Deterministic Identity Testing of Read-Once Algebraic Branching Programs

Maurice Jansen* Youming Qiao* Jayalal Sarma M.N.*

January 23, 2014

Abstract

In this paper we study polynomial identity testing of sums of k read-once algebraic branching programs (Σ_{k}-RO-ABPs), generalizing the work of Shpilka and Volkovich [1, 2], who considered sums of k read-once formulas (Σ_{k}-RO-formulas). We show that Σ_{k}-RO-ABPs are strictly more powerful than Σ_{k}-RO-formulas, for any $k \leq\lfloor n / 2\rfloor$, where n is the number of variables. Nevertheless, as a starting observation, we show that the generator given in 2] for testing a single RO-formula also works against a single RO-ABP.

For the main technical part of this paper, we develop a property of polynomials called alignment. Using this property in conjunction with the hardness of representation approach of [1. 2], we obtain the following results for identity testing Σ_{k}-RO-ABPs, provided the underlying field has enough elements (more than $k n^{4}$ suffices): 1. Given free access to the RO-ABPs in the sum, we get a deterministic algorithm that runs in time $O\left(k^{2} n^{7} s\right)+n^{O(k)}$, where s bounds the size of any largest RO-ABP given on the input. This implies we have a deterministic polynomial time algorithm for testing whether the sum of a constant number of RO-ABPs computes the zero polynomial. 2. Given black-box access to the RO-ABPs computing the individual polynomials in the sum, we get a deterministic algorithm that runs in time $k^{2} n^{O(\log n)}+n^{O(k)}$. 3. Finally, given only black-box access to the polynomial computed by the sum of the k RO-ABPs, we obtain an $n^{O(k+\log n)}$ time deterministic algorithm. Items 1. and 3. above strengthen two main results of [2] (Theorems 2 and 3, respectively, for the case of non-preprocessed Σ_{k}-RO-formulas).

1 Introduction

In this paper we make contributions to the program of constructing increasingly more powerful pseudo-random generators useful against arithmetic circuits. As argued by Agrawal [3], this program is an approach towards resolving Valiant's Hypothesis, which states that the algebraic complexity classes VP and VNP are distinct.

Central to this program is the PIT problem: given an arithmetic circuit C with input variables $x_{1}, x_{2} \ldots x_{n}$ over a field \mathbb{F}, test if $C\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ computes the zero polynomial in the ring

[^0]$\mathbb{F}\left[x_{1}, x_{2}, \ldots x_{n}\right]$. This is a well-studied algorithmic problem with a long history and a variety of connections and applications. See [4] for a recent survey. Efficient randomized algorithms were proposed independently by Schwartz [5] and Zippel [6]. Obtaining a deterministic algorithm for the problem seemed surprisingly elusive.

It was originally Kabanets and Impagliazzo [7] who showed the strong connection between derandomizing PIT and proving circuit lower bounds. They showed that giving a deterministic polynomial time (even subexponential time) identity testing algorithm means either that NEXP $\nsubseteq \mathrm{P} /$ poly, or that the permanent has no polynomial size arithmetic circuits. This was further strengthened in [3], where it was shown that giving a black-box derandomization of PIT implies that an explicit multilinear polynomial has no subexponential size arithmetic circuits.

Since the seminal work of [7], there has been a lot of attention and an impressive amount of progress in the area. Some of the special cases for which progress has been reported are: depth- 2 arithmetic formulas [8, 9, 10], depth-3 and depth-4 arithmetic circuits with bounded top fanin [11, 12, 13, 14, 15, 16, and non-commutative arithmetic formulas [17]. In a surprising result, Agrawal and Vinay [18] showed that the black-box derandomization of PIT for only depth- 4 circuits is almost as hard as that for general arithmetic circuits.

Partly aimed at making progress towards an efficient deterministic PIT algorithm for multilinear formulas, Shpilka and Volkovich [1, 2] studied the arithmetic read-once formula model. An arithmetic read-once formula is given by a tree whose nodes are taken from $\{+, \times\}$, and whose leaves are variables or field constants, subject to the restriction that each variables x_{i} is allowed to appear at most once. In their work, efficient black-box deterministic PIT algorithms are given for Σ_{k}-RO-formulas, for "moderate" k.

We remark that due to a construction by Valiant [19], given a RO-formula F of size s computing f, one can express f as a "read-once" determinantal expression $f=\operatorname{det}(M)$, where M is a $O(s)$ dimensional matrix, whose entries are variables or field elements. In this, each variable x_{i} appears at most once in M. Identity testing read-once determinantal expressions, is an important special case of the PIT problem, as it is well-known that the bipartite perfect matching problem (BIPARTITEPM) reduces to that form. Giving a black-box algorithm for testing such expressions has the potential of putting BIPARTITE-PM in NC, which is a prominent open problem in complexity theory regarding parallelizability [20, 21, 22, 23].

1.1 Results

We consider a generalization of the above mentioned RO-formulas, namely read-once algebraic branching programs (RO-ABP) 1 . An algebraic branching program (ABP) is a layered directed acyclic graph with two special vertices s and t. Each edge is assigned a weight, which is an element of $X \cup \mathbb{F}$, where X is a set of variables. For a path in the graph its weight is taken to be the product of the weight on its edges. The ABP itself computes a polynomial which is the sum of the weights of all paths from s to t. The ABP is said to be read-once if each variable appears on at most one edge. A polynomial $f \in \mathbb{F}[X]$ is called a $R O$ - $A B P$-polynomial if there exists a RO-ABP which computes f.

Due to [19], if f can be computed by a RO-formula of size s, then f can be computed by a ROABP of size $O(s)$. However, RO-ABPs are strictly more powerful than RO-formulas. Appendix A shows a RO-ABP computing $g=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{2 n-1} x_{2 n}$. Example 3.12 in [1] shows that

[^1]g can not be computed by a RO-formula, if $n \geq 2$. We remark that the RO-ABP model in not universal, e.g. for $n \geq 3, \prod_{1 \leq i<j \leq n} x_{i} x_{j}$, is not an RO-ABP-polynomial (See Appendix B). By [19], if f is computable by a RO-ABP of size s, then we can write f as a read-once determinantal expression $f=\operatorname{det}(M(x))$, where M is a matrix of dimension $O(s)$.

The results we will mention next make progress towards identity testing read-once determinantal expressions. This contributes to the program for separating VP and VNP mentioned in previous section (See e.g. [24 for a direct connection).

Our first result is to show that the Shpilka-Volkovich generator (SV-generator) used in 2] for identity testing RO-formulas also provides a test for RO-ABPs. This generator has also very recently been applied to identity testing multilinear depth 4 circuits with bounded top fan-in [16]. It is defined as follows:

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq \mathbb{F}$ be a set of size n. For every $i \in[n]$, let $u_{i}(w)$ be the i th Lagrange interpolation polynomial on A. Then $u_{i}(w)$ is a polynomial of degree $n-1$ satisfying that $u_{i}\left(a_{j}\right)=1$ if $j=i$ and 0 otherwise. For every $i \in[n]$ and $k \geq 1$, define

$$
G_{k}^{i}\left(y_{1}, y_{2}, \ldots, y_{k}, z_{1}, z_{2}, \ldots, z_{k}\right)=\sum_{j \in[k]} u_{i}\left(y_{j}\right) z_{j} .
$$

and let $G_{k}\left(y_{1}, y_{2}, \ldots, y_{k}, z_{1}, z_{2}, \ldots, z_{k}\right): \mathbb{F}^{2 k} \rightarrow \mathbb{F}^{n}$, be defined by $G_{k}=\left(G_{k}^{1}, G_{k}^{2}, \ldots, G_{k}^{n}\right)$. We refer to the polynomial mapping G_{k} as the k th-order SV-generator, or SV-generator for short. We have the following "Generator Lemma":

Lemma 1. Let $f \in \mathbb{F}[X]$ be a nonzero RO-ABP-polynomial with $|\operatorname{var}(f)| \leq 2^{m}$, for some $m \geq 0$. Then $f\left(G_{m+1}\right) \not \equiv 0$.

To make further progress, we consider sums of k RO-ABPs. We give an explicit hitting-set of size $n^{O(k+\log n)}$ for Σ_{k}-RO-ABPs. Namely we have the following theorem:

Theorem 1. Let $\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}$ be a set of k RO-ABPs. Let $f=\sum_{i \in[k]} f_{i}$. Provided $|\mathbb{F}|>k n^{4}$, we have that $f \equiv 0 \Longleftrightarrow \forall a \in \mathcal{W}_{5 k}^{n}+\mathcal{A}_{k}, f(a)=0$, where $\mathcal{W}_{k}^{n}=\left\{y \in\{0,1\}^{n} \mid\right.$ wt $\left.(y) \leq k\right\}$ and $\mathcal{A}_{k}=G_{m}\left(V^{2 m}\right)$ for the m th-order $S V$-generator with $m=\lceil\log n\rceil+1$, and $V \subset \mathbb{F}$ is a arbitrary set of size $k n^{4}+1$.

In the above for $V, W \subseteq F^{n}, V+W$ denotes the set $\{v+w: v \in V, w \in W\}$. By Theorem 1 , we obtain the following black-box PIT for Σ_{k}-RO-ABPs:

Theorem 2. Let $f=\sum_{i \in[k]} f_{i}$ be a sum of $k R O-A B P$-polynomials in n variables. Let \mathbb{F} be a field with $|\mathbb{F}|>k n^{4}$. Given black-box access to f, it can be decided deterministically in time $n^{O(k+\log n)}$ whether $f \equiv 0$.

This strengthens a main result of [2] (Theorem 3, for the non-preprocessed ${ }^{2}$ case), which provides a deterministic $n^{O(k+\log n)}$ time PIT algorithm for Σ_{k}-RO-formulas. Namely, we prove a strict separation between Σ_{k}-RO-formula and Σ_{k}-RO-ABP, for $k \leq\lfloor n / 2\rfloor$. We show that

Theorem 3. $\prod_{i \in[2 n], i}$ is odd $\prod_{j \in[2 n], j}$ is even $x_{i} x_{j}$ can not be written as a sum of $\lfloor n / 2\rfloor R O$-formulas.
The polynomial of Theorem 3 can be computed by a single RO-ABP of size $O\left(n^{2}\right)$ (see Section (3). In the non-black-box setting we will prove the following result:

[^2]Theorem 4. Let $\left\{A_{i}\right\}_{i \in[k]}$ be a set of $k R O-A B P s$ in n variables. Let \mathbb{F} be a field with $|\mathbb{F}|>k n^{2}$. Given $\left\{A_{i}\right\}_{i \in[k]}$ on the input, it can be decided deterministically in time $O\left(k^{2} n^{7} s\right)+n^{O(k)}$ whether $\sum_{i \in[k]} f_{i} \equiv 0$, where f_{i} is the RO-ABP-polynomial computed by A_{i}, for $i \in[k]$.

Since the construction in [19] can be computed efficiently, this strengthens Theorem 2 in [2], for the case of non-preprocessed Σ_{k}-RO-formulas.

Finally, if black-box access is granted to the individual f_{i} 's, which we call the semi-black-box setting, we obtain the following result:

Theorem 5. Let $\left\{f_{i}\right\}_{i \in[k]}$ be a set of $k R O-A B P$-polynomials in n variables. Let \mathbb{F} be a field with $|\mathbb{F}|>k n^{2}$. Given black-box access to each individual f_{i}, it can decided deterministically in time $k^{2} n^{O(\log n)}+n^{O(k)}$ whether $\sum_{i \in[k]} f_{i} \equiv 0$.

1.2 Techniques for Σ_{k}-RO-ABP PIT

The results for Σ_{k}-RO-ABP PIT are obtained through the hardness of representation approach of [1, 2]. There the PIT algorithm is derived from a statement that $x_{1} x_{2} \ldots x_{n}$ cannot be expressed as a sum of $k \leq n / 3$ RO-formula computable polynomials $\left\{f_{i}\right\}_{i \in[k]}$, if the polynomials f_{i} satisfy some special property. We do not need to define this special property for the discussion here, except that we should name it: $\overline{0}$-justification.

Unfortunately, the property of $\overline{0}$-justification, does not work for the Σ_{k}-RO-ABP model. With some thought it can be seen that the monomial $x_{1} x_{2} \ldots x_{n}$ is expressible as the sum of three $\overline{0}$-justified RO-ABP-polynomials. Our main technical contribution is the development of a new "special property", called alignment, for which a hardness of representation theorem can still be proved, but which also can be satisfied simultaneously for a collection of RO-ABP-polynomials by means of an efficiently computable coordinate shift.

