
Limiting Negations in Bounded Treewidth and

Upward Planar Circuits

Jing He⋆ Hongyu Liang⋆ Jayalal Sarma M.N.∗

Abstract

The decrease of a Boolean function f : {0, 1}n → {0, 1}, denoted by d(f) is the
maximum number of inverse indices in any increasing chain of inputs x1, . . . , xℓ ∈
{0, 1}n, where i is called an inverse index if f(xi) > f(xi+1). It follows from a theorem
of Markov (JACM 1958) that the minimum number of negation gates in a circuit
sufficient to compute any Boolean function f is ⌈log(d(f)+1)⌉ and that this is necessary
in general. A recent result due to Morizumi (ICALP 2009) proves that d(f) negations
are necessary and sufficient for computing any Boolean function f by a formula. In
this paper we explore the situation in between formulas(directed trees) and general
circuits(directed acyclic graphs), and related models. We obtain the following results:

1. We argue that for any Boolean function f , there is a circuit computing f , that
uses ⌈log(d(f)+1)⌉ negations and has treewidth at most ⌈log(d(f)+1)⌉+1. For
1 ≤ k ≤ ⌈log(d(f) + 1)⌉, we prove that d(f) · 8k/2k negations are sufficient to
compute any Boolean function f by circuits of treewidth at most k. Moreover, if
there is a circuit family of size s = s(n) and treewidth k = k(n) computing {fn},
then there exists a circuit family of size s · nO(1) · 2O(min{k,log n}) and treewidth
at most 2k which computes {fn} and contains O(max{nk/22k, log n}) negation
gates.

2. We obtain tight bounds on the number of negation gates required to compute
specific functions such as Parityn,Parityn and Invertern by one-input-face
upward planar circuits. We extend the lower bounds in this case to a larger class
W of functions which also includes natural functions like Add and Subtract.
For functions in this class, we show a direct sum theorem by proving a tight lower
bound on the number of negations required to compute t functions simultaneously
using a one-input-face upward planar circuit.

3. We demonstrate the limitations of the one-input-face constraint in the upward
planar circuits by showing the explicit function which can be computed by a
monotone upward planar circuit, but cannot be computed by any montone one-
input-face upward planar circuit.

∗Institute for Theoretical Computer Science, Tsinghua University, Beijing, China.
Email:hejing2929@gmail.com, hongyuliang86@gmail.com, jayalal@tsinghua.edu.cn. This work
was supported in part by the National Natural Science Foundation of China Grant 60553001, and the
National Basic Research Program of China Grant 2007CB807900,2007CB807901.

1

4. We prove that for every Boolean function f , there exists a multilective upward
planar circuit which uses at most ⌈d(f)+1

2 ⌉ negation gates for computing f .

1 Introduction

Proving super-polynomial size lower bounds for circuits computing explicit functions in NP

is a central problem in circuit complexity theory. Theory of monotonicity in Boolean cir-
cuits became fruitful in this context and it culminated in the exponential size lower bound
due to Razborov [14] for any monotone circuit computing the clique function. Tardos [18]
demonstrated that there are explicit functions in P which requires exponential size for mono-
tone circuits computing them. This area received a lot of attention and several important
resource lower bounds were proved against monotone Boolean circuits [7, 13]. Subsequent
research went into exploring how far the monotonicity constraint can be relaxed by allowing
a small number of negation gates and still obtain exponential(or super-polynomial) size lower
bounds for circuits computing an explicit function. An important step in this direction was
made by Amano and Maruoka [1], who proved exponential size lower bounds for an explicit
function when the circuit is allowed only 1

6
log log n negations.

How far can one improve the above lower bound result in terms of the number of negations
allowed in the circuit? This highlights the importance of exploring the power of negation
gates in Boolean circuits. A very fundamental question in this direction is about the number
of negations that is required to compute any Boolean function, called the inversion complexity
of the function. Historically much earlier (in 1958), Markov [9] came up with a surprisingly
tight bound for the inversion complexity of any Boolean function. Let f : {0, 1}n → {0, 1},
and let (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be two Boolean vectors in {0, 1}n. Define x ≤ y
if xi ≤ yi for all i. The decrease of function f with respect to an increasing chain of Boolean
vectors v1, . . . , vm ∈ {0, 1}n, is defined as the number of i such that f(vi) > f(vi+1). The
decrease of the function, denoted by d(f) is the maximum decrease over all increasing chains
of Boolean vectors. Thus, the decrease of the function f can at most be n. Markov [9] showed
a tight characterization of the inversion complexity of a function f as ⌈log(d(f) + 1)⌉. This
implies that, to compute a Boolean function on n variables, ⌈log(n + 1)⌉ negation gates are
sufficient.

However, the circuits that Markov constructed are of exponential size although they use
only O(log n) negations. Complementing this, Fischer [5] showed that for every poly-sized
circuit, there is an equivalent poly-sized circuit which uses at most ⌈log(n + 1)⌉ negations.
This in particular implies that if Amano and Maruoka’s result is improved to handle up to
O(log n) negations it will already separate P from NP. However, since this goal seems to be
elusive, it is natural to look for restricted circuit classes for which we can improve the number
of negations (beyond O(log log n)) in the circuit classes against which the lower bounds are
proven. In this program, the first step is to study the computational power of the negations
in these limited circuit classes, which motivates this work.

Many years after Markov’s and Fischer’s results, Santha and Wilson [15] showed a con-
trasting picture in the constant depth world: there are functions requiring super-logarithmic

2

number of negation gates in any poly-sized constant-depth circuit computing them. This
was further extended to bounded depth circuits in [17]. Recently, Morizumi [12] studied
the case of formulas and proved tight lower and upper bounds for the inversion complexity
of Boolean functions. More precisely, he proved that the inversion complexity in formulas
computing the function f is exactly d(f). He also proved an analogue of Fischer’s result in
this context: if there is a polynomial size formula computing a function f then there is a
polynomial size formula for f which uses at most ⌈n

2
⌉ number of negations.

In this paper, we study circuit classes between formulas (directed trees) and general cir-
cuits (directed acyclic graphs). Many parameters interpolate between the two. Two impor-
tant ones we consider here are upward planarity and treewidth of the underlying undirected
graph of the circuit. We defer the formal definition of these parameters to Section 2.

Roughly speaking, treewidth measures how formula-like the circuit is (treewidth of for-
mulas is 1). We consider circuits of treewidth k, and parameterize the number of negations
in the circuit in terms of k. Power of such circuits has been considered earlier in the context
of classical [6] and quantum computation [10]. As noted in [6], leveled circuits (or graphs) of
width k has treewidth at most 2k−1. In the other direction, they prove that circuits of logi n
treewidth can be simulated by circuits of logi+1 n width without incurring much increase in
size. This interleaving of the treewidth (as a resource in the ciruit) with width, and the fact
that they are natural parameterized classes between formulas and general circuits, motivates
further study of bounded treewidth circuits. For the latter point, it was shown in [6] that
the circuits of treewidth k and size s can also be simulated by formulas of size roughly sk2

.
However, the number of negations used in the construction is large even if the original circuit
is monotone.

We explore the power of such circuits in the context of inversion complexity. To begin
with, we argue that treewidth beyond O(log n) does not help in general. More precisely, for
any Boolean function, there is a circuit that uses ⌈log(d(f)+1)⌉ negations and has treewidth
at most ⌈log(d(f) + 1)⌉ + 1 (Theorem 3.5). We prove the following general result regarding
the upper bound on the inversion complexity in terms of treewidth of the circuit.

Theorem 1.1. Let f be a non-monotone Boolean function and 1 ≤ k ≤ ⌈log(d(f) + 1)⌉.
There exists a circuit of treewidth at most k computing f which contains at most d(f) ·8k/2k

negations.

However, as in the case of Markov’s theorem, the size of the circuit in the above theorem
could be exponentially large. Hence complementing this, we show that if a Boolean function
can be computed by a circuit family of polynomial size and treewidth k, then it can also
be computed by a circuit family of polynomial size, treewidth 2k which contains at most
O(max{nk/22k, log n}) negations. We prove this by obtaining the following more general
result.

