
Reversible Pebble Game on Trees

Balagopal Komarath, Jayalal Sarma, and Saurabh Sawlani

Department of Computer Science & Engineering,
Indian Institute of Technology Madras, Chennai, India.

Abstract. A surprising equivalence between different forms of pebble
games on graphs - Dymond-Tompa pebble game (studied in [4]), Raz-
McKenzie pebble game (studied in [10]) and reversible pebbling (studied
in [1]) - was established recently by Chan[2]. Motivated by this equiv-
alence, we study the reversible pebble game and establish the following
results.
– We give a polynomial time algorithm for computing reversible peb-

bling number of trees. As our main technical contribution, we show
that the reversible pebbling number of any tree is exactly one more
than the edge rank colouring of the underlying undirected tree.

– By exploiting the connection with the Dymond-Tompa pebble game,
we show that complete binary trees have optimal pebblings that take
at most nO(log log(n)) steps. This substantially improves the previous
bound of nO(log(n)) steps.

– Furthermore, we show that almost optimal (within (1 + ε) factor for
any constant ε > 0) pebblings of complete binary trees can be done
in polynomial number of steps.

– We also show a time-space tradeoff for reversible pebbling for families
of bounded degree trees: for any constant ε > 0, such families can be
pebbled using O(nε) pebbles in O(n) steps. This generalizes a result
of Královic[7] who showed the same for chains.

1 Introduction

Pebbling games on graphs of various forms abstracts out resources in different
combinatorial models of computation (see [3]). The most obvious connection
is to the space used by the computation process. A pebble placed on a vertex
in a graph corresponds to storing the value at that vertex and an edge (a, b)
in the graph would represent a data-dependency - namely, value at b can be
computed only if the value at a is known (or stored). Devising the rules of
the pebbling game to capture the moves in the computation, and establishing
bounds for the total number of pebbles used at any point in time, give rise to a
combinatorial approach to proving bounds on the space used by the computation.
The Dymond-Tompa pebble game and the Raz-Mckenzie pebble games depict
some of the combinatorial barriers in proving bounds for depth (or parallel time)
of Boolean circuits (or parallel algorithms).

Motivated by applications in the context of reversible computation (for ex-
ample, quantum computation), Bennett[1] introduced the reversible pebbling

game. Given any DAG G with a unique sink vertex r, the reversible pebbling
game starts with no pebbles on G and ends with a pebble (only) on r. Pebbles
can be placed or removed from any vertex according to the following two rules.

1. To pebble v, all in-neighbours of v must be pebbled.
2. To unpebble v, all in-neighbours of v must be pebbled.

The goal of the game is to pebble the DAG G using the minimum number of
pebbles (also using the minimum number of steps).

Recently, Chan[2] showed that for any DAGG the number of pebbles required
for the reversible pebbling game is exactly the same as the number of pebbles
required for the Dymond-Tompa pebble game and the Raz-Mckenzie pebble
game. Chan[2] also studied the complexity of the following problem – Given
a DAG G = (V,E) with sink r and an integer 1 ≤ k ≤ |V |, check if G can
be pebbled using at most k pebbles. He showed that this problem is PSPACE-
complete.

The irreversible black and black-white pebble games are known to be PSPACE-
complete on DAGs (see [5], [6]). When we restrict the irreversible black pebbling
game to be read-once (each vertex is pebbled only once), then the problem be-
comes NP-complete (see [11]). However, if we restrict the DAG to a tree, the
irreversible black pebble game[9] and black-white pebble game[13] are solvable
in polynomial time. The key insight is that optimal irreversible (black or black-
white) pebbling number of trees can be achieved by read-once pebblings of trees.
This fact simplifies many arguments for irreversible pebblings of trees. For ex-
ample, deciding whether the pebbling number is at most k is in NP since the
optimal pebbling can be used as the certificate. We cannot show that reversible
pebbling is in NP using the same argument as we do not know whether the
optimal value can always be achieved using pebblings taking only polynomially
many steps.