With regards to the latter, consider $f=f_{1}+f_{2}+\ldots+f_{k}$, where each f_{i} is a RO-ABP-polynomial. Observe that $\forall v \in \mathbb{F}^{n}, f \equiv 0 \Longleftrightarrow f\left(x_{1}+v_{1}, x_{2}+v_{2}, \ldots, x_{n}+v_{n}\right) \equiv 0$. With some technical work, we will establish a sufficient condition for alignment. With it we show that we can compute a coordinate shift v such that all $f_{i}(x+v)$ are aligned. Such a shift v is called a simultaneous alignment. In the case of having only black-box access to f, we will show we have a "small" set of candidates containing at least one simultaneous alignment. The PIT algorithms will follow from this.

The rest of this paper is organized as follows. Section 2 contains preliminaries. In Section 3 we compare Σ_{k}-RO-formulas and Σ_{k}-RO-ABPs. In Section 4 we prove Generator Lemma 1 . In Section 5 we develop the tools regarding alignment. Then in Section 6 we show how to compute a simultaneous alignment. Section 7 contains the hardness of representation theorem for RO-ABPs. From these developments, we put the PIT algorithms together in Section 8,

2 Preliminaries

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of variables and let \mathbb{F} be a field. Let $\mathcal{W}_{k}^{n}=\left\{y \in\{0,1\}^{n} \mid w t(y) \leq\right.$ $k\}$, where $w t(y)$ counts the number of ones in y.

Definition 1. ($R O-A B P s$) An algebraic branching program ($A B P$) is a 4-tuple $A=(G, w, s, t)$, where $G=(V, E)$ is an edge-labeled directed acyclic graph for which the vertex set V can be parti-
tioned into levels $L_{0}, L_{1}, \ldots, L_{d}$, where $L_{0}=s$ and $L_{d}=t$. Vertices s and t are called the source and sink of B, respectively. Edges may only go between consecutive levels L_{i} and L_{i+1}.

The label function $w: E \rightarrow X \cup \mathbb{F}$ assigns variables or field constants to the edges of G. For a path p in G, we extend the weight function by $w(p)=\prod_{e \in p} w(e)$. Let $P_{i, j}$ denote the collection of all directed paths p from i to j in G. The program A computes the polynomial $\hat{A}:=\sum_{p \in P_{s, t}} w(p)$. The size of A is defined to be $|V|$.

An ABP is said to be read-once if $\left|w^{-1}\left(x_{i}\right)\right| \leq 1$, for each $x_{i} \in X$. That is, every variable is read at most once by the program. A polynomial $f \in \mathbb{F}[X]$ is called a $R O$ - $A B P$-polynomial, if there exists a RO-ABP which computes f. We use the following notation: for x_{i} present on $\operatorname{arc}(v, w)$ in a RO-ABP $A: \operatorname{begin}\left(x_{i}\right)=v$ and $\operatorname{end}\left(x_{i}\right)=w$. We let $\operatorname{source}(A)$ and $\operatorname{sink}(A)$ stand for the source and sink of A. For any nodes v, w in A, we denote the subprogram with source v and $\operatorname{sink} w$ by $A_{v, w}$. A layer of a RO-ABP A is any subgraph induced by two consecutive levels L_{i} and L_{i+1} in A. We will assume RO-ABPs are in the form given by the following straightforwardly proven lemma:

Lemma 2. If $f \in \mathbb{F}[X]$ is a $R O-A B P$-polynomial, then f can be computed by a $R O-A B P A$, where every layer contains at most one variable-labeled edge.

Let f be a polynomial in the ring $\mathbb{F}[X]$. For $\alpha \in \mathbb{F},\left.f\right|_{x_{i}=\alpha}$ denotes the polynomial $f\left(x_{1}, x_{2}, \ldots x_{i-1}, \alpha, x_{i+1}, \ldots, x_{n}\right)$. Extending this to sets of variables, for a subset $I \subseteq[n]$ and an assignment $a \in \mathbb{F}^{n},\left.f\right|_{x_{I}=a_{I}}$ is the the polynomial resulting from setting the variable x_{i} to a_{i} in f for every $i \in I$. This is not to be confused with the following notation: for $S \subseteq \mathbb{F}^{n}$, we will write $f_{\mid S} \equiv 0$ to denote that $\forall a \in S, f(a)=0$.

The following two notions are taken from [2]. We say that a polynomial f depends on a variable x_{i} if there exists an $a \in \mathbb{F}^{n}$ and $b \in \mathbb{F}$, such that $f\left(a_{1}, a_{2}, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{n}\right) \neq$ $f\left(a_{1}, a_{2}, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right)$. The set of variables x_{i} that f depends on is denoted by $\operatorname{Var}(f)$. For a polynomial $f \in \mathbb{F}[X]$, the partial derivative with respect to x_{i}, denoted by $\frac{\partial f}{\partial x_{i}}$, is defined as $\left.f\right|_{x_{i}=1}-\left.f\right|_{x_{i}=0}$. We will freely use the properties listed for this notion in [2]. For example, a multilinear polynomial f depends on x_{i} if and only if $\frac{\partial f}{\partial x_{i}} \not \equiv 0$. In addition, $\frac{\partial f}{\partial x_{i}}$ does not depend on x_{i}. Partial derivatives commute, which we express by saying that $\frac{\partial^{2} f}{\partial x_{i} x_{j}}=\frac{\partial^{2} f}{\partial x_{j} x_{i}}$. Setting values to variables commutes with taking partial derivatives in the following way: $\forall i \neq j,\left.\frac{\partial f}{\partial x_{i}}\right|_{x_{j}=a}=\frac{\partial\left(\left.f\right|_{x_{j}=a}\right)}{\partial x_{i}}$.
Lemma 3. Let $f \in \mathbb{F}[X]$ be a RO-ABP-polynomial, then $\frac{\partial f}{\partial x_{i}}$ is a $R O$-ABP-polynomial.
Proof. Let $p=|\operatorname{var}(f)|$. In case $p=0$ it is trivial. Assume $p>0$. If $x_{i} \notin \operatorname{var}(f)$, then $\frac{\partial f}{\partial x_{i}} \equiv 0$, in which case the property trivially holds. Now suppose $x_{i} \in \operatorname{var}(f)$. Hence x_{i} must appear somewhere in A. Say x_{i} is on the $\operatorname{arc}\left(v_{1}, w_{1}\right)$ from level L_{j} to L_{j+1}, where $L_{j}=\left\{v_{1}, v_{2}, \ldots, v_{m_{1}}\right\}$ and $L_{j+1}=\left\{w_{1}, w_{2}, \ldots, w_{m_{2}}\right\}$, for certain j, m_{1}, m_{2}. We can write

$$
\begin{equation*}
f=\sum_{a \in\left[m_{1}\right]} \sum_{b \in\left[m_{2}\right]} f_{s, v_{a}} w\left(v_{a}, w_{b}\right) f_{w_{b}, t}, \tag{1}
\end{equation*}
$$

where for any nodes p and q in $A, f_{p, q}$ is the polynomial computed by subprogram $A_{p, q}$. Then

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}} & =f_{\mid x_{i}=1}-f_{\mid x_{i}=0} \\
& =\sum_{a \in\left[m_{1}\right]} \sum_{b \in\left[m_{2}\right]} f_{s, v_{a}} w\left(v_{a}, w_{b}\right)_{\mid x_{i}=1} f_{w_{b}, t}-\sum_{a \in\left[m_{1}\right]} \sum_{b \in\left[m_{2}\right]} f_{s, v_{a}} w\left(v_{a}, w_{b}\right)_{\mid x_{i}=0} f_{w_{b}, t} \\
& =\sum_{a \in\left[m_{1}\right]} \sum_{b \in\left[m_{2}\right]} f_{s, v_{a}}\left(w\left(v_{a}, w_{b}\right)_{\mid x_{i}=1}-w\left(v_{a}, w_{b}\right)_{\mid x_{i}=0}\right) f_{w_{b}, t} \\
& =f_{s, v_{1}} f_{w_{1}, t}
\end{aligned}
$$

Hence we obtain a valid RO-ABP computing $\frac{\partial f}{\partial x_{i}}$ from A by setting the label of the wire $\left(v_{1}, w_{1}\right)$ to 1 , and removing all other wires between layers L_{j} and L_{j+1}.

The proof of the above lemma provides the insight that a RO-ABP computing $\frac{\partial f}{\partial x_{i}}$ can be obtained from a RO-ABP computing f, by setting $x_{i}=1$ and removing all other edges in the layer containing x_{i}. This fact will be used at several places in the paper. Finally, observe the following simple-but-useful factor-lemma:

Lemma 4. If $f \in \mathbb{F}[X]$ is a $R O$ - $A B P$-polynomial such that $f \not \equiv 0$ and $f=g \cdot\left(\beta x_{i}-\alpha\right)$, then g is a RO-ABP-polynomial.

Proof. This follows from the fact that for every γ with $\beta \gamma-\alpha \neq 0, g=\frac{1}{\beta \gamma-\alpha} \cdot f_{\mid x_{i}=\gamma}$.

2.1 Combinatorial Nullstellensatz and a Lemma by Gauss

Lemma 5 (Lemma 2.1 in $[25]$). Let $f \in \mathbb{F}[X]$ be a nonzero polynomial such that the degree of f in x_{i} is bounded by r_{i}, and let $S_{i} \subseteq \mathbb{F}$ be of size at least $r_{i}+1$, for all $i \in[n]$. Then there exists $\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in S_{1} \times S_{2} \times \ldots \times S_{n}$ with $f\left(s_{1}, s_{2}, \ldots, s_{n}\right) \neq 0$.
Lemma 6. (Gauss) Let $P \in \mathbb{F}[X, y]$ be a nonzero polynomial, and let $g \in \mathbb{F}[X]$ be such that $\left.P\right|_{y=g(x)} \equiv 0$. Then $y-g(x)$ is an irreducible factor of P in the ring $\mathbb{F}[X]$.

3 Separation of RO-ABP and $\Sigma_{\lfloor n / 2\rfloor}$-RO-formulas

For $n \geq 2$, let f_{n} be defined as

$$
f_{n}\left(x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{2 n}\right)=\prod_{i \in[2 n], i \text { is odd } j \in[2 n], j \text { is even }} \prod_{i} x_{j}
$$

Proposition 1. f_{n} can be computed by an $R O-A B P$ of size $O\left(n^{2}\right)$.
Proof. The RO-ABP is shown in Figure 1. Note that between the $(n+1)$ th level and the $(n+2)$ th level there is an n by n complete bipartite graph.

Proposition 2. A polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that contains three terms of form $\alpha x_{i} x_{j}+\beta x_{j} x_{k}+$ $\gamma x_{k} x_{l}$, where $i, j, k, l \in[n]$ are pairwise different, and $\alpha, \beta, \gamma \in \mathbb{F}$ are nonzero, can not be computed by a $R O$-formula, for $n \geq 4$.

Figure 1: A RO-ABP computing f_{n}.

Proof. For the purpose of contradiction, suppose there is a RO-formula F computing p. Setting all $x_{m}=0$, for $m \in[n] \backslash\{i, j, k, l\}$, would result in an RO-formula F^{\prime} computing $p^{\prime}\left(x_{i}, x_{j}, x_{k}, x_{l}\right)=$ $\alpha x_{i} x_{j}+\beta x_{j} x_{k}+\gamma x_{k} x_{l}+a x_{i}+b x_{j}+c x_{k}+d x_{l}+e$. However, p^{\prime} can not be computed by an RO-formula. One argues this in a similar manner as for $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}$ (See example 3.12 in [1]).

Consider the complete bipartite graph $G_{n}=\left(V_{n}, E_{n}\right)$ for f_{n}, called the graph associated with f_{n}, shown in Figure 2. Every edge represents a term in f_{n}. The term $x_{i} x_{j}+x_{j} x_{k}+x_{k} x_{l}$ can be viewed as a length-3 path in G_{n}.

Proposition 3. Let $n \geq 2$. In G_{n}, for an edge set $S \subseteq E_{n}$ with $|S| \geq 2 n-1$, S must contain a length-3 path.

Proof. We just need to prove that for G_{n}, the maximum "length-3 path free" edge set is of size at most $2(n-1)$. This is proved by induction on n. For $n=2$, it is easy to see that it holds. Suppose for $n<l$ the claim holds. Then for $n=l$, for any length- 3 path free edge set S, consider the following two cases:

1. If there exists an edge $e=(u, v) \in S$, for which u or v has no other outgoing edges, let $S^{\prime}=S \backslash\{e\}$. S^{\prime} is a length-3 path free set in G_{l-1}. By induction, $\left|S^{\prime}\right| \leq 2(l-2)$. Thus S has at most $1+2(l-2)<2(l-1)$ edges.
2. Otherwise, partition the vertices adjacent to edges in S into two sets V_{1} and V_{2}, where V_{1} contains all vertices of degree one, and V_{2} contains all vertices of degree larger than one.