Theorem 1.2. Let {fn} be a family of Boolean functions. If there is a circuit family of
size s = s(n) and treewidth k = k(n) computing {fn}, then there exists a circuit family
of size s · nO(1) · 2O(min{k,log n}) and treewidth at most 2k which computes {fn} and contains
O(max{nk/22k, log n}) negation gates.

3

Upward planar circuits are circuits whose underlying graph is upward planar1. These
circuit classes have been considered in the literature in many contexts [11, 3, 2, 8] with the
underlying motivation of understanding the interplay between topological constraints and
the well-studied computational resources such as depth, size, negations, space, time etc.
An important consideration while defining this model is whether an input label can appear
many times in the circuit. We consider two models of upward planar circuits which are also
considered by the above authors.

First, we require that each input label appears at most once in the circuit. Under this
setting, McColl [11] showed that the threshold function Thn

k where n ≥ 5 and 3 ≤ k ≤
n − 2 cannot be computed by any monotone planar circuit, although the function itself is
monotone. Later on, Beynon and Buckle [3] gave an algorithm which, takes as input the
truth-table of a function f , tells whether f can be computed by a monotone planar circuit.
However, in both papers the authors made an assumption that all input vertices are in one
face and all edges in the circuit go upwards in the plane. We mainly deal with this type of
circuits, which are better known in the literature as one-input-face upward planar circuits.
For this model, we explore the inversion complexity of specific functions and prove tight
upper and lower bounds for the Parity function and the Inverter function. More specifically
we prove the following:

Theorem 1.3. Let n ≥ 2, f ∈ {Parityn,Parityn}. The inversion complexity of the
function f with respect to one-input-face upward planar circuits is precisely n − 1. The
inversion complexity of Invertern with respect to one-input-face upward planar circuits is
precisely n.

We generalize this argument further to obtain a non-trivial collection of Boolean functions
for which similar bounds hold (Theorem 4.7). We skip the precise definition of this class to the
technical sections (Definition 4.6). For functions in this class, we show a direct sum theorem
by proving a tight lower bound on the number of negations required to compute t functions
simultaneously using a one-input-face upward planar circuit (Theorem 4.11). In addition,
we exhibit the limitation of the one-input-face constraint by showing an explicit function
which can be computed by a monotone upward planar circuit, but cannot be computed by
any montone one-input-face upward planar circuit (Theorem 4.10).

Although formulas are planar, the above model does not includes them since formulas
allow input labels to be duplicated. A planar circuit model where the inputs can be du-
plicated is called multilective planar circuit (which was introduced in [16]). Formulas are
clearly multilective planar circuits. For this more powerful class of circuits we are able to
improve the upper bound on the inversion complexity (IM−UP (f)) slightly.

Theorem 1.4. For every Boolean function f , IM−UP (f) ≤ ⌈d(f)+1
2

⌉.

The rest of the paper is organized as follows. In Section 2 we introduce the prelim-
inaries. Section 3 describes the results about bounded treewidth circuits. Section 4 talks
about inversion complexity in planar circuits, considering the upward planar and multilective
restrictions.

1See Section 2 for a precise definition.

4

2 Preliminaries

In this section, we introduce the basic definitions that we need in this paper. Let Bn,m

denote the set of Boolean functions f : {0, 1}n → {0, 1}m. Bn stands for Bn,1. For a
function f = f(x1, . . . , xn), we say f essentially depends on xi if f |xi=0 6= f |xi=1, i.e., the two
sub-functions of f obtained by replacing xi with 0 or 1 are different with one another.

A circuit is an acyclic directed graph, in which all vertices of fan-in 0 (input gates) are
associated with some variable x ∈ {x1, . . . , xn} or a constant c ∈ {0, 1}, and all other nodes
are either ∧,∨ or ¬. The size of a circuit is the number of gates contained in it, and the
depth of a circuit is the length of the longest directed path from any input vertex to any
output vertex. We refer to a standard text book [20] for more definitions.

A circuit is called semilective if for all x ∈ {x1, . . . , xn}, at most 1 input vertices in
the circuit is associated with x. It is called multilective otherwise. It is easy to see that
there is essentially no difference between two cases in the general circuit model, since the
fan-out of any vertex is unbounded. But this does affect the power of circuits in restrictions
like planarity and treewidth bounded circuits that we consider. A formula is a multilective
circuit all vertices of which have fan-out at most 1.

For a Boolean function f , the inversion complexity of f , denoted by I(f), is the minimum
number of negation gates contained in any circuit computing f . If restricting the circuits to
be formulas (then f should be a single-output function), we get the definition of inversion
complexity of f in formulas, denoted by IF (f). The inversion complexity of a family of
Boolean functions can be similarly defined, as a function of n. In this notation, Markov [9]
proved that I(f) = ⌈log(d(f) + 1)⌉ for every Boolean function f and Morizumi [12] proved
that IF (f) = d(f). In particular this implies an exponential gap between the number of
negation gates required in two different models.

A tree decomposition of a graph G = (V,E) is given by a tuple (T, (Xd)d∈V [T]), where
T is a tree, each Xd is a subset of V called a bag, satisfying 1)

⋃

d∈V [T] Xd = V , 2) For

each edge (u, v) ∈ E, there exists a tree node d with {u, v} ⊆ Xd, and 3) For each vertex
u ∈ V , the set of tree nodes {d : u ∈ Xd} forms a connected subtree of T . Equivalently, for
any three vertices t1, t2, t3 ∈ V [T] such that t2 lies in the path from t1 to t3, it holds that
Xt1 ∩ Xt3 ⊆ Xt2 .

The width of the tree decomposition is defined as maxd |Xd| − 1. The treewidth tw(G) of
a graph G is the minimum width of a tree decomposition of G. We consider circuits whose
underlying graph is of bounded treewidth.

A planar circuit is a circuit in which each input label appears exactly once and the
underlying undirected graph can be embedded on the plane without edge crossings. It is
further called an upward planar circuit if it has some planar embedding in which all edges
go upwards (monotonically increasing in the vertical direction), and is called one-input-face
upward planar if besides upward planarity all input nodes are placed at the lowest level. For
every function f , let IOUP (f) denote the minimum number of negation gates required for
computing f by any one-input-face upward planar circuits.

5

3 Bounded Treewidth Circuits

In this section we consider circuits with bounded treewidth, which naturally generalizes
formulas. We allow circuits to be multilective, i.e., they may contain duplicated input
variables. By a Boolean function we will mean a single-output Boolean function.

We first collect some basic facts about treewidth that we will be using. Some of them
are folklore, but we include the proof for completeness. These statements also appear in
Section 3 in-line without proof.

Lemma 3.1. Let G = (V,E) be an undirected graph, and G′ = (V ′, E ′) be the subgraph of
G induced on V ′ ⊂ V . Then tw(G) ≤ tw(G′) + |V | − |V ′|.

Proof. Adding all vertices in V \V ′ to every bag of an optimal tree decomposition of G′ will
yield a tree decomposition of G with treewidth at most tw(G′) + |V | − |V ′|.

Corollary 3.2. Let G = (V,E) be an undirected graph, and G′ = (V ∪ {v}, E ∪ E ′) where
every edge in E ′ has v as one of its endpoints. Then tw(G′) ≤ tw(G) + 1. Let G′′ be a
graph obtained from G by combining some vertices in V together to form a new vertex. Then
tw(G′′) ≤ tw(G) + 1.

Proof. The first statement follows from Lemma 3.1 since G is an induced graph of G′. To
prove the second statement, just note that combining some vertices together is equivalent
to the following process: First delete these vertices (which will not increase the treewidth),
then add a new vertex and add an edge between it and every remaining vertex which was
the neighbor of at least one of the deleted vertices.

Lemma 3.3. Let G0 = (V0, E0) and G1 = (V1, E1) be two undirected graphs such that
|V0∩V1| = 1. Denote G = G0∪G1 = (V0∪V1, E0∪E1). Then tw(G) ≤ max{tw(G0), tw(G1)}.

