirected or directed. We
construct a monoid-element GM from G as follows, by letting every set of disjoint paths in G
between vertices from W give rise to a set of corresponding edges in GM. Depending on the
setting these paths may be vertex-disjoint or edge-disjoint, and if the graph is directed the
edges are directed accordingly. The operation of the monoid will be the natural operation
that makes the map G 7→ GM a homomorphism. Note that if A ⊆ A′ and B ⊆ B′ then
AB ⊆ A′B′.

Reduction to monoid product. Let G be a grid-planar directed graph with pairs of
terminals (s1, t1), . . . , (sk, tk). Consider the partition of G into at most 2k + 1 segments
obtained by dividing at every layer containing a terminal. For each segment we divide the
graph into segments of length 1, translate these to monoid elements and compute the product
of these. This results in at most 2k+1 monoid elements describing all possible disjoint paths
connecting endpoints of every segment. Since k is fixed this is a fixed amount of information
from which it can then be directly decided whether disjoint paths exist between all pairs of
terminals.

Showing aperiodicity of the monoid. The approach we will use in all cases is as follows.
Let G be a group inM with identity E, and let A be any element of G. We shall then prove
that E ⊆ A. Note then that this means A−1 = EA−1 ⊆ AA−1 = E, and hence A = E.
Showing this for all A implies that G is trivial.

3.3.1 Edge-disjoint paths in upward planar graphs

Here we consider directed upward grid-planar graphs, i.e., every edge in the graph is directed
from some vertex in layer i to some vertex in layer i + 1 or it is directed from a layer
i vertex to another layer i vertex that is at a distance of one unit on the grid from the
source vertex and edges do not cross. We are to decide if edge-disjoint paths exists from
(s1, t1), . . . , (sk, tk) for fixed k. Thus if we consider the monoid element corresponding to such
a graph, each multiset of edges in the monoid element contains only directed edges from the
left-side vertices {1, . . . , w} to the right-side vertices {1′, . . . , w′}, and these correspond to
pairwise edge-disjoint paths in the corresponding directed upward planar grid graph. An
example is shown in Figure 4.

14



G(A)

A = {{(1, 1), (2, 2)}, {(1, 1), (2, 1)}, {(2, 1), (2, 2)}, {(2, 1), (2, 1)}}
G(A)

2 A2 = A

Figure 4: Monoid for Edge-disjoint Paths in Upward Planar Graphs

Our main theorem in this section is the following.

Theorem 12. For any fixed k, given a directed upward grid-planar graph G and k pairs
of vertices (s1, t1), . . . , (sk, tk), we can decide whether there are pairwise edge-disjoint paths
from si to ti for i = 1 to k in AC0.

The theorem follows from the following claim

Claim 8. M is aperiodic.

Proof. Let G be a group in M with identity E. Let A be an element of G such that
oG(A) = p ≥ 2. We are to show that E ⊆ A.

Let G(E) and G(A) be grid-planar graphs such that G(E)M = E and G(A)M = A. Let
S ∈ E, c = |S| be the number of edges in S between the sets {1, . . . , w} and {1′, . . . , w′}, and
let t = wc+1. Let these edges be (s1, t1), . . . , (sc, tc). Consider the concatenation G(E)t+1 of
the graph G(E) with itself. Since Et+1 = E we have in G(E)t+1 disjoint paths corresponding
to S, and we will think of S as those paths. Since we have t boundaries between the t + 1
copies of G(E), there must be two boundaries such that for each of the c paths, the vertices
of the two boundaries that the path crosses are the same. Let j1 ≥ j2 ≥ · · · ≥ jc be these
vertex numbers. Splitting the graph G(E)t+1 at these two layers divides each path into 3
parts. Thus the middle part consists of edge-disjoint (ji, ji)-paths for i = 1, . . . , c. The
left part will contain edge-disjoint paths (si, ji) and the right part will contain edge-disjoint
(ji, ti) paths . Also note that the left part and the right part are also graphs that correspond
to the monoid element E; So E must have these paths as well. We will show that G(A)2pc+1

also contains such paths. Since A = EA2pc+1E we can concatenate (si, ji) paths from the
G(E) on the left side with the concatenation of (ji, ji) paths in G(A2pc+1) and (ji, ti) paths
in the G(E) on the right side to show that S ∈ A.