Our Results: In this paper, we study reversible pebblings on trees. We show
that the reversible pebbling number of trees along with strategies achieving the
optimal value can be computed in polynomial time. Our main technical result is
that the reversible pebbling number of any tree is exactly one more than the edge
rank colouring of the underlying undirected tree. We then use the linear-time
algorithm given by Lam and Yue [8] for finding an optimal edge rank coloring of
the underlying undirected tree and show how to convert an optimal edge rank
coloring into an optimal reversible pebbling.

Chan[2] also raised the question whether we can find connections between
other parameters of different pebbling games. Although, we do not answer this
question, we show that the connection with Dymond-Tompa pebble game can be
exploited to show that complete binary trees have optimal pebblings that take
at most nO(log log(n)) steps. This is a significant improvement over the trivial
nO(log(n)) steps.

Furthermore, we show that “almost” (within (1 + ε) factor for any constant
ε > 0) optimal pebblings of complete binary trees can be done in polynomial
number of steps. We also generalize a time-space tradeoff result given for chains

by Královic [7] to families of bounded degree trees showing that for any constant
ε > 0, such families can be pebbled using O(nε) pebbles in O(n) steps.

2 Preliminaries

We assume familiarity with basic definitions in graph theory, such as those found
in [12]. A directed tree T = (V,E) is called a rooted directed tree if there is an
r ∈ V such that r is reachable from every vertex in T . The vertex r is called the
root of the tree.

An edge rank coloring of an undirected tree T with k colours {1, . . . , k} labels
each edge of T with a colour such that if two edges have the same colour i, then
the path between these two edges consists of an edge with some colour j > i.
The minimum number of colours required for an edge rank colouring of T is
denoted by χ′e(T).

Definition 1. (Reversible Pebbling[1]) Let G be a rooted DAG with root r. A
reversible pebbling configuration of G is a subset of V which denotes the set of
pebbled vertices). A reversible pebbling of G is a sequence of reversible pebbling
configurations P = (P1, . . . , Pm) such that P1 = φ and Pm = {r} and for every
i, 2 ≤ i ≤ m, we have

1. Pi = Pi−1 ∪ {v} or Pi−1 = Pi ∪ {v} and Pi 6= Pi−1 (Exactly one vertex is
pebbled/unpebbled at each step).

2. All in-neighbours of v are in Pi−1.

The number m is called the time taken by the pebbling P. The number of
pebbles or space used in a reversible pebbling of G is the maximum number of
pebbles on G at any time during the pebbling. The persistent reversible pebbling
number of G, denoted by R•(G), is the minimum number of pebbles required to
pebble G.

A closely related notion is that of visiting reversible pebbling, where the peb-
bling P satisfies (1) P1 = Pm = φ and (2) there exists a j such that r ∈ Pj. The
minimum number of pebbles required for a visiting pebbling of G is denoted by
Rφ(T).

It is easy to see that Rφ(G) ≤ R•(G) ≤ Rφ(G) + 1 for any DAG G.

Definition 2. (Dymond-Tompa Pebble Game [4]) Let G be a DAG with root r.
A Dymond-Tompa pebble game is a two-player game on G where the two players,
the pebbler and the challenger take turns. In the first round, the pebbler pebbles
the root vertex and the challenger challenges the root vertex. In each subsequent
round, the pebbler pebbles a (unpebbled) vertex in G and the challenger either
challenges the vertex just pebbled or re-challenges the vertex challenged in the
previous round. The pebbler wins when the challenger challenges a vertex v and
all in-neighbours of v are pebbled.

The Dymond-Tompa pebble number of G, denoted DT (G), is the minimum
number of pebbles required by the pebbler to win against an optimal challenger
play.

The Raz-Mckenzie pebble game is also a two-player pebble game played
on DAGs. The optimal value is denoted by RM(G). A definition for the Raz-
Mckenzie pebble game can be found in [10]. Although the Dymond-Tompa game
and the reversible pebbling game look quite different. The following theorem
reveals a surprising connection between them.

Theorem 1. (Theorems 6 and 7, [2]) For any rooted DAG G, we have DT (G) =
R•(G) = RM(G).

Definition 3. (Effective Predecessor [2]) Given a pebbling configuration P of a
DAG G with root r, a vertex v in G is called an effective predecessor of r if
there exists a path from v to r with no pebbles on the vertices in the path (except
at r).