Figure 2: The bipartite graph G_{n} for f_{n}.

It is noted that since no length-3 paths exist, we have that $|S|=\left|V_{1}\right|$. If $\left|V_{2}\right| \geq 2$, then $\left|V_{1}\right| \leq 2 l-2=2(l-1)$, since there are at most $2 l$ vertices adjacent to edges in S. In case $\left|V_{2}\right|=1$, then S is a star, i.e. a single vertex u connected to a collection of vertices $v_{1}, v_{2}, \ldots, v_{k}$. Then $k \leq l$ and $|S|=k \leq l \leq 2(l-1)$, for $l \geq 2$.

Theorem 6. f_{n} can not be represented as a sum of $\lfloor n / 2\rfloor R O$-formulas.
Proof. For the purpose of contradiction, suppose f_{n} can be represented as a sum of $\lfloor n / 2\rfloor$ RO-formula-polynomials $q_{1}, q_{2}, \ldots, q_{\lfloor n / 2\rfloor}$. Let $G_{n}=\left(V_{n}, E_{n}\right)$ be the graph associated with f_{n}. For any q_{i}, let $S_{i} \subseteq E_{n}$ be the set of edges representing the terms appearing in q_{i} of the form $x_{a} x_{b}$, where $a \in[2 n]$ is even, and $b \in[2 n]$ is odd. Note that since f has n^{2} many terms, some q_{i} should have $\left|S_{i}\right| \geq 2 n$. Then by Claim 3, S_{i} contains a length-3 path. Therefore $\alpha x_{i} x_{j}+\beta x_{j} x_{k}+\gamma x_{k} x_{l}$ appears in q_{i}, for distinct i, j, k and nonzero constants $\alpha, \beta, \gamma \in \mathbb{F}$. Due to Claim 2, q_{i} can not be computed by a RO-formula, which is a contradiction.

4 Proof of Generator Lemma 1

Let $p=|\operatorname{Var}(f)|$. The proof proceeds by induction on p. The bases $p=0$ and $p=1$ trivially hold.
Suppose $p>1$. Hence $m \geq 1$. Consider arbitrary RO-ABP A computing f. Let s and t be the source and sink of A, respectively. Wlog. assume that only the p variables in $\operatorname{Var}(f)$ are present in A, and assume A satisfies the condition yielded by Lemma 2. Observe that for some variable x_{i} there are at most $p / 2$ variables in layers before the layer containing x_{i}, and at most $p / 2$ variables in layers after. (If p is odd it splits $((p-1) / 2),(p-1) / 2)$ if p is even it splits $(p / 2-1, p / 2)$).

Say x_{i} is on the $\operatorname{arc}\left(v_{1}, w_{1}\right)$ from layer L_{j} to L_{j+1}, where $L_{j}=\left\{v_{1}, v_{2}, \ldots, v_{m_{1}}\right\}$ and $L_{j}=$ $\left\{v_{1}, v_{2}, \ldots, v_{m_{2}}\right\}$, for certain j, m_{1}, m_{2}. We can write

$$
\begin{equation*}
f=\sum_{a=1}^{m_{1}} f_{s, v_{a}} f_{v_{a}, t}, \tag{2}
\end{equation*}
$$

where for any nodes p and q in $A, f_{p, q}$ is the polynomial computed by subprogram of $A_{p, q}$. Consider $f^{\prime}=f\left(G_{m}^{1}, \ldots, G_{m}^{i-1}, x_{i}, G_{m}^{i+1}, \ldots, G_{m}^{n}\right)$.
Claim 1. Write $f^{\prime}=x_{i} \cdot \frac{\partial f}{\partial x_{i}}\left(G_{m}^{1}, \ldots, G_{m}^{i-1}, G_{m}^{i+1}, \ldots, G_{m}^{n}\right)+f\left(G_{m}^{1},, \ldots, G_{m}^{i-1}, 0, G_{m}^{i+1}, \ldots, G_{m}^{n}\right)$. Then $\frac{\partial f}{\partial x_{i}}\left(G_{m}^{1}, \ldots, G_{m}^{i-1}, G_{m}^{i+1}, \ldots, G_{m}^{n}\right) \not \equiv 0$.

Proof. Since f depends on x_{i} and f is multilinear, $\frac{\partial f}{\partial x_{i}} \not \equiv 0$. Let $f^{\prime \prime}=\frac{\partial f}{\partial x_{i}}$. We will show that $f^{\prime \prime}\left(G_{m}\right) \not \equiv 0$. Observe that in the r.h.s. of (2) only $f_{v_{1}, t}$ depends on x_{i}. This implies that $f^{\prime \prime}=\frac{\partial f_{v_{1}, t}}{\partial x_{i}} \cdot f_{s, v_{1}}$. Observe that $\left|\operatorname{Var}\left(f_{s, v_{1}}\right)\right|$ and $\left|\operatorname{Var}\left(\frac{\partial f_{v_{1}, t}}{\partial x_{i}}\right)\right|$ are both at most $p / 2$. Since $f^{\prime \prime} \not \equiv 0$, both $f_{s, v_{1}}$ and $\frac{\partial f_{v_{1}, t}}{\partial x_{i}}$ are not identically zero. Certainly $f_{s, v_{1}}$ can be computed by a RO-ABP. By Lemma3, we know also $\frac{\partial f_{v_{1}, t}}{\partial x_{i}}$ can be computed by a RO-ABP. As $p / 2<p$, the induction hypothesis applies. Since $p / 2 \leq 2^{m-1}$, it yields that $f_{s, v_{1}}\left(G_{m}\right) \not \equiv 0$ and $\frac{\partial f_{v_{1}, t}}{\partial x_{i}}\left(G_{m}\right) \not \equiv 0$. Therefore $f^{\prime \prime}\left(G_{m}\right) \not \equiv 0$. This proves the claim.

Recall the set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ used for the construction of the SV-generator. By Observation 5.2 in [2], $f\left(G_{m+1}\right)_{\mid y_{m+1}=a_{i}}=f_{\mid x_{i}=G_{m}^{i}+z_{m+1}}^{\prime}$. Since z_{m+1} does not appear in G_{m}^{j} for any j, we get by Claim 1 that $f\left(G_{m+1}\right)_{\mid y_{m+1}=a_{i}} \not \equiv 0$. Hence $f\left(G_{m+1}\right) \not \equiv 0$.

5 X-Aligned RO-ABP-polynomials

The following lemma leads up to our central definition:
Lemma 7. . For all $i \in[k]$, Let $f \in \mathbb{F}[X]$ be a $R O$-ABP-polynomial with $|\operatorname{Var}(f)| \geq 3$. Then for any $x_{i} \in \operatorname{Var}(f)$, there exist distinct $x_{j}, x_{k} \in X \backslash\left\{x_{i}\right\}$ such that $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=g \cdot\left(\beta x_{i}-\alpha\right)$, where g is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha, \beta \in \mathbb{F}$.

Proof. Let A be a RO-ABP computing f. Wlog. assume all variables in X appear in A. By Lemma 2 assume wlog. that A has at most one variable per layer. Let $x_{r_{1}}, x_{r_{2}}, \ldots, x_{r_{n}}$ be the variables in X as they appear layer-by-layer, when going from the source to the sink of A. Consider an arbitrary $x_{i} \in \operatorname{Var}(f)$. First, we handle the case that $i=r_{m}$, for some $1<m<n$.

Let $j=r_{m-1}$ and $k=r_{m+1}$. So x_{j} and x_{k} are the variables right before and right after x_{i} in A, respectively. Assume that x_{j} and x_{k} label the edges (u, v) and (m, n) respectively. Then $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=f_{s, u} f_{v, m} f_{n, t}$, where $f_{s, u} f_{v, m}$, and $f_{n, t}$ are computed by the subprograms $A_{s, u}, A_{v, m}$, and $A_{n, t}$, respectively. Observe that $f_{v, m}$ is of form $\beta x_{i}-\alpha$, for $\alpha, \beta \in \mathbb{F}$. Take $g=f_{s, u} f_{v, m}$, which is easily seen to be RO-ABP-computable by putting $A_{s, u}$ and $A_{v, m}$ in series, or by appealing to Lemmas 3 and 4 .

The special case where $i=r_{1}\left(i=r_{n}\right)$, i.e. x_{i} is the first (last) variable in A, is handled similarly as above, by choosing $x_{k} \in X \backslash\left\{x_{i}, x_{j}\right\}$ arbitrarily and appealing to Lemma 3,

In the above lemma we have no guarantee the α is nonzero, in case $\beta \neq 0$. We would like to consider polynomials which are in general position in this regard. We make the following definition:

Definition 2. Let $S \subseteq X$. Every RO-ABP-polynomial $f \in \mathbb{F}[X]$ with $|\operatorname{Var}(f)| \leq 2$ is X-prealigned on S. A RO-ABP-polynomial $f \in \mathbb{F}[X]$ with $|\operatorname{Var}(f)|>2$ is X-pre-aligned on S, if the following condition is satisfied:

1. for every $x_{i} \in S$, there exist distinct $x_{j}, x_{k} \in X \backslash\left\{x_{i}\right\}$ such that $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=g \cdot\left(\beta x_{i}-\alpha\right)$, where g is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha, \beta \in F$ satisfy that $\alpha=0 \Rightarrow \beta=0$.

If f is X-pre-aligned on $\operatorname{Var}(f)$, we simply say that f is X-pre-aligned.
For the X-pre-alignment property to hold recursively w.r.t. setting variables to zero, is a particularly desirable property of a RO-ABP-polynomial to have, as we will see. We make the following inductive definition:
Definition 3. Every RO-ABP-polynomial $f \in \mathbb{F}[X]$ with $|\operatorname{Var}(f)| \leq 2$ is X-aligned. A RO-ABPpolynomial $f \in \mathbb{F}[X]$ with $|\operatorname{Var}(f)|>2$ is X-aligned, if the following conditions are satisfied:

1. f is X-pre-aligned, and
2. for every $x_{i} \in \operatorname{Var}(f), f_{\mid x_{i}=0}$ is $X \backslash\left\{x_{i}\right\}$-aligned.

Next we prove some of the needed properties of our notion, starting with the following easily verified statement:

Proposition 4. If $f \in \mathbb{F}[X]$ is X-pre-aligned, then $\forall \mu \in \mathbb{F}, \mu \cdot f$ is X-pre-aligned. The same statement holds with aligned instead of pre-aligned.

The notion of X-pre-alignment is well-behaved w.r.t. taking partial derivatives. This will be crucial for obtaining the Hardness of Representation Theorem [8, We have the following lemma:

Lemma 8. For any RO-ABP-polynomial $f \in \mathbb{F}[X]$ and any $x_{r} \in X$, the following hold:

1. If f is X-pre-aligned, then $\frac{\partial f}{\partial x_{r}}$ is $\left(X \backslash\left\{x_{r}\right\}\right)$-pre-aligned.
2. If f is X-aligned, then $\frac{\partial f}{\partial x_{r}}$ is $\left(X \backslash\left\{x_{r}\right\}\right)$-aligned.

Proof. We first show that Item 1 holds. Let $f^{\prime}=\frac{\partial f}{\partial x_{r}}$ and $X^{\prime}=X \backslash\left\{x_{r}\right\}$. By Lemma 3, we know that f^{\prime} is a RO-ABP-polynomial. Assume that $\left|\operatorname{Var}\left(f^{\prime}\right)\right| \geq 3$, since otherwise the statement holds trivially. Consider arbitrary $x_{i} \in \operatorname{Var}\left(f^{\prime}\right)$. Then $x_{i} \in \operatorname{Var}(f)$, so there exist distinct x_{j} and x_{k} in $X \backslash\left\{x_{i}\right\}$, such that $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=g \cdot\left(\beta x_{i}-\alpha\right)$, where g is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha=0 \Rightarrow \beta=0$. Consider the following two cases:

Case I: $r \notin\{j, k\}$.
Hence $x_{j}, x_{k} \in X^{\prime} \backslash\left\{x_{i}\right\}$. We have that $\frac{\partial^{2} f^{\prime}}{\partial x_{j} \partial x_{k}}=\frac{\partial^{3} f}{\partial x_{j} \partial x_{k} \partial x_{r}}=\frac{\partial g}{\partial x_{r}} \cdot\left(\beta x_{i}-\alpha\right)$. By Lemma 3, $\frac{\partial g}{\partial x_{T}}$ is a RO-ABP-polynomial, and it clearly does not depend on x_{i}, so we conclude that f^{\prime} is X^{\prime}-pre-aligned on $\left\{x_{i}\right\}$.