Proof. Let v be the only vertex in both G0 and G1. Let Ti be an optimal tree decomposition
of Gi, and Bi be one of the bags of Ti containing v, for i = 0, 1. Add en edge between B0

and B1 to obtain a new tree T . Then it is easy to verify that T is a tree decomposition of
G0 ∪ G1.

Corollary 3.4. Let C0 and C1 be two (single-output) circuits. Obtain C by replacing an
arbitrary input node of C0 with a copy of C1 (that is, identify the output node of C1 as an
input of C0). Then tw(C) ≤ max{tw(C0), tw(C1)}.

Proof. The statement follows directly from Lemma 3.3.

3.1 Inversion Complexity in Bounded Treewidth Circuits

Recall that Markov’s theorem states that for every Boolean function f , the minimum number
of negation gates contained in a circuit computing f is precisely ⌈log(d(f) + 1)⌉; that is,
I(f) = ⌈log(d(f)+1)⌉. We will first show that, if we only care the number of negation gates,
then excessive treewidth compared to I(f) is useless.

6

Theorem 3.5. For every Boolean function f , there exists a circuit computing f which
contains exactly ⌈log(d(f)+1)⌉ negation gates and has treewidth at most ⌈log(d(f)+1)⌉+1.

We need the following definition of connectors. For any two Boolean functions f0 and
f1 with the same set of input variables, a connector of f0 and f1 is a function µ(y, y′, x)
satisfying that µ(i, 1− i, x) = fi(x) for both i = 0, 1, where x is the input vector of f0 and f1.
It was proved by Markov that there always exists a connector of f0 and f1 containing at most
max{I(f0), I(f1)} negation gates, which is then used in the construction of negation-limited
circuits. In order to prove our results, we need the following lemma.

Lemma 3.6. Every pair of Boolean functions f0(x) and f1(x) has a connector µ(y, y′, x)
which can be computed by a circuit containing max{I(f0), I(f1)} negation gates and having
treewidth at most 1 + max{I(f0), I(f1)}.

Proof. By induction on m = max{I(f0), I(f1)}. If m = 0 we let µ(y, y′, x) = (y′ ∧ f0) ∨ (y ∧
f1), which can be computed by a monotone formula (since every monotone function has a
monotone formula computing it) and hence has treewidth 1.

Now suppose m ≥ 1 and the statement holds for all m′ < m. Let Ci be a circuit
computing fi which contains exactly I(fi) negation gates, for i ∈ {0, 1}. We replace the
first negation gate (under some topological order) of Ci with a new variable z to obtain a
new circuit C ′

i, and let f ′
i(z, x) be the function computed by this circuit. Letting hi(x) be

the monotone function computed at the predecessor of the first negation gate in Ci, we have
fi(x) = f ′

i(hi(x), x). Note that max{f ′
0, f

′
1} = m − 1 and thus by the induction hypothesis,

they have a connector µ′(y, y′, (z, x)) which can be computed by a circuit having treewidth
at most m and containing m − 1 negation gates.

Observe that a connector of f0 and f1 can be constructed by replacing the variable z in
µ′ with a formula F computing the function g(y, y′, x) = (y′ ∧ h0(x)) ∨ (y ∧ h1(x)). In order
to limit the number of negation gates newly introduced, we need to combine all occurrences
of z and replace them with exactly one copy of F . It is obvious that the new circuit is a
connector of f0 and f1 and contains exactly m negation gates, and by Corollaries 3.2 and
3.4, its treewidth is at most m+1. (Note that we should use independent copies of variables
when constructing the formula F .)

Now we are ready to prove Theorem 3.5 The proof proceeds by making crucial obser-
vations about Markov’s proof and is by induction on d(f). The case where d(f) = 1 is
obvious. Suppose d(f) ≥ 2 and the theorem holds for all f ′ such that d(f ′) < d(f). Let
S ⊆ {0, 1}n be the set of all input vectors x such that every chain Y starting with x sat-
isfies that dY (f) ≤ 2I(f)−1 − 1 (recall I(f) = ⌈log(d(f) + 1)⌉). Then, for every chain Y
ending at a vector x 6∈ S, dY (f) ≤ 2I(f)−1 − 1 (otherwise we can find a chain with decrease
≥ 2I(f) ≥ d(f) + 1 by concatenating Y and the chain witnessing x 6∈ S). We also have
(x ∈ S and x ≤ y) ⇒ y ∈ S, implying that the characterization function of S, denoted by
hS, is monotone.

Define two functions f0(x) and f1(x) as follows:

f0(x) =

{

1 if x ∈ S,
f(x) if x 6∈ S,

7

and

f1(x) =

{

f(x) if x ∈ S,
0 if x 6∈ S.

Then we have I(f0) = ⌈log(d(f0) + 1)⌉ ≤ I(f) − 1 and similarly I(f1) ≤ I(f) − 1. Fur-
thermore, for any function µ(y′, y, x) that is a connector of f0(x) and f1(x), we have f(x) =
µ(hS(x), hS(x), x). Now let µ be the connector found by Lemma 3.6, which can be computed
by a circuit Cµ containing I(f) − 1 negation gates and having treewidth at most I(f). We
combine all input vertices assigned with y′ into one vertex, and replace it with a tree com-
puting hS. Then replace each input vertex assigned with the variable y by a tree computing
hS. By Corollaries 3.2 and 3.4, this increases the treewidth of Cµ by at most 1. The resulting
circuit computes f and contains at most I(f) negation gates.

Morizumi showed that the minimum number of negation gates contained in a formula
computing f is exactly d(f); that is, IF (f) = d(f). Another translation of this result is that
d(f) negation gates are necessary and sufficient for any circuit with treewidth 1 computing
f . Therefore, it is natural to ask what happens when we restrict the treewidth of circuits
computing f .

Let Ik(f) denote the minimum number of negation gates contained in any circuit com-
puting f with treewidth at most k. Theorem 3.5 and Morizumi’s result indicate that
I1(f) = IF (f) = d(f) and I⌈log(d(f)+1)⌉+1(f) = I(f) = ⌈log(d(f) + 1)⌉. We will show an
upper bound on Ik(f) for any k lying in between.

Theorem 3.7 (Theorem 1.1 restated). Let f be a non-monotone Boolean function and
1 ≤ k ≤ ⌈log(d(f) + 1)⌉. Then Ik(f) < d(f) · 8k/2k.

Proof. We will prove, by induction on d(f), that Ik(f) ≤ d(f) · 8k/2k − 1 for all 1 ≤ k ≤
⌈log(d(f) + 1)⌉. The statement is obvious for d(f) = 1.

Suppose d(f) ≥ 2 and the theorem holds for all f ′ such that d(f ′) < d(f). Let S ⊆ {0, 1}n

be the set of all input vectors x such that every chain Y starting with x satisfies that
dY (f) ≤ d(f)/2. Then, for every chain Y ending at a vector x 6∈ S, dY (f) ≤ d(f)/2
(otherwise we can find a chain with decrease ≥ d(f) + 1 by concatenating Y and the chain
witnessing x 6∈ S). We also have (x ∈ S and x ≤ y) ⇒ y ∈ S.

Define two functions f0(x) and f1(x) exactly as in the previous proof. Then we have
d(f0) ≤ d(f)/2 and d(f1) ≤ d(f)/2, and

f(x) =

{

f1(x) if x ∈ S,
f0(x) if x 6∈ S.

It is easy to see that f(x) = (hS(x) ∧ f1(x)) ∨ (hS(x) ∧ f0(x)), where hS(x) is the
characteristic function of the set S, which is monotone and hence can be computed by
a monotone formula. This provides a formula-like construction for connecting f0 and f1,
which preserves the treewidth of f0 and f1. More specifically, if there exists Ci computing
fi for both i = 0, 1 such that Ci has treewidth at most k and contains at most t negation

8

gates, we can obtain a circuit with treewidth at most k which computes f and contains at
most 2t + 1 negation gates. Having t = d(f) · 4k/2k − 1 will suffice.