Since Ap = E we have that G(A)p contains (ji, ji)-paths for i = 1, . . . , c. Denote these
by P1, . . . , Pc. These paths are edge-disjoint, but may cross each other at a vertex. We first
argue that without loss of generality we may assume that they never cross; they may touch
each other at vertices, however. Indeed, if this is not the case we can construct such paths
P̂1, . . . , P̂c as follows. Let H be the union of P1, . . . , Pc. Suppose we have already found the
paths P̂1, . . . , P̂i−1. Then let P̂i be the top-most (ji, ji) path in H, and then erase the edges

of P̂i from H.
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We can think of the paths P1, . . . , Pc as infinite paths with period p in an infinite con-
catenation of the graph G(A). Let P ′1, . . . , P

′
c be the paths obtained by shifting the paths

by the length of one graph G(A) to the right. By Lemma 3 we have that Pi and P ′i must
intersect in G(A)p. Let Q1, . . . , Qc be the paths such that Qi is the upper envelope path
of Pi and P ′i . We are now ready to construct the edge-disjoint (ji, ji) paths R1, . . . , Rc in
G(A)2pc+1. We think of the graph G(A)2pc+1 as 2c blocks of G(A)p followed by a single G(A).
The path Ri proceeds as follows. In the first i − 1 blocks it follows Pi. Then in block i,
when Pi intersects Qi it follows Qi, and continues to do so for the following 2(c− i) blocks.
Then in block 2c− i + 1 when P ′i intersects Qi it follows P ′i , and continues to do so for the
remaining i − 1 blocks. After these 2c blocks, the c paths that started out as P1, . . . , Pc
are ending as P ′1, . . . , P

′
c and they follow P ′1, . . . , P

′
c through the last graph G(A), thereby

making Qi a (ji, ji)-path. We claim that the paths R1, . . . , Rc are edge-disjoint. Observe the
path Ri. In the first i − 1 blocks it cannot intersect any of the paths R1, . . . , Ri−1. This is
because Ri = Pi for these blocks and Rj for j < i is either Pj in which case Ri is disjoint
from these as Pi is disjoint from Pj for all j or Rj is the upper envelope of Pj and P ′j in which
case Rj can only move further away from Ri. After that all Ris start following Qis and they
remain edge-disjoint as Qis are edge-disjoint. Now note that Ri switches to P ′i before Rj for
j < i. So Ri cannot intersect with Rj as Ri can only move further away from Rj (which
is still following the upper envelope). Now once all Ris have switched to P ′i s they remain
edge-disjoint as P ′i s are edge-disjoint.

3.3.2 Vertex-disjoint paths

Our main theorem in this section is the following.

Theorem 13. For any fixed k, given a directed grid-planar graph G and k pairs of vertices
(s1, t1), . . . , (sk, tk), we can decide whether there are pairwise vertex-disjoint paths from si to
ti for i = 1 to k in AC0.

A monoid element GM consists of a family of sets of directed edges on the set {1, . . . , w}∪
{1′, . . . , w′} that form partial matchings, that is no two edges share an endpoint. Note that
the edges could go from a vertex to a vertex on the same side (For ex., from 1 to 2 or from
1′ to 2′).

The theorem follows from the following claim.

Claim 9. M is aperiodic.

Proof. Let G be a group in M with identity E. Let A be an element of G such that
oG(A) = p ≥ 2. We are going to show that E ⊆ A.

Let G(E) and G(A) be grid-planar graphs such that G(E)M = E and G(A)M = A. Let
S ∈ E and let t = ww+1 + 1. We shall prove that S ∈ A. Let c be the number of edges
in S between the sets {1, . . . , w} and {1′, . . . , w′}. We call the corresponding paths crossing
paths.