Case II: $r \in\{j, k\}$.
Wlog. assume $r=j$. Then $x_{k} \in X^{\prime} \backslash\left\{x_{i}\right\}$. Since $\left|\operatorname{Var}\left(f^{\prime}\right)\right| \geq 3$, there must be at least one more variable x_{l} in $\operatorname{Var}\left(f^{\prime}\right)$ distinct from each of x_{k} and x_{i}. Then $x_{l} \in X^{\prime} \backslash\left\{x_{i}\right\}$. We have that $\frac{\partial f^{\prime}}{\partial x_{k}}=g \cdot\left(\beta x_{i}-\alpha\right)$. Hence $\frac{\partial^{2} f^{\prime}}{\partial x_{k} \partial x_{l}}=\frac{\partial g}{\partial x_{l}} \cdot\left(\beta x_{i}-\alpha\right)$. We again conclude f^{\prime} is X^{\prime}-pre-aligned on $\left\{x_{i}\right\}$.

Since in the above, x_{i} was taken arbitrarily from $\operatorname{Var}\left(f^{\prime}\right)$, we conclude f^{\prime} is X^{\prime}-pre-aligned.
Item 2 is proved by induction on $|X|$. The base case is when $|X| \leq 3$. Then $\left|\operatorname{Var}\left(f^{\prime}\right)\right| \leq 2$, and hence f^{\prime} is X^{\prime}-aligned. Now suppose $|X|>3$. Assume $\left|\operatorname{Var}\left(f^{\prime}\right)\right|>2$, since otherwise it is trivial. By Item \rrbracket, we know f^{\prime} is X^{\prime}-pre-aligned. Consider an arbitrary $x_{i} \in \operatorname{Var}\left(f^{\prime}\right)$. Then $x_{i} \in \operatorname{Var}(f)$.

We have that $f_{\mid x_{i}=0}^{\prime}=\left(\frac{\partial f}{\partial x_{r}}\right)_{x_{i}=0}=\frac{\partial f_{\mid x_{i}=0}}{\partial x_{r}}$. Since $f_{\mid x_{i}=0}$ is $\left(X \backslash\left\{x_{i}\right\}\right)$-aligned, we can apply the induction hypothesis to conclude that $\frac{\partial f_{\mid x_{i}=0}}{\partial x_{r}}$ is $\left(X \backslash\left\{x_{i}\right\}\right) \backslash\left\{x_{r}\right\}=\left(X^{\prime} \backslash\left\{x_{i}\right\}\right)$-aligned.

5.1 A Workable Sufficient Condition

Next we establish a sufficient condition, so for a given RO-ABP-polynomial f we can make $f\left(x_{1}+\right.$ $\left.v_{1}, x_{2}+v_{2}, \ldots, x_{n}+v_{n}\right) X$-aligned, by means of computing some shift $v \in \mathbb{F}^{n}$. For this, let us call a polynomial $f \in \mathbb{F}[X]$ decent, if for all $x_{a}, x_{b} \in \operatorname{Var}(f)$ with $\frac{\partial^{2} f}{\partial x_{a} \partial x_{b}} \not \equiv 0$, it holds that the monomial $x_{a} x_{b}$ appears in f with a nonzero constant coefficient.
Lemma 9. A RO-ABP-polynomial $f \in \mathbb{F}[X]$ is X-aligned, if $|\operatorname{Var}(f)| \leq 2$, or else for any $I \subseteq$ $\operatorname{Var}(f)$ with $|I| \leq|\operatorname{Var}(f)|-3, f_{\mid x_{I}=0}$ is decent.

Proof. We use induction on $|\operatorname{Var}(f)|$. For the base case $|\operatorname{Var}(f)| \leq 2$ it is trivial. Now assume $|\operatorname{Var}(f)|>2$. Take $I=\emptyset$. Then we get that for any $x_{a}, x_{b} \in \operatorname{Var}(f)$, if $\frac{\partial^{2} f}{\partial x_{a} \partial x_{b}} \not \equiv 0$ then the monomial $x_{a} x_{b}$ appears in f with a nonzero constant coefficient.

Let us first establish that f is X-pre-aligned. Consider an arbitrary $x_{i} \in \operatorname{Var}(f)$. By Lemma 7 , there exist distinct $x_{j}, x_{k} \in X \backslash\left\{x_{i}\right\}$ such that

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=g \cdot\left(\beta x_{i}-\alpha\right), \tag{3}
\end{equation*}
$$

where g is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha, \beta \in F$.
If $\beta=0$, then f is X-pre-aligned on $\left\{x_{i}\right\}$, so suppose $\beta \neq 0$. If (3) is identically zero, then we know $g \equiv 0$, so $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=g \cdot\left(\beta x_{i}-\alpha^{\prime}\right)$, for any arbitrary $\alpha^{\prime} \neq 0$. If (3) is not identically zero, then we know $x_{j} x_{k}$ is in f, which implies that $\alpha \neq 0$. We conclude that f is X-pre-aligned on $\left\{x_{i}\right\}$.

In the above, we find that f is X-pre-aligned on $\left\{x_{i}\right\}$ in any of the considered cases. Since x_{i} was arbitrarily taken from $\operatorname{Var}(f)$, we conclude that f is X-pre-aligned.

Next, we show Condition 2 of Definition 3 holds. Consider $f^{\prime}:=f_{\mid x_{i}=0}$, for an arbitrary $x_{i} \in$ $\operatorname{Var}(f)$. We want to establish that the sufficient condition of Lemma 9 holds for $f^{\prime} \in \mathbb{F}\left[X \backslash\left\{x_{i}\right\}\right]$, since then we can by apply the induction hypothesis and conclude that f^{\prime} is $\left(X \backslash\left\{x_{i}\right\}\right)$-aligned.

If $\left|\operatorname{Var}\left(f^{\prime}\right)\right| \leq 2$ the sufficient condition of the Lemma 9 clearly holds for f^{\prime}. Otherwise, consider $I^{\prime} \subseteq \operatorname{Var}\left(f^{\prime}\right)$ of size at most $\left|\operatorname{Var}\left(f^{\prime}\right)\right|-3$. Let $I=I^{\prime} \cup\left\{x_{i}\right\}$. Then $|I| \leq|\operatorname{Var}(f)|-3$. Now consider $x_{a}, x_{b} \in \operatorname{Var}\left(f_{x_{I^{\prime}}=0}^{\prime}\right)=\operatorname{Var}\left(f_{x_{I}=0}\right)$. Suppose $\frac{\partial^{2} f_{\mid x^{\prime}}^{\prime}=0}{\partial x_{a} \partial x_{b}} \not \equiv 0$. Since the latter equals $\frac{\partial^{2} f_{f_{x_{I}}=0}}{\partial x_{a} \partial x_{b}} \not \equiv 0$, we know that $x_{a} x_{b}$ appears with a nonzero constant coefficient in $f_{\mid x_{I}=0}$. This implies $x_{a} x_{b}$ appears with a nonzero constant coefficient in $f_{\mid x_{I^{\prime}}=0}$. Hence $f_{x_{I^{\prime}=0}}^{\prime}$ is decent.

We conclude the sufficient condition of the Lemma 9 holds for $f^{\prime} \in \mathbb{F}\left[X \backslash\left\{x_{i}\right\}\right]$. Hence by the induction hypothesis we conclude that f^{\prime} is $\left(X \backslash\left\{x_{i}\right\}\right)$-aligned.
Lemma 10. Any decent RO-ABP-polynomial $f \in \mathbb{F}[X]$ is X-aligned.
Proof. We show that the condition of Lemma 9 is satisfied. If $|\operatorname{Var}(f)| \leq 2$ this is clear. Otherwise, consider arbitrary $I \subseteq \operatorname{Var}(f)$ with $|I| \leq|\operatorname{Var}(f)|-3$. Let $x_{a}, x_{b} \in \operatorname{Var}\left(f_{\mid x_{I}=0}\right)$, be such that $\frac{\partial^{2} f_{\mid x_{y}=0}}{\partial x_{a} \partial x_{b}} \not \equiv 0$. We have that $x_{a}, x_{b} \in \operatorname{Var}(f)$, and it must be that $\frac{\partial^{2} f}{\partial x_{a} \partial x_{b}} \not \equiv 0$, since $\frac{\partial^{2} f_{\mid x_{b}=0}}{\partial x_{a} \partial x_{b}}=$ $\left(\frac{\partial^{2} f}{\partial x_{a} \partial x_{b}}\right)_{\mid x_{I}=0}$. Hence $x_{a} x_{b}$ is in f. This implies that $x_{a} x_{b}$ is in $f_{\mid x_{I}=0}$.

5.2 Nearly Unique Nonalignment

In addition to the above, we crucially need the following "Nearly Unique Nonalignment Lemma".
Lemma 11. Let $f \in \mathbb{F}[X]$ be an X-pre-aligned $R O$-ABP-polynomial for which $\frac{\partial^{2} f}{\partial x_{p} \partial x_{q}} \not \equiv 0$, for any distinct $x_{p}, x_{q} \in X$. Then there are at most two $\gamma \in \mathbb{F}$ such that $f_{\mid x_{n}=\gamma}$ is not $\left(X \backslash\left\{x_{n}\right\}\right)$-pre-aligned.

Before giving the proof, we need a lemma.
Lemma 12. Let $f \in \mathbb{F}[X]$ be a $R O$ - $A B P$-polynomial with $|\operatorname{Var}(f)| \geq 3$ that is X-pre-aligned on S, for some $S \subseteq \operatorname{Var}(f)$. Assume that for any distinct $x_{p}, x_{q} \in X, \frac{\partial^{2} f}{\partial x_{p} \partial x_{q}} \not \equiv 0$. In any RO-ABP A computing f, for any $x_{i} \in S$,

1. if there exists a non-constant layer with variable x_{a} right before the x_{i}-layer, and there exists a non-constant layer with variable x_{b} right after the x_{i}-layer, then

$$
\frac{\partial^{2} f}{\partial x_{a} \partial x_{b}}=g \cdot\left(\beta x_{i}-\alpha\right),
$$

where g is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha, \beta \in F$ satisfy that $\alpha=0 \Rightarrow \beta=0$. Furthermore, $-\alpha$ equals the sum of weights of all paths from end $\left(x_{a}\right)$ to begin $\left(x_{b}\right)$ that do not go over x_{i}.

Proof. Consider $x_{i} \in S$. Since f is X-pre-aligned on S, we know there exist distinct $x_{j}, x_{k} \in X \backslash\left\{x_{i}\right\}$ with $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=h \cdot\left(\beta^{\prime} x_{i}-\alpha^{\prime}\right)$, where h is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha^{\prime}, \beta^{\prime} \in F$ satisfy that $\alpha^{\prime}=0 \Rightarrow \beta^{\prime}=0$. Since $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}} \not \equiv 0$, it must be that $\alpha^{\prime} \neq 0$.

Case I: In A, the x_{i}-layer lies in between the x_{j}-layer and x_{k} layer.
Wlog assume the x_{i} layer lies before the x_{k}-layer and after the x_{j}-layer (according to the order of the DAG underlying A). Write $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=p_{1} p_{2} \cdot\left(q_{1} q_{2} x_{i}+q_{3}\right)$, where

- p_{1} is the sum of weights over all paths in A from $\operatorname{source}(A)$ to $\operatorname{begin}\left(x_{j}\right)$, and p_{2} is the sum of weights over all paths in A from $\operatorname{end}\left(x_{k}\right)$ to $\operatorname{sink}(A)$.
- q_{3} is the sum of weights over all paths from $\operatorname{end}\left(x_{j}\right)$ to begin $\left(x_{k}\right)$ that bypass the x_{i}-edge, q_{1} is the sum of weights over all paths from $\operatorname{end}\left(x_{j}\right)$ to $\operatorname{begin}\left(x_{i}\right)$, and q_{2} is the sum of weights over all paths from $\operatorname{end}\left(x_{i}\right)$ to begin $\left(x_{k}\right)$.