However, we cannot directly use the induction hypothesis since the condition k ≤ ⌈log(d(fi)+
1)⌉ may be violated. But this can be overcome. For i ∈ {0, 1}, if k > ⌈log(d(fi) + 1)⌉ for
some i ∈ {0, 1}, we can get directly from Theorem 3.5 that there exists a circuit computing
fi with treewidth at most k which contains exactly I(fi) = ⌈log(d(fi) + 1)⌉ < k negation
gates. Since k ≤ ⌈log(d(f) + 1)⌉, we have 2k ≤ 2(d(f) + 1) ≤ 4d(f), from which it follows
that I(fi) ≤ k − 1 ≤ d(f) · 4k/2k − 1. Therefore, for both i = 0, 1, there exists a circuit Ci

computing fi which has treewidth ≤ k and contains ≤ d(f) · 4k/2k − 1 negation gates. This
finishes the induction part of the proof, and hence the theorem follows.

3.2 Inversion Complexity under Polynomial Size Constraints

In this subsection we show Theorem 1.2 stated in the introduction.

Theorem 3.8 (Theorem 1.2 restated). Let {fn} be a family of Boolean functions. If there
is a circuit family of size s = s(n) and treewidth k = k(n) computing {fn}, then there exists
a circuit family of size s ·nO(1) · 2O(min{k,log n}) and treewidth at most 2k which computes {fn}
and contains O(max{nk/22k, log n}) negation gates.

The following is an immediate corollary of Theorem 3.8.

Corollary 3.9. If {fn} can be computed by a circuit family of polynomial size and treewidth
k, then it can also be computed by a circuit family of polynomial size, treewidth 2k which
contains at most O(max{nk/22k, log n}) negation gates.

In the rest of this section we prove Theorem 3.8. Let f ∈ Bn. Borrowing the notation

from [12], we say f ′ is a pseudo ith slice of f iff f ′(x) = f(x) for all x = (x1, . . . , xn)
such that

∑n
j=1 xj = i. Let C be a circuit computing f with treewidth k and size s. For

i = 0, 1, . . . , n, we construct a circuit C(i), which computes a monotone pseudo ith slice
of f , by pushing all negations in C down by the De Morgan’s law until they are directly
connected to input variables, and then replacing xi with Thn−1

i (x−i). Here we use x−i to
denote (x1, . . . , xi−1, xi+1, . . . , xn), and Thn

m is the threshold function which equals 1 iff at
least m out of n input variables are 1.

In order to push the negations down, we may need to make an additional copy (and one
copy suffices) of some gates since the circuit is not necessarily a formula. The size of C(i) is at
most 2s ·nO(1) since the number of original gates at most doubles and the threshold functions
can be computed by nO(1)-sized formulas [19]. Moreover, the treewidth of C(i) is at most 2k.
To see this, we first regard each threshold circuit Thn−1

i as a single node, and call this “fake
circuit” C(i)∗ . The treewidth of C(i)∗ is at most 2k, since we can make an additional copy of
the tree decomposition of C, and then combine every two corresponding bags into one “big
bag” to obtain a tree decomposition of C(i)∗ . This at most doubles the treewidth. Next we
need to replace the “threshold nodes” with threshold circuits computing them. It follows
from Corollary 3.4 that the treewidth of C(i) is at most max{tw(C(i)∗), 1} = tw(C(i)∗) ≤ 2k
if we use formulas to compute the threshold functions. Hence, we obtain the following.

9

Lemma 3.10. For a Boolean function f ∈ Bn which can be computed by a circuit of size
s and treewidth k, and an integer i ∈ {0, 1, . . . , n}, there exists a monotone circuit of size

s · nO(1) and treewidth 2k which computes a pseudo ith slice of f .

We aim to make use of these pseudo slices to reconstruct f so that the number of negation
gates can be reduced, and hence prove Theorem 3.8. The basic idea is to divide them into
groups each containing some consecutive slices of f . Among each group, we try to find a
circuit of limited treewidth and limited number of negation gates which plays the role of a
“selector”, in the sense that it selects which slice to use according to the number of 1’s in
the inputs. Finally, a formula serving as a “universal selector” is applied in order to choose
the correct group, which will not increase the treewidth according to Corollary 3.4. A trivial
grouping is to put exactly one slice in each group. This will result in a circuit of the form
∨n

i=0

(

Thn
i ∧ Thn

i+1 ∧ C(i)
)

, which contains as many as n negation gates. Morizumi showed
that by gathering two neighbor slices into one group, the number of negation gates used can
be reduced to ⌈n/2⌉. We will prove a more generalized result by collecting 22k slices in one
group. Before presenting the proof, we need to introduce some notations.

We generalize the notion of circuits. Let X = {x1, x2, . . . , xn} be a set of variables, and
H = {h1, h2 . . . , hm} be a set of Boolean functions each taking x1, . . . , xn as inputs. A circuit
augmented with H is similarly defined as a normal circuit, except that every fan-in 0 vertex
is now assigned with some function hi ∈ H. Functions in H are called help functions, and
circuits augmented with H are also called H-circuits. The normal definition of circuits can
be seen as a special case in which H = {x1, x2, . . . , xn}; that is, the help functions are exactly
the variables themselves.

In the following we fix H = {Thn
i : i = 0, 1, . . . , n} ∪ {f (i) : i = 0, 1, . . . , n}, where f (i)

is a pseudo ith slice function of f . For every pair of integers a, b such that 0 ≤ a ≤ b ≤ n,

a Boolean function g is called a (a, b)-selector of f iff g is a pseudo ith slice function of
f for every i such that a ≤ i ≤ b. It follows that f (i) is a (i, i)-selector of f , and f is a
(0, n)-selector of itself.

For a H-circuit C, we say C is a (a, b)-selector circuit of f if it computes a (a, b)-selector
of f . We call it a good (a, b)-selector circuit of f if in addition it satisfies the following
“replacement rule”:

Replacement Rule. For every integer r such that −a ≤ r ≤ n − b, if we replace every
input vertex Thn

i of C by Thn
i+r, and replace every input vertex f (i) of C by f (i+r), for every

0 ≤ i ≤ n, then the resulting circuit is a (a + r, b + r)-selector circuit of f . (See Figure 5 in
Appendix A).

The intuition of this type of “good selector” is that applying simple “shifting” to the
inputs will suffice to “shift” the selector in terms of parameters, which provides a way to
construct selectors recursively from other selectors of smaller size while not increasing the
treewidth and number of negation gates used by too much. To be precise, we show the
following existence lemma.

Lemma 3.11. For every a, b ∈ {0, 1, . . . , n} such that b−a+1 = 2k for some integer k ≥ 1,
there is a good (a, b)-selector circuit of f which has size at most 5k, treewidth at most k and
contains at most k negation gates.

10

Proof. By induction on k. When k = 1, let C be
(

Thn
b ∧ f (b)

)

∨
(

Thn
b ∧ f (a)

)

. It is easy to
verify that C is a good (a, b)-selector circuit of f with size 4, treewidth 1 and contains 1
negation gate.

Now suppose k ≥ 2 and the theorem holds for all smaller k. Let Ck−1 be a good
(a, a + 2k−1 − 1)-selector circuit of f which has size at most 5k−1, treewidth at most k − 1
and contains at most k − 1 negation gates. Let v be an arbitrary input vertex of Ck−1. If

v is Thn
i for some i, we replace it with

(

Thn
a+2k−1 ∧ Thn

i+2k−1

)

∨
(

Thn
a+2k−1 ∧ Thn

i

)

. If v is

f (i) for some i, we replace it with
(

Thn
a+2k−1 ∧ f (i+2k−1)

)

∨
(

Thn
a+2k−1 ∧ f (i)

)

. After we finish

the replacement for every input node v, we combine all the negations which are connected
to nodes assigned with Thn

a+2k−1 together to form a new node; the reason for doing this is to
reuse it multiple times in order to reduce the number of negation gates used. Call the new
circuit Ck. (See Figure 5 in Appendix A for an example.) Since only one copy of Thn

a+2k−1

is used, Ck contains exactly 1 more negation gates than Ck−1. The treewidth of Ck is at
most k, as we first replace each input vertex with a tree (which will preserve the treewidth
of Ck−1 due to Corollary 3.4) and then combine some vertices together to form a new one
(which will increase the treewidth by at most 1 due to Corollary 3.2). To bound the size of
Ck, we note that each input node of Ck−1 is replaced with a circuit of size 4, and the number
of input nodes does not exceed the number of gates in Ck−1. Therefore, the size of Ck is at
most 5k−1 + 4 · 5k−1 = 5k.