16



Consider the concatenation G(E)t+1 of the graph G(E) with itself. Since Et+1 = E we
have in G(E)t+1 disjoint paths corresponding to S. We will think of S also as this set of
paths. This set will induce vertex disjoint paths in each of the t+ 1 copies of G(E). We will
now have two cases: Either all the t+ 1 graphs have exactly c crossing paths or some graph
has c′ > c crossing paths. In case some graph G(E) has c′ > c crossing paths, let S ′ be the
set of paths induced by S in that graph. We then start over, and prove that S ′ ∈ A. This
will imply that S ∈ A since A = EAE, and this case can only occur a finite number of times
since c′ ≤ w.

So we may now suppose that all graphs have exactly c crossing paths. This means also
that each path in S crosses each graph G(E) of the concatenation G(E)t+1 using a single
crossing path. Between two such crossing paths, a path (in S) may cross the boundary
between two graphs a number of times. Record for each boundary and for each path an
ordered list of the vertex numbers in which the path crosses the boundary. By the choice
of t there must be two boundaries for which each path cross in the same way in the two
boundaries. We then consider the part of the concatenation between these two boundaries
and let S ′ be the disjoint paths induced on this part. Clearly S ′ ∈ E as we have taken S ′

from a concatenation of G(E) graphs, and we will prove that S ′ ∈ A and be done again since
A = EAE.

We have a set of disjoint paths corresponding to S ′ in the graph G(A)p (Since Ap = E).
We can think of these paths as being induced by infinite paths P1, . . . , Pc with period p in an
infinite concatenation of the graph G(A). We suppose these are ordered such that P1 is the
top-most path, P2 the second top-most path, and so on. Let P ′1, . . . , P

′
c be the infinite paths

obtained by shifting the paths by the length of one graph G(A) to the right. By Lemma 3
we have that Pi and P ′i must intersect in G(A)p. Let Q1, . . . , Qc be the paths such that Qi

is the upper envelope path of Pi and P ′i .
We are now ready to construct vertex-disjoint paths R1, . . . , Rc corresponding to S in

G(A)(2c+2)p+1. As before we consider G(A)(2c+2)p+1 as 2c + 2 blocks of G(A)p followed by a
single G(A). Path Ri proceeds as follows. In the first block it follows exactly along Pi, and
it continues to do so for the next i − 1 blocks. Then in block i + 1, when Pi intersects Qi

it follows Qi. Note that this may lead Ri into the previous block, but it will not intersect
itself. From block i + 1 the path Ri continues to follow along Qi for the following 2(c − i)
blocks. Then in block 2c− i + 2 when P ′i intersects Qi it follows P ′i and continues to do so
for the next i− 1 blocks. After these 2c+ 1 blocks the paths Ri continue to follow along P ′i
for another block, and also through the last graph G(A). Using an argument similar to the
one we used in proving Claim 8, we can conclude that R1, . . . , Rc are pairwise vertex-disjoint
and this completes the proof.

3.3.3 Edge-disjoint paths in undirected graphs

Here we consider the setting where the graphs are undirected, and we are to decide if edge-
disjoint paths exists. Thus the monoid elements consists of sets of undirected edges. The
proof will use ideas from both of the two previous paragraphs.
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Aperiodicity of the monoid. Let G be a group in M with identity E. Let A be an
element of G of period p. We are to show that E ⊆ A.

The proof first proceeds exactly as in the vertex-disjoint case. Thus we let G(E) and
G(A) be grid-planar graphs such that G(E)M = E and G(A)M = A. Let S ⊆ E and
let c be the number of cross-edges in S. By considering the concatenation G(E)t+1 with
t = ww+1 + 1, we may reduce to the case where we have a set of disjoint paths corresponding
to S in the graph G(A)p, and where we can this of these paths as being induced by infinite
paths P1, . . . , Pc with period p in an infinite concatenation of the graph G(A).