Lemma 1. (Claim 3.11, [2]) Let G be any rooted DAG. There exists an optimal
pebbler strategy for the Dymond-Tompa pebble game on G such that the pebbler
always pebbles an effective predecessor of the currently challenged vertex.

We call the above pebbling strategy (resp. pebbler) as an upstream pebbling
strategy(resp. upstream pebbler). The height or depth of a tree is defined as the
maximum number of vertices in any root to leaf path. We denote by Chn the
rooted directed path on n vertices with a leaf as the root. We denote by Bth
the the complete binary tree of height h. We use root(Bth) to refer to the root
of Bth. If v is any vertex in Bth, we use left(v) (right(v)) to refer to the left
(right) child of v. We use righti and lefti to refer to iterated application of these
functions. We use the notation Chi + Bth to refer to a tree that is a chain of i
vertices where the source vertex is the root of a Bth.

Definition 4. We define the language TREE-PEBBLE (TREE-VISITING-PEBBLE)
as the set of all tuples (T, k), where T is a rooted directed tree and k is an integer
satisfying 1 ≤ k ≤ n, such that R•(T) ≤ k (Rφ(T) ≤ k).

In the rest of the paper, we use the term pebbling to refer to persistent
reversible pebbling unless explicitly stated otherwise.

3 Main Theorem

Definition 5. (Strategy Tree) Let T be a rooted directed tree. If T only has a
single vertex v, then any strategy tree for T only has a single vertex labelled v.
Otherwise, we define a strategy tree for T as any tree satisfying

1. The root vertex is labelled with some edge e = (u, v) in T .
2. The left subtree of root is a strategy tree for Tu and the right subtree is a

strategy tree for T \ Tu.

The following properties are satisfied by any strategy tree S of T = (V,E).

1. Each vertex has 0 or 2 children.
2. There are bijections from E to internal vertices of S & from V to leaves of
S.

3. Let v be any vertex in S. Then the subtree Sv corresponds to the subtree
of T spanned by the vertices labelling the leaves of Sv. If u and v are two
vertices in S such that one is not an ancestor of the other, then the subtrees
in T corresponding to u and v are vertex-disjoint.

Lemma 2. Let T be a rooted directed tree. Then R•(T) ≤ k if and only if there
exists a strategy tree for T of depth at most k.

Proof. We prove both directions by induction on |T |. If T is a single vertex tree,
then the statement is trivial.

(if) Assume that the root of a strategy tree for T of depth k is labelled by
an edge (u, v) in T . The pebbler then pebbles the vertex u. If the challenger
challenges u, the pebbler follows the strategy for Tu given by the left subtree of
root. If the challenger rechallenges, the pebbler follows the strategy for T \ Tu
given by the right subtree of the root. The remaining game takes at most k − 1
pebbles by the inductive hypothesis. Therefore, the total number of pebbles used
is at most k.

(only if) Consider an upstream pebbler that uses at most k pebbles. We are
going to construct a strategy tree of depth at most k. Assume that the pebbler
pebbles u in the first move where e = (u, v) is an edge in T . Then the root
vertex of S is labelled e. Now we have R•(Tu), R•(T \ Tu) ≤ k − 1. Let the left
(right) subtree be the strategy tree obtained inductively for Tu (T \ Tu). Since
the pebbler is upstream, the pebbler never places a pebble outside Tu (T \ Tu)
once the challenger has challenged u (the root). ut

Definition 6. (Matching Game) Let U be an undirected tree. Let T1 = U . At
each step of the matching game, we pick a matching Mi from Ti and contract all
the edges in Mi to obtain the tree Ti+1. The game ends when Ti is a single vertex
tree. We define the contraction number of U , denoted c(U), as the minimum
number of matchings in the matching sequence required to contract U to the
single vertex tree.

Lemma 3. Let T be a rooted directed tree and let U be the underlying undirected
tree for T . Then R•(T) = k + 1 if and only if c(U) = k.