It remains to show that Ck is a good (a, b)-selector circuit of f . Due to our construction,
when

∑n
j=1 xj < a + 2k−1 (that is, Thn

a+2k−1(x) = 0), Ck is equivalent to Ck−1, and hence Ck

is a (a, a + 2k−1 − 1)-selector circuit of f . When
∑n

j=1 xj ≥ a + 2k−1, Ck becomes the circuit

obtained from Ck−1 by replacing Thn
i with Thn

i+2k−1 and replacing f (i) with f (i+2k−1), which

is of course a (a+2k−1, a+2k −1)-selector circuit of f because Ck−1 is good by the induction
hypothesis. Hence, Ck is a (a, b)-selector circuit of f (remember that b = a + 2k − 1). To
see why Ck is good, we shift all the parameters (except n) by r for every −a ≤ r ≤ b, and
can similarly prove that the resulting circuit is a (a + r, b + r)-selector circuit of f . This
completes the induction step.

of Theorem 3.8. Let f ∈ Bn and C be a circuit computing it with size s and treewidth k.
Let t be the minimum integer such that n ≤ 2t−1, and let n′ = 2t−1. Let k′ = min{k, t/2}.
It is clear that n′ ≤ 2n − 1 and log n ≤ t ≤ ⌈log n⌉ + 1. We add n′ − n dummy input
variables to f and regard it as a function in Bn′ . For l = 0, 1, . . . , 2t−2k′

− 1, let C ′
l be a

(22k′

l, 22k′

(l + 1) − 1)-selector circuit of f constructed by Lemma 3.11, which has size at
most 52k′

, treewidth at most 2k′ and contains at most 2k′ negations. Let C ′ be a formula-

like circuit of the form
∨2t−2k

′

l=0

(

Thn′

22k′ l
∧ Thn′

22k′ (l+1)
∧ C ′

l

)

(different terms will use different

copies of input vertices). It is easy to see that C computes exactly f and contains at
most (2k′ + 1)2t−2k′

= (2k′ + 1)(n′ + 1)/22k′

≤ 2n(2k′ + 1)/22k′

negation gates. Since
k′ = min{k, t/2} and log n ≤ t ≤ ⌈log n⌉ + 1, this is at most max{2n(2k + 1)/22k, 2n(t +
1)/2t} = max{O(nk/22k), O(log n)} = O(max{nk/22k, log n}). Furthermore, C ′ has size at
most 2t−2k′

(4 + 52k′

) = n · 2O(k′) = n · 2O(min{k,t/2}) ≤ n · 2O(min{k,log n}), and has treewidth

11

at most 2k′. Note that C ′ is not a “true” circuit, but one augmented with help functions
{Thn

i : i = 0, 1, . . . , n} ∪ {f (i) : i = 0, 1, . . . , n}. We replace every input node of C ′ with a
circuit computing the corresponding help function. Since Thn

i is computable by a poly-sized
formula, and by Lemma 3.10 f (i) is computable by a monotone circuit of treewidth 2k and
size s · nO(1), the resulting circuit has size s · nO(1) · 2O(min{k,log n}) and treewidth at most
max{2k, 2k′} = 2k due to Corollary 3.4. This finishes the proof of Theorem 3.8.

4 Inversion Complexity in Planar Circuits

4.1 Lower Bounds for One-Input-Face Upward Planar Circuits

In this section we will focus on the inversion complexity in one-input-face upward planar
circuits. We will prove Ω(n) lower bounds of IOUP (f) for many functions f , including some
tight results. Since I(f) = O(log n) for all f ∈ Bn,m, an exponential gap between the
number of negation gates used in general circuits and one-input-face upward planar circuits
is obtained for a number of natural functions, including Parity, Inverter, Add and
Subtract.

Theorem 4.1. For f ∈ {Parityn,Parityn} where n ≥ 2, IOUP (f) = n − 1.

Proof. To prove that n−1 is an upper bound, just notice that Parityn = Equiv(Parityn−1(x1, . . . , xn−1), x
(Equiv(x, y) computes x ≡ y), and that both the XOR gate and the Equiv gate can be
simulated by planar circuits each containing one negation gate (see Figure 3 for the standard
construction).

Next we prove that IOUP (f) ≥ n − 1 for f ∈ {Parityn,Parityn} where n ≥ 2. The
statement will be proved by induction on n. It is obvious when n = 2, since both functions
are non-monotone. Now suppose n ≥ 3 and the statement holds for all n′ < n. Let
f ∈ {Parityn,Parityn}. Assume that the theorem doesn’t hold for f , and let C be a
one-input-face upward planar circuit computing f which contains at most n − 2 negation
gates. Without loss of generality, we may assume that the order of the input variables are
x1, . . . , xn if we read them from left to right. (The following argument holds for all input
orders.)

Suppose G is the predecessor of the first negation gate in C (under some topological
order of the underlying graph of C). Let g denote the function computed at the gate G.

Let S = {xi | g essentially depends on xi, 1 ≤ i ≤ n}. Let l = min{i | xi ∈ S} and r =
max{i | xi ∈ S}. Denote by PI the set of all prime implicants of g. Since g is monotone, every
prime implicant of it only contains positive literals. We first prove the following lemmas.

Lemma 4.2. S = {xi | l ≤ i ≤ r}.

Proof. Assume the contrary that xi 6∈ S for some l < i < r. We set all variables in S to 1.
Since g is monotone, this will fix G to be 1 no matter what values the other variables are
assigned with. Hence we can find one path from xl to G on which each gate is fixed to be
1, and another path from xr to G with the same property. Due to the special property of

12

Parity, f essentially depends on xi even after all variables in S are set to 1. Since C is
one-input-face upward planar and f is non-monotone, the output gate of C (denoted by O)
must lie out of the area α. Again using the upward planarity of C, we know that every path
connecting xi and O must intersect the two 1-paths previously found. Thus the variable xi

is “disconnected” from O, in the sense that changing the value of xi will not affect the value
of O (since all gates on the 1-paths are fixed to be 1), a contradiction. (See Figure 1 for an
illustration.)

Lemma 4.3. Let p = xi1xi2 . . . xik ∈ PI be any prime implicant of g, where l ≤ i1 < . . . <
ik ≤ r. Then im = im−1 + 1 for all 2 ≤ m ≤ k; that is, any prime implicant is in fact an
“interval”.

Proof. The proof is similar to that of Lemma 4.2. We set all variables in p to 1, which fixes
G to evaluate to 1. Then any variable between xi1 and xik which doesn’t belong to p (if any)
will be disconnected from the output gate of C, which is a contradiction.

Lemma 4.4. Each prime implicant of g has size at least 2.

Proof. Assume the contrary that xi ∈ PI for some i. Setting xi = 1 will fix G to evaluate
to 1, and thus at least one negation gate can be eliminated from C. The resulting circuit
will compute Parityn−1 or Parityn−1, and contains at most n − 3 negation gates. This
contracts our induction hypothesis.

Lemma 4.5. Let pl and pr be the prime implicants of g containing xl and xr, respectively.
Then pl and pr do not intersect with each other; that is, they contain no common variables.