Now, we depart from the similarity with the vertex-disjoint case. The infinite paths
P1, . . . , Pc are just assumed to be edge-disjoint so they may intersect at vertices. From these
we shall now construct infinite paths P̂1, . . . , P̂c that are edge disjoint, but may only touch
at vertices, never cross. From the construction the paths are ordered from top path P̂1 to
the bottom path P̂c. Let H be the union of all the paths infinite paths P1, . . . , Pc. Suppose
we have already found the paths P̂1, . . . , P̂i−1. Let P̂i be the upper-envelope path in H, and
then erase the edges of P̂i from H. (This is the step that does not generalize to the case
directed graphs). Assume from now on that the original paths P1, . . . , Pc are ordered in such

a way that Pi intersects P̂i.
Let P ′1, . . . , P

′
c be the infinite paths obtained by shifting the paths P1, . . . , Pc by the length

of one graph G(A) to the right. Similarly, let P̂1

′
, . . . , P̂c

′
be the infinite paths obtained by

shifting the paths P̂1, . . . , P̂c by the length of one graph G(A) to the right. Let Q1, . . . , Qc

be the paths such that Qi is the upper envelope path of P̂i and P̂i
′
.

We are now ready to construct new paths R1, . . . , Rc. These are constructed in blocks
of G(A)p, and follows several phases. We start out with the paths P1, . . . , Pc. These are

followed for one block. Then we have a transition phase to the paths P̂1, . . . , P̂c. This gives
the geometric ordering and in the next two transition phases we transition to the shifted

versions P̂1

′
, . . . , P̂c

′
via the upper envelope paths Q1, . . . , Qc. Finally in the last transition

phase we transition back to the original (but shifted) paths P ′1, . . . , P
′
c. These are then

followed through one block and then one more graph G(A) to complete the paths.

We shall describe the transition between the paths P1, . . . , Pc and P̂1, . . . , P̂c, and the rest
of the proof then follows analogously to the previous settings. Here we are in the situation
that the paths R1, . . . , Rc have followed the paths P1, . . . , Pc for one block. Then in the next
block, when P1 first intersects with P̂1 we will let R1 follow along P̂1, and we do this by also
modifying the other paths R2, . . . , Rc accordingly. More precisely, whenever two or more
paths meet at a later vertex of P̂1 we exchange the continuations of curves if necessary in
order to let R1 follow along P̂1. We continue in a similar way in the next c−1 blocks, letting
Rj start following along P̂j beginning from block j.

Performing all the transitions as described above we have shown that S ∈ Ap(1+4c)+1 = A,
thereby completing the proof.
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4 Lower bounds

In this section we show hardness for the problems studied in the previous section. All the
lower bounds are under projection reductions. We will thus given a circuit C build a graph
G with edges labeled by literals, i.e. variables or negations of variables. Given an input x,
let G(x) be the graph obtained from G by keeping exactly the edges labeled by literals that
are 1 under the assignment x. We then show that C(x) = 1 if and only if the graph G(x)
satisfies the graph property under consideration.

Our NC1 lower bounds for the non-planar case build the characterization of NC1 in terms
of permutation branching programs by Barrington[2]. His construction gives for any poly-
nomial size NC1 circuit a polynomial length program over the group S5 of permutations of 5
elements. From a program of length l we can construct a graph with vertices placed on the
grid {1, . . . , l+ 1}×{1, . . . , 5}. Between two layers of the grid we have 10 edges correspond-
ing to the two permutations corresponding to an instruction of the program. These are then
labeled by the corresponding variable or its negation accordingly. The resulting graph G(x)
will for any input consist of exactly 5 disjoint paths, and we can without loss of generality
assume these are as shown in Figure 5 (a) and (b). We can without loss of generality assume
that the length l + 1 is even or odd if needed. We shall denote this graph the Barrington
graph.

Barrington-
graph(C)

(a) (b)

Figure 5: Graph for a NC1 circuit C and paths when C(x) = 0 (a) and C(x) = 1 (b).

s t
BLMS-

graph(C)

Barrington et al.[3] showed that connectivity in constant width
grid graphs is complete for AC0 under projection reductions. This
holds for both undirected graphs and directed graphs. Thus for any
AC0 circuit C we have a grid graph G with edges labeled by literals,
with a vertex s in the first layer, a vertex t in the last layer, such that G(x) has a (s, t) path
if and only if C(x) = 1. We can also here without loss of generality assume the length of the
grid graph is even or odd if needed. We shall denote this graph the BLMS graph.