Proof. First, we describe how to construct a matching sequence of length k from
a strategy tree S of depth k + 1. Let the leaves of S be the level 0 vertices. For
i ≥ 1, we define the level i vertices to be the set of all vertices v in S such that
one child of v has level i − 1 and the other child of v has level at most i − 1.
Define Mi to be the set of all edges in U corresponding to level i vertices in S.
We claim that M1, . . . ,Mk is a matching sequence for U . Define Si as the set of
all vertices v in S such that the parent of v has level at least i+ 1 (Sk contains
only the root vertex). Let Q(i) be the statement “Ti+1 is obtained from T1 by
contracting all subtrees corresponding to vertices (see Property 3) in Si”. Let

P (i) be the statement “Mi+1 is a matching in Ti+1”. We will prove Q(0) and
Q(i) =⇒ P (i) and (Q(i)∧ P (i)) =⇒ Q(i+ 1). Indeed for i = 0, we have Q(0)
because T1 = U and S0 is the set of all leaves in S or vertices in T (Property 2).
To prove Q(i) =⇒ P (i), observe that the edges of Mi+1 correspond to vertices
in S where both children are in Si. So these edges correspond to edges in Ti+1

(by Q(i)) and these edges are pairwise disjoint since no two vertices in S have a
common child.

To prove that (Q(i)∧P (i)) =⇒ Q(i+1), consider the tree Ti+2 obtained by
contracting Mi+1 from Ti+1. Since Q(i) is true, this is equivalent to contracting
all subtrees corresponding to Si and then contracting the edges in Mi+1 from T1.
The set Si+1 can be obtained from Si by adding all vertices in S corresponding to
edges in Mi+1 and then removing both children (of these newly added vertices)
from Si. This is equivalent to combining the subtrees removed from Si using the
edge joining them. This is because Mi+1 is a matching by P (i) and hence one
subtree in Si will never be combined with two other subtrees in Si. But then
contracting subtrees in Si+1 from T1 is equivalent to contracting Si followed by
contracting Mi+1.

We now show that a matching sequence of length at most k can be converted
to a strategy tree of depth at most k+ 1. We use proof by induction. If the tree
T is a single vertex tree, then the statement is trivial. Otherwise, let e be the
edge in the last matching Mk in the sequence and let (u, v) be the corresponding
edge in T . Label the root of S by e and let the left (right) subtree of root of S
be obtained from the matching sequence M1, . . . ,Mk−1 restricted to Tu (T \Tu).
By the inductive hypothesis, these subtrees have height at most k − 1. ut

Lemma 4. For any undirected tree U , we have c(U) = χ′e(U).

Proof. Consider an optimal matching sequence for U . If the edge e is contracted
in Mi, then label e with the color i. This is an edge rank coloring. Suppose for
contradiction that there exists two edges e1 and e2 with label i such that there
is no edge labelled some j ≥ i between them. We can assume without loss of
generality that there is no edge labelled i between e1 and e2 since if there is one
such edge, we can let e2 to be that edge. Then e1 and e2 are adjacent in Ti and
hence cannot belong to the same matching.

Consider an optimal edge rank coloring for U . Then in the ith step all edges
labelled i are contracted. This forms a matching since in between any two edges
labelled i, there is an edge labelled j > i and hence they are not adjacent in
Ti. ut

The theorems in this section are summarized in Fig. 1

Theorem 2. Let T be a rooted directed tree and let U be the underlying undi-
rected tree for T . Then we have R•(T) = χ′e(U) + 1.

Corollary 1. Rφ(T) and R•(T) along with strategy trees achieving the optimal
pebbling value can be computed in polynomial time for trees.

1

2

4 5

3

6 7

(a) The complete binary tree of height 3

1

2

4

2

5

1

3

3

6

1

7

2

4

(b) Optimal edge rank colouring

(3, 1)

(7, 3)

7 (6, 3)

6 3

(2, 1)

(4, 2)

4 (5, 2)

5 2

1

(c) Optimal strategy tree

1

2

4 5

3

6 7

T1 1

2

4

3

7

T2 1

2 3

T3 1

3

T4

1T5

(d) Optimal matching sequence

Fig. 1: This figure illustrates the equivalence between persistent reversible peb-
bling, matching game and edge rank coloring on trees by showing an optimal
strategy tree and the corresponding matching sequence and edge rank colouring
for height 3 complete binary tree.