Now we have that $p_{1} p_{2} \cdot\left(q_{1} q_{2} x_{i}+q_{3}\right)=h \cdot\left(\beta^{\prime} x_{i}-\alpha^{\prime}\right)$. Since both $p_{1} p_{2}$ and h do not depend on x_{i}, it must be that $\left(\beta^{\prime} x_{i}-\alpha^{\prime}\right) \mid\left(q_{1} q_{2} x_{i}+q_{3}\right)$. Note that β^{\prime} cannot equal 0 , since then one of q_{1}, q_{2} would be zero. The latter implies that $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \equiv 0$ or $\frac{\partial^{2} f}{\partial x_{i} \partial x_{k}} \equiv 0$, which is a contradiction. Since $\beta^{\prime} \neq 0$, we can conclude that $q_{3}=\mu q_{1} q_{2}$ for some $\mu \in \mathbb{F}, \mu \neq 0$. Now we need the following claim:
Claim 2. Given an RO-ABP A computing $f\left(x_{1}, \ldots, x_{n}\right)$, if for any distinct $x_{p}, x_{q} \in X, \frac{\partial^{2} f}{\partial x_{p} \partial x_{q}} \not \equiv 0$, then $\prod_{i \in[n]} x_{i}$ appears in f. Furthermore, for two variables x_{i} and x_{j}, if x_{i} is before x_{j} in A, if we let S be the set of variables in between x_{i} and x_{j}, then $\prod_{x_{m} \in S} x_{m}$ is a term in the polynomial $\hat{A}\left(\operatorname{end}\left(x_{i}\right), \operatorname{begin}\left(x_{j}\right)\right)$.

Proof. Suppose the variable layers in A are arranged according to the permutation $\phi:[n] \rightarrow[n]$, that is, $x_{\phi(i)}$ labels the i th variable layer. Then we that

1. $\hat{A}\left(s, \operatorname{begin}\left(x_{\phi(1)}\right)\right) \not \equiv 0$ (Since otherwise $\left.\frac{\partial^{2} f}{\partial x_{\phi(1)} \partial x_{\phi(2)}} \equiv 0\right)$,
2. Similarly $\hat{A}\left(\operatorname{end}\left(x_{\phi(n)}\right), t\right) \not \equiv 0$, and
3. For $i \in[n-1], \hat{A}\left(\operatorname{begin}\left(x_{\phi(i)}\right), \operatorname{end}\left(x_{\phi(i+1)}\right)\right) \not \equiv 0$ (Since otherwise $\frac{\partial^{2} f}{\partial x_{\phi(i)}^{\partial x_{\phi(i+1)}}} \equiv 0$).

The coefficient of $\prod_{i \in[n]} x_{i}$ is just

$$
\hat{A}\left(s, \operatorname{begin}\left(x_{\phi(1)}\right)\right) \cdot \hat{A}\left(\operatorname{end}\left(x_{\phi(n)}\right), t\right) \prod_{i \in[n-1]} \hat{A}\left(\operatorname{begin}\left(x_{\phi(i)}\right), \operatorname{end}\left(x_{\phi(i+1)}\right)\right),
$$

and hence $\prod_{i \in[n]} x_{i}$ appears in f. A similar argument yields the statement for $\hat{A}\left(\operatorname{end}\left(x_{i}\right)\right.$, begin $\left.\left(x_{j}\right)\right)$.
As in the proof of Lemma 7 , write $\frac{\partial^{2} f}{\partial x_{a} \partial x_{b}}=g \cdot\left(\beta x_{i}-\alpha\right)$, where g is a RO-ABP-polynomial that does not depend on x_{i}, and $-\alpha$ equals the sum of weights over all paths from $\operatorname{end}\left(x_{a}\right)$ to $\operatorname{begin}\left(x_{b}\right)$ not going over x_{i}. We have three cases:

1. Neither x_{j} nor x_{k} is the most adjacent variable to x_{i} in A. By above claim, x_{a} appears in a monomial of q_{1}, and x_{b} appears in a monomial q_{2}. Hence, there is a monomial in $q_{1} q_{2}$ with $x_{a} x_{b}$. As $q_{3}=\mu q_{1} q_{2}$, for $\mu \neq 0$, the same can be said for q_{3}. But this implies $\alpha \neq 0$, as the coefficient of $x_{a} x_{b}$ is $-\alpha \cdot \hat{A}\left(\operatorname{end}\left(x_{j}\right)\right.$, begin $\left.\left(x_{a}\right)\right) \hat{A}\left(\operatorname{end}\left(x_{b}\right)\right.$, begin $\left.\left(x_{k}\right)\right)$.
2. x_{j} is not the most adjacent variable to x_{i} in A, but $x_{k}=x_{b}$. Then similarly $q_{1} q_{2}$ has a monomial with x_{a} in it, and therefore the same holds for q_{3}. Therefore $\alpha \neq 0$, as the coefficient of x_{a} in q_{3} is $-\alpha \cdot \hat{A}\left(\operatorname{end}\left(x_{j}\right)\right.$, begin $\left.\left(x_{a}\right)\right)$.
3. $x_{j}=x_{a}$, but x_{k} is not the most adjacent variable to x_{i} in A. This is argued similarly as the second item.

This concludes the argument for this case.
Case II: In A, the x_{i}-layer lies before the x_{j}-layer and x_{k}-layer.
Wlog. assume that the x_{j} layer lies before the x_{k} layer. Similarly as in Case I, we write $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=p_{1} p_{2} \cdot\left(q_{1} q_{2} x_{i}+q_{3}\right)$, but where now we have that

- $p_{1}=\hat{A}_{\text {end }\left(x_{j}\right), \operatorname{begin}\left(x_{k}\right)}$, and $p_{2}=\hat{A}_{\operatorname{end}\left(x_{k}\right), \operatorname{sink}(A)}$,
- $q_{1}=\hat{A}_{\text {source }(A), b e g i n\left(x_{i}\right)}$,
- $q_{2}=\hat{A}_{\text {end }\left(x_{i}\right), \operatorname{begin}\left(x_{j}\right)}$,
- $q_{3}=A\left[\hat{x_{i}}=0\right]_{\text {source }(A), \text { begin }\left(x_{j}\right)}$.

Then $p_{1} p_{2} \cdot\left(q_{1} q_{2} x_{i}+q_{3}\right)=h \cdot\left(\beta^{\prime} x_{i}-\alpha^{\prime}\right)$. Since both $p_{1} p_{2}$ and h do not depend on x_{i}, it must be that $\left(\beta^{\prime} x_{i}-\alpha^{\prime}\right) \mid\left(q_{1} q_{2} x_{i}+q_{3}\right)$. Similarly as before, we get $q_{3}=\mu q_{1} q_{2}$ for some $\mu \in \mathbb{F}, \mu \neq 0$.

The rest of the proof is similar to Case I. One argues that 1) when $x_{j} \neq x_{b}, q_{1} q_{2}$ contains a monomial with $x_{a} x_{b}$. To make $x_{a} x_{b}$ appear in a monomial q_{3} we need $\alpha \neq 0$, and 2) when $x_{j}=x_{b}$, $q_{1} q_{2}$ contains a monomial with x_{a}, and to make x_{a} appear in a monomial of q_{3}, we need $\alpha \neq 0$.

Case III: In A, the x_{i}-layer lies after the x_{j}-layer and x_{k}-layer.
This case is symmetrical to Case II.
We also need the following proposition:
Proposition 5. Let $f \in \mathbb{F}[X]$ be a $R O-A B P$-polynomial with $|\operatorname{Var}(f)| \geq 3$, and let $S \subseteq \operatorname{Var}(f)$. Then f is X-pre-aligned on S if and only if $f^{\prime}:=\left(x_{n+1}+1\right) f$ is $X \cup\left\{x_{n+1}\right\}$-pre-aligned on S.

Proof. Let $X^{\prime}=X \cup\left\{x_{n+1}\right\}$. It is easy to see that assuming f is X-pre-aligned on S, we have that f is X^{\prime}-pre-aligned on S.

Conversely, assume f^{\prime} is X^{\prime}-pre-aligned on S. Let $x_{i} \in S$. Then there exist $x_{j}, x_{k} \in X^{\prime} \backslash\left\{x_{i}\right\}$, such that $\frac{\partial^{2} f^{\prime}}{\partial x_{j} \partial x_{k}}=g\left(\beta x_{i}+\alpha\right)$, where g is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha=0$ implies $\beta=0$. If $x_{n+1} \notin\left\{x_{j}, x_{k}\right\}$, then $\frac{\partial^{2} f^{\prime}}{\partial x_{j} \partial x_{k}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}\left(x_{n+1}+1\right)$. Setting $x_{n+1}=0$, we have that $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}=\left(g_{\mid x_{n+1}=0}\right)\left(\beta x_{i}+\alpha\right)$. So we get the required X-pre-alignment of f on $\left\{x_{i}\right\}$. Otherwise, say wlog. $x_{j}=x_{n+1}$. We have that $\frac{\partial f}{\partial x_{k}}=\frac{\partial^{2} f^{\prime}}{\partial x_{n+1} \partial x_{k}}=g\left(\beta x_{i}+\alpha\right)$. One easily obtains the required X-pre-alignment of f on $\left\{x_{i}\right\}$, by taking one more ∂x_{l}, for some variable $x_{l} \in X \backslash\left\{x_{i}, x_{k}\right\}$, and then using Lemma 3

We are now ready to give the proof of Lemma 11 .

5.3 Proof

We prove the lemma by induction on $|X|$. For the base case we take $|X| \leq 3$, in which case the statement clearly holds. Now suppose $|X|>3$. Let $f^{\prime}=f_{\mid x_{n}=\gamma}$, for some γ. Let $X^{\prime}=X \backslash\left\{x_{n}\right\}$. Suppose f^{\prime} is not X^{\prime}-pre-aligned. Hence $\left|\operatorname{Var}\left(f^{\prime}\right)\right| \geq 3$. We want to show this can happen for at most one γ.

Consider an arbitrary RO-ABP A computing f. Let $f_{e}=f\left(x_{n+1}+1\right)\left(x_{n+2}+1\right)\left(x_{n+3}+1\right)\left(x_{n+4}+\right.$ 1). Let $X_{e}:=X \cup\left\{x_{n+1}, x_{n+2}, x_{n+3}, x_{n+4}\right\}$. By Proposition 5, f_{e} is X_{e}-pre-aligned on $\operatorname{Var}(f)$. Let $f_{e}^{\prime}:=\left(f_{e}\right)_{\mid x_{n}=\gamma}$ and $X_{e}^{\prime}:=X^{\prime} \cup\left\{x_{n+1}, x_{n+2}, x_{n+3}, x_{n+4}\right\}$. Note that $f_{e}^{\prime}=f^{\prime}\left(x_{n+1}+1\right)\left(x_{n+2}+\right.$ 1) $\left(x_{n+3}+1\right)\left(x_{n+4}+1\right)$. So also by Proposition 5, f_{e}^{\prime} is not X_{e}^{\prime}-pre-aligned on $\operatorname{Var}\left(f^{\prime}\right)$ if and only if f^{\prime} is not X^{\prime}-pre-aligned on $\operatorname{Var}\left(f^{\prime}\right)$. We will show the former happens for at most one γ. So let us assume that f_{e}^{\prime} is not X_{e}^{\prime}-pre-aligned on $\operatorname{Var}\left(f^{\prime}\right)$. We can easily obtain a RO-ABP A_{e} from A, which computes f_{e}. In this, we make sure x_{n+1} and x_{n+2} are the first and second variable in A_{e}, and x_{n+3} and x_{n+4} are the fore-last and last variable in A_{e}. For each $x_{i} \in \operatorname{Var}\left(f^{\prime}\right)$, let $x_{j_{i}}$ be the variable right after x_{i} in A^{e}, and let $x_{k_{i}}$ be the variable before x_{i} in A_{e}. Note that we have made sure these always exist in A_{e}. Since f_{e} is X_{e}-pre-aligned on $\operatorname{Var}(f)$, by Lemma 12, $\frac{\partial^{2} f_{e}}{\partial x_{j} \partial x_{k_{i}}}=g \cdot\left(\beta_{i} x_{i}-\alpha_{i}\right)$, where g is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha_{i}=0 \Rightarrow \beta_{i}=0$. Furthermore, we have that α_{i} is the sum of weights of all paths from $\operatorname{end}\left(x_{k_{i}}\right)$ to begin $\left(x_{n}\right)$, which do not go over x_{i} in A_{e}. Consider the following two cases:

Case I: $n \notin\left\{j_{i}, k_{i}\right\}$, for any $x_{i} \in \operatorname{Var}\left(f^{\prime}\right)$.
Then for any $i, \frac{\partial^{2} f_{e}^{\prime}}{\partial x_{j} \partial x_{k_{i}}}=\left(g_{i}\right)_{\mid x_{n}=\gamma} \cdot\left(\beta_{i} x_{i}-\alpha_{i}\right)$, which contradicts the assumption that f_{e}^{\prime} is not X_{e}^{\prime}-pre-aligned on $\operatorname{Var}\left(f^{\prime}\right)$.