Proof. Suppose pl and pr both contain some variable, say, xi. From Lemmas 4.2 and 4.3 we
know that each prime implicant of g must contain xi as well. Thus we can set xi = 0 which
will fix G to be 0, and eliminate at least one negation gate from C. The rest of the proof is
similar to that of Lemma 4.4.

Note that Lemma 4.5 implies that PI contains at least 2 different prime implicants. Now
we are ready to prove Theorem 4.1. Let CG be the induced sub-circuit of C with output
gate G. More precisely, CG contains all vertices of C (variables and gates) from which G is
reachable, and all edges spanning them. So CG computes the function g. Let pl = x1x2 . . . xj

and pr = xkxk+1 . . . xr be the prime implicants of g containing xl and xr, respectively. By
Lemmas 4.4 and 4.5 we have l < j < k < r. Imagine the scenario where all variables except
xk are set to 0. Since f still essentially depends on xk after this restriction, there exists
a “switching path” P from xk to the output gate of C such that flipping the value of xk

will cause all gates on P to change their values (given that other variables are set to 0).
Also note that the output gate is not contained within the area of CG. Due to the upward
planarity of C, P must intersect the boundary of CG. Let Pin denote the inside part of P
respect to CG. As CG is monotone, any gate on Pin switches from 0 to 1 if xk switches from
0 to 1, given that other variables are 0. Therefore, setting xk to 1 will fix all gates on Pin to

13

evaluate to 1, regardless of the assignment to other variables (use the monotonicity again).
By Lemma 4.4, G doesn’t lie on Pin. There are two cases to examine.

Case 1: Pin intersects the right boundary of CG. We set xl = xl+1 = . . . = xk−1 = 0
and xk = xk+1 = . . . = xr−1 = 1. Under this restriction G will compute exactly xr. But xr

cannot affect G now, since any path from xr to G must intersect Pin (see Figure 2). This
leads to a contradiction.

Case 2: Pin intersects the left boundary of CG. We set x1 = x2 = . . . = xj−1 = 1,
xj+1 = . . . = xk−1 = 0, xk = 1 and xk+1 = . . . = xr = 0. Under this restriction G will
compute exactly xj. But any path from xj to G must intersect Pin, which again gives a
contradiction (see Figure 2). We have finished the induction part, and hence the theorem
follows.

We next introduce the classes of functions for which we can apply a similar argument
and prove linear lower bounds on IOUP (f). Although the definition seems restrictive, it will
be shown that many natural functions fall into these classes.

Definition 4.6. Let k, n0, n,m ∈ N, k ≥ 1 and f ∈ Bn,m be a function with input set X and
output set Y . f belongs to the class W

n
k,n0

if and only if it satisfies:

1. If n > n0, then for any variable x ∈ X and any “uniform” restriction σ which maps
all variables in X \ {x} to the same Boolean constant b ∈ {0, 1}, there exists a non-
monotone output y ∈ Y such that y|σ essentially depends on x.

2. If n > n0, then for any variable x0 ∈ X and any constant c0 ∈ {0, 1}, there exists a set
of k′ variables {x1, . . . , xk′} ⊆ X \{x0} and a sequence of Boolean constants c1, . . . , ck′,
where 0 ≤ k′ ≤ min{k − 1, n − 1}, such that f |γ ∈ W

n−k′−1
k,n0

, where γ denotes the
restriction which maps xi to ci for all 0 ≤ i ≤ k′.

We explain the intuition a little. The first property in the above definition requires the
n-argument function to be nontrivial even after n − 1 variables of it are fixed (to the same
value). Also, the function itself should be non-monotone because this is important in the
following proof. Note that we only require the original function to be non-monotone, but
not the sub-function under the restriction. The second property characterizes a feature of
“self-reducibility”, indicating that induction may be useful for proving properties of these
functions. The condition n > n0 is used to avoid degenerated cases. By the definition, we
have

⋃

m∈N
Bn,m ⊆ W

n
k,n0

for all n ≤ n0, and W
n
k,n0

⊆ W
n
k,n′

0

for any n0 ≤ n′
0.

Now we state the theorem about the functions in this class.

Theorem 4.7. IOUP (f) ≥ ⌈n−n0

k
⌉ if f ∈ W

n
k,n0

.

Proof. The proof of Theorem 4.7 is very similar to the previous proof and the necessary
modifications are described below: We use induction on n. The base cases n ≤ n0 are
trivial. Now suppose n > n0, and the theorem holds for all functions in W

m
k,n0

with m < n,
but doesn’t hold for some f ∈ W

n
k,n0

. Let C be a one-input-face upward planar circuit
computing f which contains strictly less than ⌈n−n0

k
⌉ negation gates. We reserve all notations

14

used in the proof of Theorem 4.1. Then, Lemmas 4.2,4.3,4.4 and 4.5 still hold. We briefly
show the modified argument for them.

For Lemma 4.2, previously we argued that if some xi is not in S, then it will be dis-
connected from the output gate of C, contradicting the property of Parity. Now we have
f ∈ W

n
k,n0

, so by the first condition of its definition, there exists a non-monotone output gate
H whose corresponding function h essentially depends on xi even after setting all variables
in S to 1. Since G is before the first negation gate in C, H must lie out of the area α, and
will not be affected by xi due to the two 1-paths, a contradiction. Lemma 4.3 is similar.

For Lemma 4.4, suppose setting xi = 1 will fix G to 1. Note that by the second condition
of Definition 4.6, we can find another k′ ≤ k − 1 variables such that fixing them to be
some constants will make f degenerate to some function f ′ ∈ W

n−k′−1
k,n0

. The resulting circuit

computing f ′ has strictly less than ⌈n−n0

k
⌉−1 = ⌈n−k−n0

k
⌉ negation gates, since we eliminated

at least one negation gate from C. This leads to a contradiction since by induction hypothesis,
IOUP (f ′) ≥ ⌈n−k′−1−n0

k
⌉ ≥ ⌈n−k−n0

k
⌉. Lemma 4.5 is similar.

In the rest part of the original proof, we only use the property of Parity once: The
output essentially depends on xk even if all variables other than xk are set to 0. Now
we replace Parity with f ∈ W

n
k,n0

. By the first condition of Definition 4.6, we can find
a non-monotone output of f with the same desired property, and the proof goes through
analogously.

Corollary 4.8. The following statements hold:
(1) IOUP (Invertern) = n for all n ≥ 1.

(2) IOUP (OrOfParityn1,...,nt
) ≥

P

t

i=1
ni

2
for all nonnegative even numbers n1, n2, . . . , nt.

(3) For f ∈ {Add2n,Subtract2n} where n ≥ 1, IOUP (f) ≥ n.

Proof. We need to know which functions are included in this definition. The function
Parityn is defined as follows: Parityn(x1, x2, . . . , xn) = 1 iff |{i : xi = 1, 1 ≤ i ≤ n}|
is odd. It can be verified (by simple induction) that both Parityn and Parityn belong to
W

n
1,1, for all n ≥ 1. By the observation that Parity1 is monotone and thus not contained

in W
1
1,0, we can inductively prove that Parityn 6∈ W

n
1,0 and Parityn 6∈ W

n
1,0 for any n ≥ 1.

Given t nonnegative even numbers n1, n2, . . . , nt, we define the following function OrOfParityn1,...,nt
∈

BP

t

i=1
ni

:

OrOfParityn1,...,nt
(x) =

t
∨

i=1

Parityni
(xi,1, xi,2, . . . , xi,ni

).

Given such a function, imagine that all variables but xi,j are set to 0 (or 1). Since all ni’s
are even, the resulting function computes xi,j (or xi,j) and thus essentially depends on it. If
we fix some xi,j to a constant b, then fixing another variable xi,j′ with j′ 6= j will make the
function become OrOfParityn1,...,ni−1,ni−2,ni+1,...,nt

. Due to this recursive property, one can

prove that OrOfParityn1,...,nt
∈ W

P

t

i=1
ni

2,0 for all nonnegative even numbers n1, n2, . . . , nt.
We next come to multi-output functions. Define the function Inverter as Invertern(x1, x2, . . . , xn) =

(x1, x2, . . . , xn). We can easily prove Invertern ∈ W
n
1,0 inductively, for all n ≥ 1.