Proof. We show that TREE-PEBBLE and TREE-VISITING-PEBBLE are polyno-
mial time equivalent. Let T be an instance of TREE-PEBBLE. Pick an arbitrary
leaf v of T and root the tree at v. By Theorem 2, the reversible pebbling number
of this tree is the same as that of T . Let T ′ be the subtree rooted at the child of
v. Then we have R•(T) ≤ k ⇐⇒ Rφ(T ′) ≤ k − 1.

Let T be an instance of TREE-VISITING-PEBBLE. Let T ′ be the tree obtained
by adding the edge (r, r′) to T where r is the root of T . Then we have Rφ(T) ≤
k ⇐⇒ R•(T ′) ≤ k + 1.

The statement of the theorem follows from Theorem 2 and the linear-time
algorithm for finding an optimal edge rank coloring of trees[8]. ut

The following corollary is immediate from Theorem 1.

Corollary 2. For any rooted directed tree T , we can compute DT (T) and RM(T)
in polynomial time.

An interesting consequence of Theorem 2 is that the persistent reversible
pebbling number of a tree depends only on its underlying undirected graph. We
remark that this does not generalize to DAGs. Below we show two DAGs with
the same underlying undirected graph and different pebbling numbers.

1

2 4

3

5

6

7

(a) R•(G1) = 5

1

2 4

3

5

6

7

(b) R•(G2) = 6

Fig. 2: DAGs G1 and G2 have the same underlying undirected graph and different
persistent pebbling numbers.

4 Time Upper-bound for an Optimal Pebbling of
Complete Binary Trees

Proposition 1. The following statements hold.

1. R•(Bth) ≥ R•(Bth−1) + 1
2. R•(Bth) ≥ h+ 2 for h ≥ 3
3. ([1]) R•(Chn) ≤ dlog2(n)e+ 1 for all n

Proof. (1) In any persistent pebbling of Bth, consider the earliest time after
pebbling the root at which one of the subtrees of the root vertex has Rφ(Bth−1)
pebbles. At this time, there is a pebble on the root and there is at least one
pebble on the other subtree of the root vertex. So, in total, there are at least
Rφ(Bth−1) + 2 ≥ R•(Bth−1) + 1 pebbles on the tree.

(2) Item (1) and the fact that R•(Bt3) = 5. ut

Theorem 3. There exists an optimal pebbling of Bth that takes at most nO(log log(n))

steps.

Proof. We will describe an optimal upstream pebbler in a pebbler-challenger
game who pebbles root(Bth), left(root(Bth)), left(right(root(Bth))) and so
on. In general, the pebbler pebbles left(righti−1(root(Bth))) in the ith step for
1 ≤ i < h− log(h). An upper bound on the number of steps taken (denoted by
t(h)) by the reversible pebbling obtained from this game (which is, recursively
pebble left(righti−1(root(Bth))) for 0 ≤ i < h−log(h) and optimally pebble the
remaining tree Chh−log(h) + Btlog(h) using any algorithm) is given below. Here

the term (2h− log(h) + 1)
3 log(h)

is an upper bound on the number of different
pebbling configurations with 3 log(h) pebbles, and therefore an upper bound for
time taken for optimally pebbling the tree Chh−log(h) +Btlog(h).

t(h) ≤ 2 [t(h− 1) + t(h− 2) + . . .+ t(log(h) + 1)] + (2h− log(h) + 1)
3 log(h)

≤ 2ht(h− 1) + (2h− log(h) + 1)
3 log(h)

= O
(

(2h)
h
(2h)

3 log(h)
)

= (log(n))O(log(n)) = nO(log log(n))

In the first step, the pebbler will place a pebble on left(root(Bth)) and
the challenger will re-challenge the root vertex. These moves are optimal. Be-
fore the ith step, the tree has pebbles on the root and left(rightj(root(Bth)))
for 0 ≤ j < i − 1. We argue that if i < h − log(h), placing a pebble on
left(righti−1(root(Bth))) is an optimal move. If the pebbler makes this move,
then the cost of the game is max(R•(Bth1−1), R•(Chi + Bth1−1)) = R•(Chi +
Bth1−1) ≤ R•(Bth1−1) + 1 = p, where h1 = h− i+ 1. Note that the inequality
here is true when i < h− log(h) by Prop 1. We consider all other possible pebble
placements on ith step and prove that all of them are inferior.