4.1 2-coloring

Barrington-
graph(C)

The results here are based upon the simple fact that a cycle can be
2-colored if and only if it is of even length, and that if a path is
2-colored then the endpoints must have different color if and only
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if the path is of odd length. In the non-planar case we obtain NC1-
hardness simply by taking the Barrington graph and connecting the
top nodes on the two sides by a path whose length is of opposite
parity of the length of the graph. Then if these nodes are connected in the Barrington
graph an odd cycle appears, and this happens exactly when C(x) = 0. Otherwise the graph
consists of disjoint paths and can thus be 2-colored.

BLMS-
graph(C)

(even length)

BLMS-
graph(¬C)

(even length)

s t

We next consider the planar case. From the BLMS-graph
for a given AC0 circuit C we construct a 2-coloring gadget
graph. The graph is always 2-colorable (since the BLMS graph
is bipartite) and has even length. Also if C(x) = 1 then s and
t must have different colors in any 2-coloring, since in that
case there is a path of odd length (through the BLMS graph
for C) between s and t. Similarly, if C(x) = 0, then s and t
must have the same color in any 2-coloring, since in that case
there is a path of even length (through the BLMS graph for ¬C) between s and t. Consider
next a XOR ◦ AC0 circuit C. Suppose that C = XOR(C1, . . . , Cm) where C1,. . . ,Cm are AC0

circuits. We simply concatenate the 2-coloring gadgets for C1, . . . , Cm as shown in figure 6
and connect the s terminal of the first gadget graph with the t terminal of the last gadget
graph by an odd length path.

2-coloring
gadget(C1)

s
2-coloring
gadget(C2)

2-coloring
gadget(Cm)

t

Figure 6: Graph for XOR(C1, . . . , Cm), where C1,. . . ,Cm are AC0 circuits.

By the property of the gadget graphs, in any 2-coloring, the vertices s and t must have
different color exactly when an odd number of the circuits C1, . . . , Cm evaluate to 1, and
must have the same color otherwise. Since the top path connecting s and t has odd length
it follows that the graph can be 2-colored exactly when XOR(C1(x), . . . , Cm(x)) = 1. Now
given an AND ◦ XOR ◦ AC0 circuit C = AND(C1, . . . , Cm) we construct the above graph for
each of the XOR ◦ AC0 sub-circuits consider the graph that is the disjoint union of all these
graphs. Then this graph can be 2-colored if and only if C(x) = 1.

4.2 3-coloring

To show NC1-hardness in the non-planar case we can adapt the graph constructed for the
case of 2-coloring, and change it appropriately. Namely we just replace each edge, except for

the rightmost vertical edge, by the simple 4-vertex gadget graph . The gadget graph
ensures that all of the original vertices must be of the same color, and hence a coloring is
not possible because of the rightmost vertical edge if a cycle is formed in the original graph.
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c d

b

We can transform this graph into a grid graph with diagonals by using
the simple crossover gadget as shown on the right that was constructed by
Garey et al.[11] for showing that the 3-coloring problem for general planar
graphs is NP-complete. This gadget simulates by a grid graph with diagonals
a crossing between edges (a, b) and (c, c). Since the graph we start with is
layered we can deal with the intersections in each layer separately. By appropriately placing
a number of crossover gadgets we can simulate the crossings between the layers by connecting
vertices of the surrounding layers to the crossing gadgets. To make the entire graph be a
grid graph with diagonals we can finally replace such edges by concatenations of the simple
4-vertex gadget graph together with a regular edge. Doing this shows that 3-coloring remains
NC1-hard for constant width grid graphs with diagonals.