Case II: $n \in\left\{j_{i}, k_{i}\right\}$, for some $x_{i} \in \operatorname{Var}\left(f^{\prime}\right)$.
By symmetry we can assume wlog. that $j_{i}=n$ (the case $k_{i}=n$ is handled similarly). Since $\frac{\partial^{2} f}{\partial x_{j_{i}} \partial x_{k_{i}}} \not \equiv 0$, and $\alpha_{i}=0$ implies $\beta_{i}=0$, We have that $\alpha_{i} \neq 0$.

We know that in A_{e} there still exists a variables layer, say with variables x_{l}, right after the $x_{j_{i}}$-layer. Let $b_{i}=\operatorname{begin}\left(x_{i}\right), e_{i}=\operatorname{end}\left(x_{i}\right), b_{n}=\operatorname{begin}\left(x_{n}\right)$, and $e_{n}=\operatorname{end}\left(x_{n}\right)$. Let $s=\operatorname{end}\left(x_{k_{i}}\right)$ and $t=\operatorname{begin}\left(x_{l}\right)$. Then write:

$$
\frac{\partial^{2} f_{e}}{\partial x_{l} \partial x_{k_{i}}}=p_{1} p_{2}\left(c_{s, b_{i}} c_{e_{i}, b_{n}} c_{e_{n}, t} x_{i} x_{n}+c_{s, b_{i}} c_{e_{i}, t} x_{i}+c_{s, b_{n}} c_{e_{n}, t} x_{n}+c_{s, t}\right),
$$

where in the above each constant $c_{v, w}$ is the sum of weights over all paths from v to w going over constant labeled edges only. Note that $c_{s, b_{n}}=\alpha_{i} \neq 0$. Furthermore, p_{1} is the sum of weights of all paths from source $\left(A_{e}\right)$ to $\operatorname{begin}\left(x_{k_{i}}\right)$, and p_{2} is the sum of weights over all paths from end $\left(x_{l}\right)$ to $\operatorname{sink}\left(A_{e}\right)$. Then

$$
\frac{\partial^{2} f_{e}^{\prime}}{\partial x_{l} \partial x_{k_{i}}}=p_{1} p_{2}\left(\left(c_{s, b_{i}} c_{e_{i}, b_{n}} c_{e_{n}, t} \gamma+c_{s, b_{i}} c_{e_{i}, t}\right) x_{i}+c_{s, b_{n}} c_{e_{n}, t} \gamma+c_{s, t}\right),
$$

We have that f_{e}^{\prime} can only not be X_{e}^{\prime}-pre-aligned on $\left\{x_{i}\right\}$ if $c_{s, b_{n}} c_{e_{n}, t} \gamma+c_{s, t}=0$. This can happen for more than one γ only if $c_{s, b_{n}} c_{e_{n}, t}=0$. Since $c_{s, b_{n}} \neq 0$, this happens only if $c_{e_{n}, t}=0$, but the latter implies that $\frac{\partial^{2} f_{e}}{\partial x_{l} \partial x_{n}} \equiv 0$, which in turn implies that $\frac{\partial^{2} f}{\partial x_{l} \partial x_{n}} \equiv 0$, which is a contradiction.

Finally, putting together from what we observed from the above two cases, note that, Case II can apply at most twice for a variable $x_{i} \in \operatorname{Var}\left(f^{\prime}\right)$. Namely, possibly once for the variable right before x_{n}, and possibly once for the variable after x_{n}. We conclude the lemma holds.

Corollary 1. Suppose $|\mathbb{F}|>3$. Let $h, g \in \mathbb{F}[X]$ be RO-ABP-polynomials such that $h=g \cdot\left(\beta x_{n}-\alpha\right)$, for $\beta \in \mathbb{F} \backslash\{0\}$. If h is X-pre-aligned, then g is $\left(X \backslash\left\{x_{n}\right\}\right)$-pre-aligned.

Proof. If we set x_{n} to any value $\gamma \neq \alpha / \beta$, we get that $h_{\mid x_{n}=\gamma}$ is a nonzero constant multiple of g. By Lemma 11, there are at most two γ such that $h_{\mid x_{n}=\gamma}$ is not $\left(X \backslash\left\{x_{n}\right\}\right)$-pre-aligned. Now use Proposition 4 to conclude that g is $\left(X \backslash\left\{x_{n}\right\}\right)$-pre-aligned.

6 Simultaneous Alignment of RO-ABP-polynomials

Definition 4. A simultaneous X-alignment for a set of RO-ABP-polynomials $\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}$ is a vector $v \in \mathbb{F}^{n}$ such that $f_{i}\left(x_{1}+v_{1}, x_{2}+v_{2}, \ldots, x_{n}+v_{n}\right)$ is X-aligned for every $i \in[k]$.

We present an algorithm for finding a simultaneous X-alignment for a set of RO-ABPpolynomials. We assume that we have a polynomial identity testing algorithm $\operatorname{PIT}_{\text {RO-ABP }}$ for testing a single RO-ABP. We prove a corollary of Lemma 10 first.

Corollary 2. Let $\left\{f_{i}\right\}_{i \in[k]}$ be a set of RO-ABP-polynomials in $\mathbb{F}[X]$. Then $v \in \mathbb{F}^{n}$ is a simultaneous X-alignment for $\left\{f_{i}\right\}_{i \in[k]}$, if it is a simultaneous nonzero for $\left\{\frac{\partial^{2} f_{i}}{\partial x_{a} \partial x_{b}} \left\lvert\, \frac{\partial^{2} f_{i}}{\partial x_{a} \partial x_{b}} \not \equiv 0\right.\right\}_{i \in[k], a, b \in[n]}$.

Proof. Consider $\left\{f_{i}^{\prime}=f_{i}\left(x_{1}+v_{1}, x_{2}+v_{2}, \ldots, x_{n}+v_{n}\right)\right\}_{i \in[k] \text {. Due to Lemma 10, we only need to }}$ show that for every i, for every $x_{a}, x_{b} \in \operatorname{Var}\left(f_{i}\right)$, if $\frac{\partial^{2} f_{i}^{\prime}}{\partial x_{a} \partial x_{b}} \not \equiv 0$ then the monomial $x_{a} x_{b}$ appears in f_{i}^{\prime} with a nonzero constant coefficient. Observe that the monomial $x_{a} x_{b}$ appears in f_{i}^{\prime} with a nonzero constant coefficient $\Longleftrightarrow \frac{\partial^{2} f_{i}^{\prime}}{\partial x_{a} \partial x_{b}}(\overline{0}) \neq 0$. The latter holds, as $\frac{\partial^{2} f_{i}^{\prime}}{\partial x_{a} \partial x_{b}}(\overline{0})=\frac{\partial^{2} f_{i}}{\partial x_{a} \partial x_{b}}(v) \neq 0$.

Now the argument is similar as for Lemma 4.3 in [2], but with first order partial derivatives replaced by second order ones. This yields the following theorem:

Theorem 7. Let \mathbb{F} be a field with $|\mathbb{F}|>k n^{2}$. There exists an algorithm for finding a simultaneous X-alignment for a set of $R O-A B P$ polynomials $\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}$. The algorithm makes oracle calls to the procedure $\mathrm{PIT}_{\text {RO-ABP }}$. The f_{i} s are only accessed through this subroutine. The running-time of the algorithm is $O\left(k^{2} n^{5} \cdot t\right)$, where t is an upper bound on the time needed for any subroutine call to $\mathrm{PIT}_{R O-A B P}$.

Proof. We assume that we have a polynomial identity testing algorithm $\mathrm{PIT}_{\mathrm{RO}-\mathrm{AbP}}$ for testing a single RO-ABP, such that $\mathrm{PIT}_{\mathrm{RO}-\mathrm{AbP}}$ outputs True if $f \equiv 0$ and False otherwise. We have the following algorithm:

```
Algorithm 1 Alignment Finding.
Input: A set of RO-ABP-polynomials \(\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}\).
Output: A simultaneous alignment \(v\) for \(\left\{f_{i}\right\}_{i \in[k]}\).
Oracle: PIT algorithm PIT \(_{\text {RO-ABP }}\).
    \(L=\emptyset\)
    for all \(f_{i}\) and \(\left(x_{a}, x_{b}\right), a, b \in[n], a \neq b\) do
        If \(\operatorname{PIT}_{\text {RO-ABP }}\left(\frac{\partial^{2} f_{i}}{\partial x_{a} \partial x_{b}}\right)=\) False, add it to \(L\)
    end for
    for all \(j \in[n]\) do
        Find \(c\) such that for every \(g \in L, \operatorname{PIT}_{\text {RO-ABP }}\left(\left.g\right|_{x_{j}=c}\right)=\) False
        \(v_{j} \leftarrow c\)
        For every \(g \in L,\left.g \leftarrow g\right|_{x_{j}=c}\)
    end for
    return \(v\)
```

We first make two remarks, which pertain to applying Algorithm 1 in the setting where we only have black-box access to each f_{i}. Consider the set L the algorithm constructs with the execution of the first for-loop. Since we only have black-box access to f_{i}, the given pseudocode is intended to mean L is constructed symbolically. Having black-box access to f_{i} is enough to have black-box access to any element of L. Namely, by Lemma 3, $f^{\prime}:=\frac{\partial^{2} f_{i}}{\partial x_{a} \partial x_{b}}$ is a RO-ABP. Note that black-box access to f_{i} is sufficient for being able to compute $f^{\prime}(a)$ for any $a \in \mathbb{F}^{n}$. This is all the black-box RO-ABP algorithm needs to decide whether $f^{\prime} \equiv 0$.

Similarly, on line 8 the substitution is not actually carried out, but done symbolically. So it is just remembered that x_{j} is set to c. For example, suppose that up to some point in the execution the algorithm it has set $x_{i}=c_{i}$, for $i \in[m]$. Then on line6, for evaluating $\operatorname{PIT}_{\text {RO-ABP }}\left(\left.g\right|_{x_{j}=c}\right)$, the blackbox algorithm is granted access to a RO-ABP in $n-m$ variables $g\left(c_{1}, c_{2}, \ldots, c_{m}, x_{m+1}, \ldots, x_{n}\right)$. The queries it makes can be answered with only black-box access to g.

Now, by Corollary 2 it suffices to find a common nonzero of the set L. First however, we need to explain how to find c such that $\left.g\right|_{x_{j}=c} \not \equiv 0$. Let $V \subset \mathbb{F}$ with $|V|=k n^{2}+1$ be given. We claim V always includes a good value. This is because we have at most $k n^{2}$ multilinear polynomials in L, and for a specific one there is at most one bad value, due to Lemma 6. The algorithm can simply try all elements in V to get the required c. The correctness of the algorithm is now evident, from the observation that it simply maintains the invariant that all $g \in L$ are not identically zero.

The running time of the algorithm is as follows: for line 2 we need $O\left(k n^{2}\right)$ calls to $\mathrm{PIT}_{\mathrm{Ro}-\mathrm{ABP}}$. For line 7 we need $O\left(n \cdot\left(k n^{2}+1\right) \cdot\left(k n^{2}\right)\right)=O\left(k^{2} n^{5}\right)$ calls to $\mathrm{PIT}_{\text {Ro-abp }}$. Thus the total running time of the algorithm is $O\left(k^{2} n^{5} \cdot t\right)$, where t is an upper bound on the time needed for any subroutine call to $\mathrm{PIT}_{\text {Ro-abp }}$.

By Lemma 1 and using Lemma 5, PIT $_{\text {RO-ABP }}$ can be implemented in the black-box setting to run in time $n^{O(\log n)}$, where n is the number of variables of the input RO-ABP-polynomial. In the non-black-box setting, as is show in Appendix C $\mathrm{PIT}_{\text {RO-ABP }}$ can be implemented to run in time $O\left(n^{2} s\right)$, when given an RO-ABP over n variables of size s. This yields the following two corollaries:

Corollary 3. Provided $|\mathbb{F}|>k n^{2}$, there exists an non-black-box algorithm for finding a simultaneous X-alignment for a set $\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}$, where f_{i} is computed by a RO-ABP A_{i}, for $i \in[k]$. The algorithm receives $\left\{A_{i}\right\}_{i \in[k]}$ on the input, and it runs in time $O\left(k^{2} n^{7} s\right)$, where s is an upper bound on the size of any A_{i}.
Corollary 4. Provided $|\mathbb{F}|>k n^{2}$, there exists a black-box algorithm for finding a simultaneous X-alignment for a set of $R O$-ABP-polynomials $\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}$. The algorithm queries individual $f_{i} s$, and runs in time $k^{2} n^{O(\log n)}$.