15

We also have Add2n ∈ W
2n
2,0 for all n ≥ 1, where Add2n(x1, x2, . . . , x2n) computes the

sum of two binary numbers x1x2 . . . xn and xn+1xn+2 . . . x2n. To see this, first note that every
output of Add2n is non-monotone, and at least one of the outputs essentially depends on
xi even if all variables other than xi are arbitrarily fixed. To validate the second property,
we point out that after fixing xi to ci for some i ∈ {1, . . . , n} (resp. i ∈ {n + 1, . . . , 2n})
and ci ∈ {0, 1}, a further restriction which fixes xi+n (resp. xi−n) to 1 − ci will reduce the
function to Add2n−2. By a similar argument, we can also prove that Subtract2n ∈ W

2n
2,0,

where Subtract computes the difference between two binary numbers and can be defined
easily.

Now the lower bounds are direct from Theorem 4.7, and the the upper bound for In-

verter is due to the trivial construction.

A Direct Sum Theorem: We consider the direct sum of Boolean functions, i.e., a collec-
tion of different Boolean functions on pairwise disjoint variable sets. More precisely, given
a set of Boolean functions {f1, f2, . . . , ft}, where fi ∈ Bni,mi

, the direct sum of f1, f2, . . . , ft

is a Boolean function f ∈ BP

t

i=1
ni,

P

t

i=1
mi

with a set of input variables {xi,j : 1 ≤ i ≤ t, 1 ≤

j ≤ ni}, which is defined as

f(x1,1, . . . , x1,n1
, x2,1, . . . , x2,n2

, . . . , xt,1, . . . , xt,nt
)

= (f1(x1,1, . . . , x1,n1
), f2(x2,1, . . . , x2,n2

), . . . , ft(xt,1, . . . , xt,nt
)).

If f is the direct sum of f1, . . . , ft, then each of the functions is called an element of f .
What is the relationship between the inversion complexity of f and that of its elements?
Trivially I(f) ≤

∑t
i=1 I(fi), but the result is far from tight. To see this, let fi ∈ Bn be a

function of decrease Θ(n) (e.g. Parity) for all i ∈ {1, 2, . . . , t}. From Markov’s theorem we
have I(fi) = ⌈log(d(fi) + 1)⌉ = Θ(log n), and I(f) ≤ ⌈log(tn + 1)⌉. Taking t = nΘ(1) gives
I(f) ≤ O(log n) and

∑t
i=1 I(fi) = nΘ(1), where a large gap between I(f) and

∑t
i=1 I(fi)

appears. This indicates that computing the direct sum of functions (with large decreases)
can benefit from interconnections between its seemingly independent elements. We will show
that this is not always the case if we adopt planar circuits as our computation model.

Theorem 4.9. Let fi ∈ W
ni

ki,mi
for all i ∈ {1, . . . , t}, if f is the direct sum of fis, then

IOUP (f) ≥
∑t

i=1⌈
ni−mi

ki

⌉.

of Theorem 4.9. It is similar to the proof of Theorem 4.7. For a collection of functions
f1, f2, . . . , ft where fi ∈ W

ni

ki,mi
, and their direct sum f , we call the vector (t, n1, n2, . . . , nt)

the representative vector of f . Given two representative vectors vi = (ti, ni,1, ni,2, . . . , ni,ti),
i = 0, 1, we say v0 < v1 if:
(1) t0 < t1, or
(2) t0 = t1 and ∃j ∈ {1, 2, . . . , t0} such that n0,j′ = n1,j′ for all 1 ≤ j′ < j and n0,j < n1,j.

This defines a total order on all representative vectors v, and our proof will be by induction
on v. The base case t = 1 is exactly Theorem 4.7. For the induction step, we can similarly
prove all the four lemmas and finish the rest part of the proof. The only difference is that,

16

when dealing with a special input variable xi, we need to identify which function it belongs
to.

Take the proof of Lemma 4.4 as an illustration. Suppose PI contains a prime implicant
of size 1, say xi,ji

. We assume ni > mi, since otherwise we can just ignore fi and apply
the induction hypothesis. We set xi,ji

to 1. By the second condition of Definition 4.6, we
can fix another k′ ≤ ki − 1 variables from {xi,j : 1 ≤ j ≤ ni} to make fi degenerate to

some f ′
i ∈ W

ni−k′−1
ki,mi

. The new direct sum function f ′ = (f1, . . . , fi−1, f
′
i , fi+1, . . . , ft) has

a representative vector less than f , so we can use the induction hypothesis to prove the
lemma.

It is straightforward from Theorems 4.1,4.9 and Corollary 4.8 that I(f) =
∑t

i=1 I(fi) if
each fi is Parity, Parity or Inverter, and f is the direct sum of all fi’s. This differs
from the situation in general circuits.

Limitation of the One-Input-Face Constraint: We show that restricting all input
vertices to be on the same face (or equivalently on the exterior face, or at the lowest level in
the plane) may increase the number of negation gates used for computing some functions.
We prove a stronger result, by showing a monotone (multi-output) function which has a
monotone upward planar circuit computing it, but cannot be computed by any monotone
one-input-face cylindrical circuits (and hence not computable by any monotone one-input-
face upward planar circuits). Here a circuit is called cylindrical if it can be embedded on a
cylinder surface without edge crossings and every edge goes upwards. It is easy to see that
cylindricality generalizes upward planarity.

Let MinMaxn(x1, x2, . . . , xn) = (
∧n

i=1 xi,
∨n

i=1 xi). Thus MinMaxn ∈ Bn,2 and com-
putes the minimum and maximum values among all input variables. It is easy to construct
a monotone upward planar circuit for it (Figure 4 Appendix A).

Theorem 4.10. Let n ≥ 3. Then MinMaxn can be computed by a monotone upward planar
circuit, but cannot be computed by any monotone one-input-face cylindrical circuit.

Proof. The upward planar circuit computing MinMaxn can be constructed easily, so we
only consider the latter inequality. For n ≥ 3, assume that there is a monotone one-input-
face cylindrical circuit C computing MinMaxn. According to the equivalent structure of
cylindrical circuits, we can regard it as a “disk” in the plane in which all input nodes are on
the fringe and all edges go inwards. Let O1 and O2 be the output gates computing

∨n
i=1 xi

and
∧n

i=1 xi respectively.
For each i ∈ {1, 2, 3}, consider the scenario where all variables but xi is set to 0. Since

O1 computes exactly xi in this case, we can find a “switching” path Pi from xi to O1, all
gates on which evaluate to xi. Due to the monotonicity of C, setting xi to 1 will fix all gates
on Pi to 1 no matter what values other variables are taken. The three paths P1, P2 and
P3 together with the outer circle containing input variables divide the whole disk into three
closed regions, and O2 must lie inside one of them. (It cannot lie on the boundary, since it
computes the And function.) Without loss of generality assume it is contained in the region
bounded by P1 and P2. Now we set all variables except x3 to 1, which makes all gates on

17

paths P1 and P2 fixed to be 1 and makes O2 compute exactly x3. But this is impossible
because x3 is disconnected from O2 by the two 1-paths.

4.2 Multilective Upward Planar Circuits

In this section we consider the inversion complexity in multilective planar circuits. Since mul-
tilective upward planar circuits naturally generalize formulas, we have I(f) ≤ IM−UP (f) ≤
IF (f) = d(f), where IM−UP (f) denote the minimum number of negations used for computing
f by any multilective upward planar circuit. Next we show that multilective upward planar
circuits are indeed more powerful than formulas; that is, relaxing the fan-out constraint will
save some negation gates. By a Boolean function we will mean a single-output Boolean
function.

Theorem 4.11 (Theorem 1.4 restated). For every Boolean function f , IM−UP (f) ≤ ⌈d(f)+1
2

⌉.