4.3 Matching

Barrington-
graph(C)

(odd length)

The results here are based upon the simple fact that a path has a perfect
matching if and only if it is of odd length. In the non-planar case we obtain
NC1-hardness simply by taking the Barrington graph of odd length and
attaching additional edges to the top vertex on the left side and the second
vertex from the top on the right hand side. Then the graph has a perfect
matching if and only if these two vertices are connected by a path through
the Barrington graph, which in turn happens if and only if C(x) = 1. We next consider the
planar case. As in the case of 2-coloring we shall for an AC0 circuit C build a gadget based
on the BLMS graph. But we shall first make a modification to the BLMS graph to make it
suited for the purpose of a gadget for matching.

BLMS*-
graph(C)

BLMS*-
graph(¬C)

v1

v0

We start with the directed version of the BLMS graph. We
shall also assume it to be of even length. From this we shall
construct an undirected graph we denote by BLMS*. It is
obtained by performing the standard reduction from directed
(s, t) connectivity to perfect matching. Namely, we split each
vertex u into two vertices u and u′, connected by an edge.
Then for every directed edge from u to v we connect u′ and
v. We remove the vertices s and t′. The graph always has a
partial matching where only s′ and t are left unmatched. Furthermore, the graph has a
perfect matching if and only if C(x) = 1. We can do this preserving planarity and such that
the resulting graph has even length. Note also that is a bipartite graph, and we therefore
obtain AC0-hardness for perfect matching on bipartite grid-planar graphs. With some more
work one can also obtain an equivalent grid graph.

From the BLMS* graphs we construct a matching gadget graph for the circuit C. Let
us call all vertices except for v1 and v0 for internal vertices. In this graph there is always
a partial matching that matches all internal vertices and exactly one of v0 or v1. Also
if C(x) = 1 then any partial matching that matches all internal vertices must leave v1
unmatched. Similarly, if C(x) = 0 then any partial matching that matches all internal
vertices must leave v0 unmatched. We construct the matching gadget graph in such a way it
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is of even length. Consider next a XOR◦AC0 circuit C. Suppose that C = XOR(C1, . . . , Cm)
where C1,. . . ,Cm are AC0 circuits and assume without loss of generality that m is even. We
place the matching gadgets for C1, . . . , Cm adjacent to each other as shown in Figure 7. We
also have a top path ending in a terminal v1 and a bottom path ending in a terminal v0
along the gadgets. The top path is of constructed to be of odd length and the bottom path
of even length. The v1 terminal of a gadget graph is connected to the top path and the v0
is connected to the bottom path. They may thus “steal” a vertex from either the top or
bottom path depending on the unmatched terminal. In other words, in order to match all
the vertices of a gadget for Ci, in case Ci(x) = 1 the gadget must steal a vertex from the
top path, and in case Ci(x) = 0 the gadget must steal a vertex from the bottom path. We
can see that the combined graph always have a partial matching where all vertices except
exactly one terminal is matched. If C(x) = 1 an odd number of vertices are stolen from both
the top and bottom path. Thus if all vertices besides the terminals are matched then v1 is
unmatched and v0 is matched. Similarly, if C(x) = 0 an even number of vertices are stolen
from both the top and bottom paths. Thus if all vertices besides the terminals are matched
then v1 is matched and v0 is unmatched. Thus for C we get a matching gadget similar to
the matching gadget constructed for AC0 circuits.

matching
gadget(C1)

matching
gadget(C2)

matching
gadget(Cm)

v1

v0

Figure 7: Graph for XOR(C1, . . . , Cm), where C1,. . . ,Cm are AC0 circuits (even m).