6.1 Simultaneous Alignment Hitting Set

Here we present a black-box algorithm to find a candidate set \mathcal{A}_{k} of size $(k n)^{O(\log n)}$, which is guaranteed to contain a simultaneous X-alignment for any set of k RO-ABP-polynomials $\left\{f_{i} \in\right.$ $\mathbb{F}[X]\}_{i \in[k]}$.
Lemma 13. Let \mathbb{F} be a field with $|\mathbb{F}|>k n^{4}$, and let $V \subseteq \mathbb{F}$ with $|V|=k n^{4}+1$ be given. Let $\left\{f_{i}\right\}_{i \in[k]}$ be a set of $R O$-ABP-polynomials in $\mathbb{F}[X]$. Let $G_{m}: \mathbb{F}^{2 m} \rightarrow \mathbb{F}^{n}$ be the mth-order $S V$-generator with $m=\lceil\log n\rceil+1$. Then $\mathcal{A}_{k}:=G_{m}\left(V^{2 m}\right)$ contains a simultaneous X-alignment for $\left\{f_{i}\right\}_{i \in[k]}$.

Proof. let $L=\left\{\frac{\partial^{2} f_{i}}{\partial x_{a} \partial x_{b}} \left\lvert\, \frac{\partial^{2} f_{i}}{\partial x_{a} \partial x_{b}} \not \equiv 0\right.\right\}_{i \in[k], a, b \in[n]}$. Let $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{g \in L} g\left(x_{1}, \ldots, x_{n}\right)$. By Lemma 3, each $g \in L$ is a RO-ABP-polynomial. Hence by Lemma 1 , for $m=\lceil\log n\rceil+1$, the SV-generator $\left(G_{m}^{1}, G_{m}^{2}, \ldots, G_{m}^{n}\right)$, satisfies that $g\left(G_{m}^{1}, G_{m}^{2}, \ldots, G_{m}^{n}\right) \not \equiv 0$, for all $g \in L$. So $P\left(G_{m}^{1}, G_{m}^{2}, \ldots, G_{m}^{n}\right) \not \equiv 0$.

Note that there are $2 m$ variables in $P\left(G_{m}^{1}, \ldots, G_{m}^{n}\right)$, and the degree of every variable is bounded by $k n^{2} \cdot n^{2}=k n^{4}$. Thus by Lemma苞, $\exists a \in V^{2 m}, P\left(G_{m}^{1}(a), \ldots, G_{m}^{n}(a)\right) \neq 0$. Hence $\mathcal{A}_{k}=G_{n}\left(V^{2 m}\right)$ is ensured to contain a nonzero of P. Any nonzero of P is a simultaneous nonzero of all $g \in L$. By Corollary 2, \mathcal{A}_{k} contains a simultaneous X-alignment for $\left\{f_{i}\right\}_{i \in[k]}$.

7 A Hardness of Representation Theorem for RO-ABPs

The following theorem is an adaption of Theorem 6.1 in [2] to the notion of X-pre-alignment. One notable difference in the proof is that for the main case separation, we distinguish between whether there are 3rd-order partial derivatives vanishing or not (rather than 2nd-order partial as in [2]).
Theorem 8. Assume $|\mathbb{F}|>3$. Let $P_{n}=\prod_{i \in[n]} x_{i}$. If $\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}$ is a set of $k X$-pre-aligned $R O-A B P$-polynomials for which $P_{n}=\sum_{i \in[k]} f_{i}$, then $n<7 k$.

Proof. The proof proceeds by induction on k. For the base case $k=1$, since $f_{1}=P_{n}$, and f_{1} is X-pre-aligned, it must be that $n \leq 2$. Namely, if $n>2$, then for $x_{i} \in \operatorname{Var}\left(P_{n}\right)$, whatever distinct $x_{j}, x_{k} \in X \backslash\left\{x_{i}\right\}$ we select, $\frac{\partial^{2} f_{1}}{\partial x_{j} \partial x_{k}}=x_{i} \cdot \prod_{x_{r} \in X \backslash\left\{x_{i}, x_{j}, x_{k}\right\}}$. This cannot be of the form $g \cdot\left(\beta x_{i}+\alpha\right)$ with g being an RO-ABP not depending on x_{i}, and $\alpha=0 \Rightarrow \beta=0$, as Definition 2 requires. Namely, since g does not depend on x_{i}, it must be that $\beta \neq 0$. Hence $\alpha \neq 0$, and thus $g \cdot\left(\beta x_{i}+\alpha\right)$ is not homogeneous. Since $x_{i} \cdot \prod_{x_{r} \in X \backslash\left\{x_{i}, x_{j}, x_{k}\right\}}$ is homogeneous, this is a contradiction.

Now assume $k>1$. Suppose we can write $P_{n}=\sum_{i \in[k]} f_{i}$. For purpose of contradiction, assume that $n \geq 7 k$. Hence $n \geq 14$.

Case I: \exists distinct $p, q, r \in[n]$ and $s \in[k]$, such that $\frac{\partial^{3} f_{s}}{\partial x_{p} \partial x_{q} \partial x_{r}} \equiv 0$.
Wlog. assume that $p=n-2, q=n-1, r=n$ and $s=k$. Then $\sum_{i \in[k-1]} \frac{\partial^{3} f_{i}}{\partial x_{n-2} \partial x_{n-1} \partial x_{n}}=P_{n-3}$.
By Lemma 8, all of the terms $\frac{\partial^{3} f_{i}}{\partial x_{n-2} \partial x_{n-1} \partial x_{n}}$ are $\left(X \backslash\left\{x_{n-2}, x_{n-1}, x_{n}\right\}\right)$-pre-aligned. By induction, it must be that $n-3<5(k-1)$. Hence $n<5 k-2$, which is a contradiction.

Case II: \nexists distinct $p, q, r \in[n]$ and $s \in[k]$, such that $\frac{\partial^{3} f_{s}}{\partial x_{p} \partial x_{q} \partial x_{r}} \equiv 0$.
We know $\forall i,\left|\operatorname{Var}\left(f_{i}\right)\right| \geq 3$. Since f_{i} is X-pre-aligned, there exist distinct $x_{j_{i}}, x_{k_{i}} \in X \backslash\left\{x_{i}\right\}$ such that $\frac{\partial^{2} f}{\partial x_{j} \partial x_{k_{i}}}=g_{i} \cdot\left(\beta_{i} x_{n}-\alpha_{i}\right)$, where g_{i} is a RO-ABP-polynomial that does not depend on x_{i}, and $\alpha_{i}=0 \Rightarrow \beta_{i}=0$. Note that in this case, $g_{i} \not \equiv 0$, since otherwise a second order partial vanishes. Hence both j_{i} and k_{i} are certainly not equal to x_{n}. It must be that $\beta_{i} \neq 0$, since otherwise $\frac{\partial^{3} f}{\partial x_{i} \partial x_{i} \partial x_{n}} \equiv 0$. Hence also $\alpha_{i} \neq 0$.

Claim 3. Any g_{i} is $\left(X \backslash\left\{x_{j_{i}}, x_{k_{i}}, x_{n}\right\}\right)$-pre-aligned.
Proof. Assume that $\left|\operatorname{Var}\left(g_{i}\right)\right| \geq 3$, since otherwise the claim is trivial. Let $h=g_{i} \cdot\left(\beta_{i} x_{n}-\alpha_{i}\right)$. By Lemma 8, h is $\left(X \backslash\left\{x_{j_{i}}, x_{k_{i}}\right\}\right)$-pre-aligned. Since $\beta_{i} \neq 0$, applying Corollary 1 yields that g_{i} is ($X \backslash\left\{x_{j_{i}}, x_{k_{i}}, x_{n}\right\}$)-pre-aligned.

Now, let $A=\left\{\frac{\alpha_{i}}{\beta_{i}}: i \in[k]\right\}$. Define for $\gamma \in A, E_{\gamma}=\left\{i \in[k]: \gamma=\frac{\alpha_{i}}{\beta_{i}}\right\}$ and $B_{\gamma}=\{i \in[k]:$ $\gamma \neq \frac{\alpha_{i}}{\beta_{i}}$ and $\left(f_{i}\right)_{\mid x_{n}=\gamma}$ is not $\left(X \backslash\left\{x_{n}\right\}\right)$-pre-aligned $\}$. Note that $\sum_{\gamma \in A}\left|E_{\gamma}\right|=k$. By Nearly Unique Nonalignment Lemma 11, $\sum_{\gamma \in A}\left|B_{\gamma}\right| \leq 2 k$. Hence there exists $\gamma_{0} \in A$ such that $\left|B_{\gamma_{0}}\right| \leq 2\left|E_{\gamma_{0}}\right|$. Let $I=E_{\gamma_{0}} \cup B_{\gamma_{0}}$, and let $J=\left\{j_{i}: i \in I\right\} \cup\left\{k_{i}: i \in I\right\}$. We have that $2 \leq|J| \leq 2|I| \leq 6\left|E_{\gamma_{0}}\right|$. Observe that $x_{n} \notin J$. Define for any $i, f_{i}^{\prime}=\partial_{J} f_{i}$. We have the following three properties:

1. Each f_{i}^{\prime} is an $(X \backslash J)$-pre-aligned RO-ABP-polynomial, due to Lemma 8 ,
2. For every $i \in I, f_{i}^{\prime}=\left(\beta_{i} x_{n}-\alpha_{i}\right) h_{i}$, where h_{i} is a RO-ABP-polynomial. Namely, since $j_{i}, k_{i} \in J, f_{i}^{\prime}=\partial_{J \backslash\left\{j_{i}, k_{i}\right\}}\left[g_{i}\left(\beta_{i} x_{n}-\alpha_{i}\right)\right]=\left(\beta_{i} x_{n}-\alpha_{i}\right) \cdot \partial_{J \backslash\left\{j_{i}, k_{i}\right\}} g_{i}$.
3. In the above, each h_{i} is an $\left(X \backslash\left(J \cup\left\{x_{n}\right\}\right)\right.$)-pre-aligned RO-ABP-polynomial. Namely, by Claim 3 g_{i} is $\left(X \backslash\left\{x_{j_{i}}, x_{k_{i}}, x_{n}\right\}\right)$-pre-aligned. Hence, using Lemma 8, we get that h_{i} is an $\left(X \backslash\left(J \cup\left\{x_{n}\right\}\right)\right.$)-pre-aligned RO-ABP-polynomial.

For any i, define $f_{i}^{\prime \prime}=\left(f_{i}^{\prime}\right)_{\left.\right|_{n}=\gamma_{0}}$. Then we have the following three properties:

1. $\forall i \in E_{\gamma_{0}}, f_{i}^{\prime \prime} \equiv 0$.
2. $\forall i \in B_{\gamma_{0}}, f_{i}^{\prime \prime}=\left(\beta_{i} \gamma_{0}-\alpha_{i}\right) h_{i}$, so $f_{i}^{\prime \prime}$ is an $\left(X \backslash\left(J \cup\left\{x_{n}\right\}\right)\right)$-pre-aligned RO-ABP-polynomial, due to Proposition (4)
3. For every $i \in[k] \backslash I,\left(f_{i}\right)_{\mid x_{n}=\gamma_{0}}$ is $X \backslash\left\{x_{n}\right\}$-pre-aligned. Since $n \notin J, f_{i}^{\prime \prime}=\left(f_{i}^{\prime}\right)_{\mid x_{n}=\gamma_{0}}=$ $\partial_{J}\left[f_{\mid x_{n}=\gamma_{0}}\right]$. So by Lemma 8, $f_{i}^{\prime \prime}$ is an $\left(X \backslash\left(J \cup\left\{x_{n}\right\}\right)\right)$-pre-aligned RO-ABP-polynomial.

Wlog. assume that $J=\{\tilde{n}+1, \tilde{n}+2, \ldots, n-2, n-1\}$. Then $|J|=n-1-\tilde{n}$. Then $\sum_{i \in[k]} f_{i}^{\prime \prime}=\left(\partial_{J} P_{n}\right)_{\mid x_{n}=\gamma_{0}}=\gamma_{0} \cdot P_{\tilde{n}}$. Let $\tilde{X}=\left\{x_{1}, \ldots, x_{\tilde{n}}\right\}$. We have found a representation of $P_{\tilde{n}}$ as a sum of $\tilde{k} \tilde{X}$-pre-aligned RO-ABP-polynomials, where $7 \tilde{k} \leq 7\left(k-\left|E_{\gamma_{0}}\right|\right) \leq n-7\left|E_{\gamma_{0}}\right|=$ $n-1-6\left|E_{\gamma_{0}}\right|+1-\left|E_{\gamma_{0}}\right| \leq \tilde{n}+1-\left|E_{\gamma_{0}}\right| \leq \tilde{n}$. This contradicts the induction hypothesis, and hence $n<7 k$.