Proof. The proof follows a similar line to that of Markov’s. Recall that a connector of f0

and f1 is a function µ(y, y′, x) satisfying that µ(i, 1− i, x) = fi(x) for both i = 0, 1. Given a
circuit C, we say a vertex (an input variable or a gate) in G is out if it lies in the outer-face
of C. We say C is out-negationed if either C is monotone, or there is a negation gate in C
which is out, and the sub-circuit below it is monotone (contains no other negation gates).
We prove the following lemma about connectors.

Lemma 4.12. For i = 0, 1, let fi(x) be a Boolean function which can be computed by a
out-negationed multilective upward planar circuit containing ti negation gates. In addition
t1 = 1. Then f0 and f1 have a connector µ(y, y′, x) which can be computed by a multilective
upward planar circuit containing at most max{t0, t1} negation gates and exactly one input
node assigned with the variable y′. Moreover, this y′-node is out.

of Lemma 4.12. For i = 0, 1, let Ci be the out-negationed multilective upward planar circuit
computing fi which contains ti negation gates. If t0 = 0, we can simply use µ = (y′ ∧ f0) ∨
(y ∧ f1), which satisfies all constraints. In the following we assume t0 ≥ 1.

Let C = (y′ ∧ C0) ∨ (y ∧ C1). Let Ni be the out negation gate in Ci such that the sub-
circuit below it, denoted by Hi, is monotone. We combine N0 and N1 into a new vertex N ,
and then identify it as the output gate of another circuit (y′ ∧ H0)∨(y ∧ H1). Since Ni is out
in Ci, the resulting circuit (still call it C) can be made multilective upward planar. Note that
C contains two input vertices assigned y′, both of which are out. Combining them together
gives a multilective upward planar circuit containing t0 = max{t0, t1} negation gates and
exactly one copy of y′, which is also out. It is easy to check that this circuit computes a
connector of f0 and f1.

Note that the proof no longer holds when t1 = 2, since the circuit part C1 − H1 is not
monotone in this case, and we need to use more negations.

We will prove a stronger result: For every Boolean function f , there is a out-negationed
multilective upward planar circuit computing f which contains at most ⌈d(f)+1

2
⌉ negation

gates. This is proved by induction on d(f). When d(f) ≤ 1, we simply use the formula

18

construction [12], which uses d(f) ≤ ⌈d(f)+1
2

⌉ negation gates. Next we assume that d(f) ≥ 2,
and the statement holds for all functions f ′ such that d(f ′) < d(f).

Let S ⊆ {0, 1}n be the collection of all inputs x such that every chain Y starting with
x satisfies that dY (f) ≤ 1. Then, for every chain Y ending at a vector x 6∈ S, it holds
that dY (f) ≤ d(f) − 2, since otherwise we can find a chain with decrease ≥ d(f) + 1 by
concatenating Y and the chain witnessing x 6∈ S. It is easy to see that (x ∈ S and x ≤ y) ⇒
y ∈ S.

Define two functions f0(x) and f1(x) as follows:

f0(x) =

{

1 if x ∈ S,
f(x) if x 6∈ S,

and

f1(x) =

{

f(x) if x ∈ S,
0 if x 6∈ S.

Then we have d(f0) ≤ d(f) − 2 and d(f1) ≤ 1, and

f(x) =

{

f1(x) if x ∈ S,
f0(x) if x 6∈ S.

It is obvious that f(x) = µ(hS(x), hS(x), x), where µ(y, y′, x) is any connector of f0 and
f1. By the induction hypothesis and by Lemma 4.12, there exists a multilective upward
planar circuit computing some connector µ which contains exactly one copy of y′ and at
most max{⌈(d(f)−1

2
⌉, 1} = ⌈d(f)−1

2
⌉ negation gates. If we replace every occurrence of y with a

monotone formula computing hS(x), and replace the only copy of y′ with a formula containing
1 negation gate that computes hS(x), we will obtain a multilective upward planar circuit

computing f which contains at most ⌈d(f)+1
2

⌉ negation gates. Note that by Lemma 4.12,
the vertex assigned with y′ is out. Therefore, the resulting circuit computing f is an out-
negationed multilective upward planar circuit. This completes the proof of Theorem 4.11.

References

[1] K. Amano and A. Maruoka. A superpolynomial lower bound for a circuit computing the
clique function with at most (1/6)log log negation gates. SIAM Journal of Computing,
35(1):201–216, 2005.

[2] D. A. M. Barrington, C.-J. Lu, P. B. Miltersen, and S. Skyum. On Monotone Pla-
nar Circuits. In Proceedings of the 14th Annual IEEE Conference on Computational
Complexity (CCC), pages 24–31, 1999.

[3] M. Beynon and J. Buckle. On the planar monotone computation of boolean functions.
Theor. Comput. Sci., 53(2-3):267–279, 1987.

19

[4] T. Chakraborty and S. Datta. One-input-face MPCVP is hard for L, but in LogDCFL.
In Proc. of 26th FST TCS Conference, 2006.

[5] M. Fischer. The complexity of negation-limited networks (a brief survey). Lecture Notes
in Computer Science, 33:71–82, 1974.

[6] M. Jansen and J. Sarma M.N. Balancing Bounded Treewidth Circuits. In Proeedings
of CSR 2010 (To Appear), 2010.

[7] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. In STOC ’88: Proceedings of the twentieth annual ACM symposium
on Theory of computing, pages 539–550, 1988.

[8] N. Limaye, M. Mahajan, and J. Sarma M.N. Upper bounds for monotone planar circuit
value and variants. Computational Complexity, 18(3):377–412, 2009.

[9] A. A. Markov. On the inversion complexity of a system of functions. J. ACM, 5(4):331–
334, 1958.

[10] I. L. Markov and Y. Shi. Simulating quantum computation by contracting tensor net-
works. SIAM J. Comput., 38(3):963–981, 2008.

[11] W. F. McColl. On the planar monotone computation of threshold functions. In Pro-
ceedings of 2nd annual symposium on theoretical aspects of computer science (STACS
85), pages 219–230, 1985.

[12] H. Morizumi. Limiting negations in formulas. In Proceedings of 36th International
Colloquium on Automata, Languages and Programming, volume 5555 of Lecture Notes
in Computer Science, pages 701–712. Springer, 2009.

[13] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. In
STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pages 287–292, 1990.

[14] A. A. Razborov. Lower bounds on the monotone complexity of some boolean functions.
Soviet Math. Dokl., 281:798–801, 1985.

[15] M. Santha and C. Wilson. Limiting negations in constant depth circuits. SIAM J.
Comput., 22(2):294–302, 1993.

[16] J. E. Savage. The performance of multilective vlsi algorithms. Journal of Computer
and System Science, 29(2):243–273, 1984.

[17] S. C. Sung and K. Tanaka. Limiting negations in bounded-depth circuits: An extension
of markovs theorem. In Proceedings of International Symposium on Algorithms and
Computation (ISAAC), volume 2906 of Lecture Notes in Computer Science, pages 108–
116. Springer, 2003.

20

Figure 1: The variable xi is insulated by the two 1-paths.

[18] E. Tardos. The Gap Between Monotone and Non-monotone Circuit Complexity is
Exponential. Combinatorica, 7:393–394, 1987.

[19] L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984.

[20] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer New
York Inc., 1999.

[21] H. Yang. An NC algorithm for the general planar monotone circuit value problem. In
Proc. 3rd IEEE Symp. on Parallel and Distributed Processing, pages 196–203, 1991.

A Illustrative Figures

21

Figure 2: xr and xj are disconnected from G in respective case.

Figure 3: Planar circuits computing XOR and EQUIV

Figure 4: Upward Planar Circuit for MAXMIN

22

Figure 5: Replacement

23

	Introduction
	Preliminaries
	Bounded Treewidth Circuits
	Inversion Complexity in Bounded Treewidth Circuits
	Inversion Complexity under Polynomial Size Constraints

	Inversion Complexity in Planar Circuits
	Lower Bounds for One-Input-Face Upward Planar Circuits
	Multilective Upward Planar Circuits

	Illustrative Figures