– A pebble is placed on the path from the root to righti−1(root(Bth)) (inclu-
sive): The challenger will challenge the vertex on which this pebble is placed.
The cost of this game is then at least R•(Bth1) ≥ p.

– A pebble is placed on a vertex with height less than h1−1: The challenger will
re-challenge the root vertex and the cost of the game is at least R•(Chi +
Bth1−1).

The theorem follows. ut

5 Almost Optimal Pebblings of Complete Binary Trees

In this section, we show that we can get arbitrarily close to optimal pebblings
for complete binary trees using a polynomial number of steps.

Theorem 4. For any constant ε > 0, we can pebble Bth using at most (1 + ε)h
pebbles and nO(log(1/ε)) steps for sufficiently large h.

Proof. Let k ≥ 1 be an integer. Then consider the following pebbling strategy
parameterized by k.

1. Recursively pebble the subtrees rooted at left(righti(root(Bth))) for 0 ≤
i ≤ k − 1 and rightk(root(Bth)).

2. Leaving the (k+ 1) pebbles on the tree (from the previous step), pebble the
root vertex using an additional k pebbles in 2k − 1 steps.

3. Retaining the pebble on the root, reverse step (1) to remove every other
pebble from the tree.

The number of pebbles and the number of steps used by the above strategy
on Bth for sufficiently large h is given by the following recurrences.

S(h) ≤ S(h− k) + (k + 1) ≤ (k + 1)

k
h

T (h) ≤ 2

[
k∑
i=1

T (h− i)

]
+ (2k + 2) ≤ (2k)

h
(2k + 2) ≤ nlog(k)+1(2k + 2)

where n is the number of vertices in Bth.
If we choose k > 1/ε, then the theorem follows. ut

6 Time-space Trade-offs for Bounded-degree Trees

In this section, we study time-space trade-offs for bounded-degree trees.

Theorem 5. For any constant positive integer k, a bounded-degree tree T con-
sisting of n vertices can be pebbled using at most O

(
n1/k

)
pebbles and O

(
2kn

)
pebbling moves.

Proof. Let us prove this by induction on the value of k. In the base case (k = 1),
we are allowed to use O(n) pebbles. So, the best strategy would to place a pebble
on every vertex of T in bottom-up fashion, starting from the leaf vertices. After
the root is pebbled, we unpebble each vertex in exactly the reverse order, while
leaving the root pebbled.

In this strategy, clearly, each vertex is pebbled and unpebbled at most once.
Hence the number of pebbling moves must be bounded by 2n. Hence, a tree can
be pebbled using O(n) pebbles in O(2n) moves.

Now consider that for k ≤ k0 − 1, where k0 is an integer ≥ 2, any bounded-
degree tree T with n vertices can be pebbled using O

(
n1/k

)
pebbles in O

(
2kn

)
moves. Assume that we are allowed O

(
n1/k0

)
pebbles. To apply induction, we

will be decomposing the tree into smaller components. We prove the following.

Claim. Let T ′ be any bounded-degree tree with n′ > n(k0−1)/k0 vertices and
maximum degree ∆. There exists a subtree T ′′ of T ′ such that the number of
vertices in T ′′ is at least bn(k0−1)/k0/2c and at most dn(k0−1)/k0e.

Proof. From the classical tree-separator theorem, we know that T ′ can be divided

into two subtrees, where the larger subtree has between bn′/2c and

⌈
n′ · ∆

∆+ 1

⌉
vertices. The key is to recursively subdivide the tree in this way and continually
choose the larger subtree. However, we need to show that in doing this we will
definitely strike upon a subtree with the number of vertices within the required
range. Let T ′1, T

′
2, . . . be the sequence of subtrees we obtain in these iterations.

Also let ni be the number of vertices in T ′i for every i. Note that ∀i, bni/2c ≤

ni+1 ≤
⌈
vi ·

∆

∆+ 1

⌉
. Assume that j is the last iteration where nj > dn(k0−1)/k0e.

Clearly nj+1 ≥ bn(k0−1)/k0/2c. Also, by the definition of j, nj+1 ≤ dn(k0−1)/k0e.
Hence the proof. ut

The final strategy will be as follows:

1. Separate the tree into θ(n1/k0) connected subtrees, each containing θ(n(k0−1)/k0)
vertices. Claim 6 shows that this can always be done.