8 A Vanishing Theorem and the PIT Algorithms

The following theorem is analogous to Theorem 6.4 in [2].
Theorem 9. Suppose $|\mathbb{F}|>3$. Let $\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}$ be a set of $k X$-aligned RO-ABPs. Let $f=\sum_{i \in[k]} f_{i}$. Then $\left.f \equiv 0 \Longleftrightarrow f\right|_{\mathcal{W}_{7 k}^{n}} \equiv 0$.

We need to argue only the " \Leftarrow "-direction. Assume that $\left.f\right|_{\mathcal{W}_{7 k}^{n}} \equiv 0$.
We use induction on the number of variables n. The base case is when $n<7 k$. In this case it follows from Lemma 5 that $f \equiv 0$.

For the induction case assume $n \geq 7 k$. We restrict one variable at a time. Consider a variable x_{ℓ}, for $\ell \in[n]$. Consider a restriction of the polynomials f_{i} 's and f to the subspace $x_{\ell}=0$.

By condition 2 in the definition of aligned, each of the restricted polynomials $f_{i}^{\prime}=\left.f_{i}\right|_{x_{\ell}=0}$ are $\left(X \backslash\left\{x_{\ell}\right\}\right)$-aligned. Let $f^{\prime}=\sum_{i=1}^{k} f_{i}^{\prime}$. Clearly, $\left.f^{\prime}\right|_{\mathcal{W}_{7 k}^{n-1}}=f^{\prime} \mathcal{W}_{7 k}^{n} \equiv 0$. Thus from the induction hypothesis, $f^{\prime}=\left.f\right|_{x_{\ell}=0} \equiv 0$, which implies that x_{ℓ} divides f. Since ℓ was arbitrarily chosen, this implies that $P_{n}=\prod_{i=1}^{k} x_{i}$ divides f. But since f is multilinear, this gives $f=c \cdot P_{n}$ where c is a constant and $P_{n}=\prod_{i \in[n]} x_{i}$.

Thus $c \cdot P_{n}$ is the sum of k RO-ABPs which are also X-aligned (and therefore certainly X-prealigned). Since $n \geq 7 k$, by Theorem 团, we can conclude that $c=0$. Hence $f \equiv 0$.

Now we are ready to give the identity testing algorithms for Σ_{k}-RO-ABP-polynomials given by $\left\{f_{i} \in \mathbb{F}[X]\right\}_{i \in[k]}$. The algorithm is simple. We use the fact that that $\forall v \in \mathbb{F}^{n}, f \equiv 0 \Longleftrightarrow$ $f\left(x_{1}+v_{1}, x_{2}+v_{2}, \ldots, x_{n}+v_{n}\right) \equiv 0$. Assuming that we have some common alignment v for $\left\{f_{i}\right\}_{i \in[k]}$, we know that each $f_{i}\left(x_{1}+v_{1}, x_{2}+v_{2}, \ldots, x_{n}+v_{n}\right)$ is X-aligned. In this case, Theorem 9 is applicable, and it suffices to test if the polynomial evaluates to zero on the set $\mathcal{W}_{7 k}^{n}$. Based on the three approaches to get a common alignment, the algorithms are as follows:

1. (Non-black-box setting) By Corollary 3, we obtain a simultaneous alignment in time $O\left(k^{2} n^{7} s\right)$. Then it takes $n^{O(k)}$ to test all points in $\mathcal{W}_{7 k}^{n}$, so the running-time is $O\left(k^{2} n^{7} s\right)+n^{O(k)}$. This proves Theorem 4. In this case we need $|\mathbb{F}|>k n^{2}$.
2. (Semi-black-box setting) By Corollary 4, we obtain a simultaneous alignment in time $k^{2} n^{O(\log n)}$. Then it takes $n^{O(k)}$ to test all points in $\mathcal{W}_{7 k}^{n}$, so the running-time is $k^{2} n^{O(\log n)}+$ $n^{O(k)}$. This proves Theorem 5. In this case we need $|\mathbb{F}|>k n^{2}$.
3. (Black-box setting) In this case we only have black-box access to $f=\sum_{i \in[k]} f_{i}$. Let $f_{v}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}+v_{1}, \ldots, x_{n}+v_{n}\right)$. Then it is easy to see that $f \equiv 0 \Longleftrightarrow \forall v \in$ $\mathcal{A}_{k},\left.f_{v}\right|_{\mathcal{W}_{7 k}^{n}} \equiv 0$. In this case the running-time is $n^{O(\log n+k)}$. This proves Theorem 2, In this case we need $|\mathbb{F}|>k n^{4}$.

References

[1] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In Proceedings of the 40 th Annual STOC, pages 507-516, 2008.
[2] A. Shpilka and I. Volkovich. Improved polynomial identity testing of read-once formulas. In Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, volume 5687 of LNCS, pages 700-713, 2009.
[3] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. 25th Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pages 92-105, 2005.
[4] N. Saxena. Progress of polynomial identity testing. Technical Report ECCC TR09-101, Electronic Colloquium in Computational Complexity, 2009.
[5] J.T. Schwartz. Fast probabilistic algorithms for polynomial identities. J. Assn. Comp. Mach., 27:701-717, 1980.
[6] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Manipulation (EUROSAM 'r9), volume 72 of Lect. Notes in Comp. Sci., pages 216-226. Springer Verlag, 1979.
[7] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving circuit lower bounds. Computational Complexity, 13(1-2):1-44, 2004.
[8] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proc. 20th Annual ACM Symposium on the Theory of Computing, pages 301-309. ACM, 1988.
[9] A.R. Klivans and D.A. Spielman. Randomness efficient identity testing of multivariate polynomials. In Proc. 33rd Annual ACM Symposium on the Theory of Computing, pages 216-223, 2001.
[10] R. Lipton and N. Vishnoi. Deterministic identity testing for multivariate polynomials. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms (SODA 2003), pages 756-760, 2003.
[11] Z. Dvir and A. Shpilka. Locally decodable codes with two queries and polynomial identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404-1434, 2006.
[12] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational Complexity, 16(2):115-138, 2007.
[13] V. Arvind and P. Mukhopadhyay. The monomial ideal membership problem and polynomial identity testing. In Proceedings of the 18th International Symposium on Algorithms and Computation (ISAAC 2007), volume 4835 of Lecture Notes in Computer Science, pages 800-811. Springer, 2007.
[14] Z.S. Karnin and A. Shpilka. Deterministic black box polynomial identity testing of depth3 arithmetic circuits with bounded top fan-in. In Proc. 23rd Annual IEEE Conference on Computational Complexity, pages 280-291, 2008.
[15] N. Kayal and S. Saraf. Black box polynomial identity testing of depth-3 circuits. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, 2009.
[16] Z.S. Karnin, P. Mukhppadhyay, A. Shpilka, and Ilya Volkovich. Deterministic identity testing of depth 4 multilinear circuits with bounded top fan-in. Technical Report TR09-116, Electronic Colloquium on Computational Complexity (ECCC), November 2009.
[17] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non commutative models. Computational Complexity, 14(1):1-19, 2005.
[18] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pages 67-75, 2008.
[19] L. Valiant. Completeness classes in algebra. Technical Report CSR-40-79, Dept. of Computer Science, University of Edinburgh, April 1979.
[20] L. Lovász. On determinants, matching, and random algorithms. In FCT'79: Fundamentals of Computation Theory, pages 565-574, 1979.
[21] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7:105-113, 1987.
[22] E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching and counting uniform and nonuniform upper bounds. J. Comput. Syst. Sci., 59(2):164-181, 1999.
[23] S. Datta, R. Kulkarni, and S. Roy. Deterministically isolating a perfect matching in bipartite planar graphs. In Proc. 25th Annual Symposium on Theoretical Aspects of Computer Science, volume 08001 of Leibniz Int. Proc. in Informatics, pages 229-240, 2008.
[24] M. Jansen. Weakening assumptions for deterministic subexponential time non-singular matrix completion, 2010. To Appear, 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010).
[25] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1-2):729, 1999.

A Figure 3

Figure 3 shows an RO-ABP computing $x_{1} x_{2}+x_{2} x_{3}+x_{n-1} x_{n}$, when n is even. The case when n is odd is dealt with similarly. Unlabeled edges are labeled with 1.

B Example : RO-ABPs Are Not Universal

Proposition 6. The degree-2 elementary symmetric polynomial $e_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\prod_{1 \leq i<j \leq n} x_{i} x_{j}, n \geq 3$ can not be computed by a RO-ABP.

Figure 3: A RO-ABP computing $x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{2 n-1} x_{2 n}$.

Proof. For the purpose of contradiction, suppose that some RO-ABP A computes e_{n}. For any x_{i} denote the edge it labels by $g_{i}=\left(s_{i}, t_{i}\right)$. We can define an ordering $<$ among g_{i} 's, by taking $g_{i}<g_{j}$ if and only if the polynomial computed by the subprogram $A\left(t_{i}, s_{j}\right)$ has a nonzero constant term. Due to the fact that A is a DAG, we have for any i, j, if $x_{i}<x_{j}$, then not $x_{j}<x_{i}$.

The fact that for every (i, j) pair, $x_{i} x_{j}$ appears as a term in e_{n} implies that for any $i \neq j$, we have one of $x_{i}<x_{j}$ or $x_{j}<x_{i}$. Incidently, note this implies the ordering is transitive. Namely, if $x_{i}<x_{j}$ and $x_{j}<x_{k}$, then s_{j} must be reachable from t_{i}, and s_{k} must be reachable from t_{j} in A, but then s_{i} can not be reachable from t_{k}. Hence not $x_{k}<x_{j}$, which implies $x_{j}<x_{k}$.

In any case, observe there is a permutation $\phi:[n] \rightarrow[n]$ for which $x_{\phi(1)}<x_{\phi(2)}<\cdots<$ $x_{\phi(n)}$. This implies that $\prod_{i \in[n]} x_{i}$ appears as a term in the polynomial computed by A, which is a contradiction.

C Non-Black-Box Testing a Single RO-ABP

Consider a RO-ABP A. Denote the source and sink of A by s and t, respectively. Suppose that x_{i} labels the edge $\left(s_{i}, t_{i}\right)$. Wlog. assume that the order of variable layers in A is $x_{1}, x_{2}, \ldots, x_{n}$. We have the following easy proposition:

Proposition 7. Suppose $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$. For a $R O-A B P A, x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}$ appears in \hat{A} if and only if the constant terms in $\hat{A}\left(s, s_{i_{1}}\right), \hat{A}\left(t_{i_{m}}, s_{i_{m+1}}\right)$, for all $m \in[k-1]$, and $\hat{A}\left(t_{k}, t\right)$ are not zero.

We build a directed graph $G_{A}=(V, E)$ for RO-ABP A with vertex set $V=\left\{s, t, x_{1}, x_{2}, \ldots, x_{n}\right\}$. Edges are given as follows:

1. $\left(s, x_{i}\right)$, if the constant term in $\hat{A}\left(s, s_{i}\right)$ is nonzero.
2. $\left(x_{i}, t\right)$, if the constant term in $\hat{A}\left(t_{i}, t\right)$ is nonzero.
3. $\left(x_{i}, x_{j}\right), i<j$, if the constant term in $\hat{A}\left(t_{i}, s_{j}\right)$ is nonzero.

We have the following corollary of Proposition [7
Corollary 5. $\hat{A}\left(x_{1}, \ldots, x_{n}\right) \equiv 0$ if and only if t is not reachable form s in G_{A}.
The algorithm for testing A is to construct G_{A} and to test connectivity. This can be done in time $O\left(n^{2} s\right)$, where s bounds the size of A.

[^0]: ${ }^{*}$ Institute for Theoretical Computer Science, Tsinghua University, Beijing, P.R. China. Email: maurice.julien.jansen@gmail.com, jimmyqiao86@gmail.com, jayalal@tsinghua.edu.cn. This work was supported in part by the National Natural Science Foundation of China Grant 60553001, and the National Basic Research Program of China Grant 2007CB807900,2007CB807901.

[^1]: ${ }^{1}$ See Section 2 for a formal definition.

[^2]: ${ }^{2} \mathrm{~A}$ generalization of our theorems to preprocessed Σ_{k}-RO-ABPs will not be pursued here.