As opposed to the case of 2-coloring we can here go a step further. Consider now an
OR◦XOR◦AC0 circuit C. Suppose that C = XOR(C1, . . . , Cm) where C1,. . . ,Cm are XOR◦AC0

circuits and assume without loss of generality that m is even. We place the matching gadgets
for C1, . . . , Cm adjacent to each other as shown in Figure 8. As before we have a top path
and a bottom path along the gadgets. Both of the paths are of even length. Different to
before, the gadgets are constructed in such a way that if the terminal v1 is unmatched the
gadget may steal a vertex from either the top path or the bottom path. If the terminal v0
is unmatched the gadget may just steal a vertex from the bottom path. Since both the top
and bottom path are of even length, the only way to match all vertices is that the gadgets
steal an odd number of vertices from both paths. Now if C(x) = 1 at least one gadget can
be matched such that v1 is left unmatched. Thus we may pick an odd number of subcircuits
Ci to steal a vertex from the top path, and let the remaining steal a vertex from the bottom
path. On the other hand if all Ci(x) = 0 then to match all vertices of each gadget they need
to steal a vertex from the bottom path, meaning that the full graph does not have a perfect
matching.
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matching
gadget(C1)

matching
gadget(C2)

matching
gadget(Cm)

Figure 8: Graph for OR(C1, . . . , Cm), where C1,. . . ,Cm are XOR ◦ AC0 circuits (even m).

As in the case of 2-coloring, if we construct the final graph to be a disjoint union of
such graphs, the matching problem on the resulting graph simulates AND ◦OR ◦ XOR ◦ AC0

circuits.

4.4 Hamiltonian cycle

Barrington-
graph(C)

In the non-planar case we obtain NC1-hardness simply by taking the Bar-
rington graph, add another path on top, and connecting the nodes on the
two sides in pairs. If C(x) = 0 the resulting graph consists of 3 disjoint
cycles, whereas if C(x) = 1 the resulting graph consists of a single cycle.
We can not similarly to the case of 3-coloring translate this directly to
the planar case, since we have no general crossover gadget. We can how-
ever proceed following the approach shown for establishing NP-completeness for the case of
general planar graphs. We shall just outline the proof. Plesńik[15] showed that the Hamil-
tonian Cycle problem over directed planar graphs of degree 2 is NP-complete. Our main
observation is that we can use the same reduction to reduce the complement of directed con-
nectivity the Hamiltonian Cycle problem on bounded width planar graphs. Given a graph G
with source s and target t we derive a 2-CNF formula F consisting of the following clauses:
(s), (¬t) and for each directed edge (u→ v) there is a clause (¬u ∨ v). It follows that F is
satisfiable if and only if there is no path in G from s to t. We then apply the reduction in
[15] to F . We observe that the resulting graph is planar and bounded width. To see this, we
note that clauses in F can be ordered so that for every node u, the set of clauses containing u
appear in an interval of constant length. This order essentially follows the order according to
G. After applying the reduction to F at some point a graph with crossings is obtained. But
because of the interval property of F all crossings can appear in such intervals of constant
length, which means that we can apply the crossing gadget to each such interval and blow up
the width by only a constant. To get a grid graph we then apply a reduction from [13]. We
first transform the graph obtained in the first part of the reduction to a bipartite graph and
then embed it into a grid. However we should note that [13] embeds a n-vertex graph into a
Θ(n)×Θ(n) grid. Since the graph that we start with is layered, we can apply the embedding
on consecutive layers separately and hence we will get a constant width grid graph.
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4.5 Disjoint paths

Here we need just remark that the disjoint paths problem is precisely the connectivity prob-
lem when k = 1. Thus we have NC1-hardness in the non-planar case by the result of
Barrington[2] and AC0-hardness in the planar case by the result of Barrington et al.[3].

5 Discussion & Open Problems

In this paper, we studied that the circuit complexity of several computational problems on
graphs of constant planar cutwidth. We used the Barrington-Therein characterization of fine
structure of NC1 to establish the circuit complexity upper bounds. The recipe for the the
proof was simply as follows, define an appropriate monoid from the setting of the problem
and establish that the solution of the computational problem is exactly equivalent to solving
the word problem over this monoid. As the next step, we analyse the algebraic structure of
the monoid and establish various properties.

The main open problems that arises from our paper is closing the gap in the complexity of
perfect matching and 2-coloring problems as mentioned in table in figure 1. The applicability
of the framework to determine the circuit complexity of more computational problems is also
another potential direction of study.
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