2. Let us number these subtrees in the following inductive fashion: denote by
T1, the ‘lowermost’ subtree, i.e. every path to the root of T1 must originate
from a leaf of T . Denote by Ti, the subtree for which every path to the root
originates from either a leaf of T or the root of some Tj for j < i. Also, let
ni denote the number of vertices in Ti.

3. Pebble T1 using O
(
n
1/(k0−1)
1

)
= O

(
n1/k0

)
pebbles. From the induction hy-

pothesis, we know that this can be done using O
(
2k0−1n1

)
pebbling moves.

4. Retaining the pebble on the root vertex of T1, proceed to pebble T2 in the
same way as above. Continue this procedure till the root vertex of T is
pebbled. Then proceed to unpebble every vertex other than the root of T
by executing every pebble move upto this instant in reverse order.

Now we argue the bounds on the number of pebbles and pebbling moves of
the algorithm. Recall that the number of these subtrees is O

(
n1/k0

)
. Therefore,

the number of intermediate pebbles at the root vertices of these subtrees is
O
(
n1/k0

)
. Additionally, while pebbling the last subtree, O

(
n1/k0

)
pebbles are

used. Therefore, the total number of pebbles at any time remains O
(
n1/k0

)
. Each

of the subtrees are pebbled and unpebbled once (effectively pebbled twice). Thus,
the total number of pebbling moves is at most

∑
i 2O

(
2k0−1ni

)
= O

(
2k0n

)
. ut

7 Discussion & Open Problems

We studied reversible pebbling on trees. Although there are polynomial time
algorithms for computing black and black-white pebbling numbers for trees, it
was unclear, prior to our work, whether the reversible pebbling number for trees

could be computed in polynomial time. We also established that almost optimal
pebbling can be done in polynomial time.

We conclude with the following open problems.

– Prove or disprove that there is an optimal pebbling for complete binary trees
that takes at most O

(
nk
)

steps for a fixed k.
– Prove or disprove that the there is a constant k such that optimal pebbling

for any tree takes at most O
(
nk
)

(for black and black-white pebble games,
this statement is true with k = 1).

– Give a polynomial time algorithm for computing optimal pebblings of trees
that take the smallest number of steps.

References

1. Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM
Journal of Computing, 18(4):766–776, August 1989.

2. Siu Man Chan. Just a pebble game. In Proceedings of the 28th Conference on
Computational Complexity, (CCC), pages 133–143, 2013.

3. Siu Man Chan. Pebble Games and Complexity. PhD thesis, EECS Department,
University of California, Berkeley, Aug 2013.

4. Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines
by synchronous parallel machines. Journal of Computer and System Sciences,
30(2):149 – 161, 1985.

5. John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling
problem is complete in polynomial space. SIAM Journal on Computing, 9(3):513–
524, 1980.

6. Philipp Hertel and Toniann Pitassi. The pspace-completeness of black-white peb-
bling. SIAM J. Comput., 39(6):2622–2682, April 2010.

7. Richard Královic. Time and space complexity of reversible pebbling. In Leszek
Pacholski and Peter Ruzicka, editors, SOFSEM 2001: Theory and Practice of In-
formatics, volume 2234 of Lecture Notes in Computer Science, pages 292–303. 2001.

8. Tak Wah Lam and Fung Ling Yue. Optimal edge ranking of trees in linear time.
In Proc. of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
436–445, 1998.

9. Michael C Loui. The space complexity of two pebbles games on trees. Technical
Report MIT/LCS/TM-133, Massachusetts Institute of Technology, 1979.

10. Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Com-
binatorica, 19(3):403–435, 1999. Conference version appeared in proceedings of
38th Annual Symposium on Foundations of Computer Science (FOCS 1997, Pages
234–243).

11. Ravi Sethi. Complete register allocation problems. SIAM Journal on Computing,
pages 226–248, 1975.

12. Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, Septem-
ber 2000.

13. Mihalis Yannakakis. A polynomial algorithm for the min-cut linear arrangement
of trees. Journal of the ACM, 32(4):950–988, October 1985.

