
UPPER BOUNDS FOR MONOTONE PLANAR

CIRCUIT VALUE AND VARIANTS

Nutan Limaye, Meena Mahajan, and Jayalal Sarma M.N.

Abstract. The P-complete Circuit Value Problem CVP, when re-
stricted to monotone planar circuits MPCVP, is known to be in NC3,
and for the special case of upward stratified circuits, it is known to be in
LogDCFL. In this paper we re-examine the complexity of MPCVP, with
special attention to circuits with cylindrical embeddings. We character-
ize cylindricality, which is stronger than planarity but strictly generalizes
upward planarity, and make the characterization partially constructive.
We use this construction, and four key reduction lemmas, to obtain
several improvements. We show that stratified cylindrical monotone
circuits can be evaluated in LogDCFL, and arbitrary cylindrical mono-
tone circuits can be evaluated in AC1(LogDCFL), while monotone circuits
with one-input-face planar embeddings can be evaluated in LogCFL. For
monotone circuits with focused embeddings, we show an upper bound of
AC1(LogDCFL). We re-examine the NC3 algorithm for general MPCVP,
and note that it is in AC1(LogCFL) = SAC2. Finally, we consider exten-
sions beyond MPCVP. We show that monotone circuits with toroidal
embeddings can, given such an embedding, be evaluated in NC. Also,
special kinds of arbitrary genus circuits can also be evaluated in NC.
We also show that planar non-monotone circuits with polylogarithmic
negation-height can be evaluated in NC.

Keywords. circuit value, monotone, planar, NC

Subject classification. Computational and Structural Complexity

1. Introduction

Given a Boolean circuit C over n inputs x1, . . . , xn, and an assignment xi = ai for each
variable xi, the Circuit Value Problem CVP is to determine the value C(a1, . . . , an). This
is a fundamental problem in complexity theory, since circuits capture computation in a
very natural and universal way. When each gate is labeled AND, OR or NOT, CVP is
complete for the complexity class P. It remains complete if the circuits are monotone (no
NOT gates); it also remains complete if the underlying graph has a planar embedding.
However, if the circuit is simultaneously monotone and planar (MPCVP), then evaluating
it is in NC.

The history of MPCVP begins with the papers of Goldschlager, where it is shown
that planar CVP and monotone CVP are P-complete [Gol77], and that a special case
of MPCVP, upward stratified (see Section 2 for a formal definition) is in NC2 [Gol80].
Subsequently, Dymond and Cook [DC89] improved the upper bound for this special case



to LogCFL, and Kosaraju [Kos90] extended the result by showing that a less restrictive
special case, namely that of layered upward planar monotone circuits (subsuming Gold-
schlager’s case), is also in NC, in fact in NC3. Independently and in parallel, Delcher
and Kosaraju [DK95] and Yang [Yan91] showed that MPCVP in its full generality is
in NC4 and in NC3 respectively. More recently, Barrington, Lu, Milterson and Skyum
[BLMS99] showed that for monotone upward stratified circuits — the special case con-
sidered in [Gol80, DC89] — there is in fact an upper bound of LogDCFL. Here, L and
NL stand for deterministic and non-deterministic logspace respectively, while LogDCFL

and LogCFL stand for the classes of languages logspace-many-one-reducible to determin-
istic and arbitrary context-free languages respectively. Recall that L ⊆ NL ⊆ LogCFL,
L ⊆ LogDCFL ⊆ LogCFL, and LogCFL = SAC1 ⊆ AC1 ⊆ NC2. See any standard text on
circuit complexity (e.g. [Vol99]) for more details.

There has recently been a spurt of activity examining topological constraints in small-
width circuits [BLMS99, HMV06, Han06, ADR05b]. These works provide more insights
into how to exploit the restricted topology. Using these insights, we review the de-
velopments leading up to and beyond the “MPCVP is in NC” result, and make some
improvements on the known bounds for general MPCVP as well as some special cases.
(However, we do not consider width restrictions in this work.) Our main improvements
are obtained while considering circuits with cylindrical embeddings. Such embeddings
strictly subsume upward planar embeddings, but are not strong enough to capture all
of planarity. They have been studied in depth in the context of small-width circuits
in [HMV06, Han06]. Another major contribution we obtain is to extend the NC upper
bound on MPCVP to toroidal (genus one) monotone circuits.

A key limiting problem that arises in our constructions is that of finding the length
of a longest path in a planar directed acyclic graph (planar DAG). We define PDLP to be
the class of problems logspace many-one reducible to this problem. While finding longest
paths in general is hard, finding longest paths in DAGs is easily seen to be in NL, and in
fact, NL-complete. It is conceivable, however, that the longest path problem over planar
DAGs is considerably easier than NL. Hence when we need longest paths in planar DAGs,
we state our upper bounds explicitly in terms of PDLP rather than NL, keeping in mind
that L ⊆ PDLP ⊆ L(PDLP) ⊆ L(NL) = NL.

Our contributions are as follows:

1. We characterize cylindrical graphs as spanning subgraphs of single-source single-sink
planar DAGs (Theorem 3.4). This is implicit in the result of Hansen (Theorem 2 of
[Han06]), where layered cylindrical graphs are characterized as subgraphs of single-
source single-sink layered planar DAGs. We state it explicitly because we obtain a
partial logspace-constructive version, even when the given DAG is not layered to
begin with. (Layering, in general, could be harder than logspace.) These results
are presented in Section 3.

2. We present four reduction lemmas (Lemma 4.1, 4.2, 4.3 and 6.2) which are at
the heart of the improvements we obtain. The topological constraints considered
are shown in Figure 1.1. The thick arrows go from stronger to weaker constraints,
the dotted arrows indicate logspace reductions, and the dashed arrows indicate the
reductions in L(PDLP).

3. Using the reduction lemmas, we obtain improved upper bounds; see Table 1.1.

2



Upward Stratified //

��

Layered Upward Planar

��

// Upward Planar

��

Cylindrical Stratified

L (Lemma 4.1)

OO

//

��

Layered Cylindrical

L (Lemma 4.1)

OO

oo _____

Cylindrical//

L(PDLP)

(Lemma 4.2)

��

One-input-face

��

L(PDLP) (Lemma 4.3)

OO�
�

�

Multi-cylindrical

L-Turing

3;

Bi-cylindricaloo

ww

L-Turing

KS

Focused // Planar
//
Toroidal

L (Lemma 6.2)
oo

Figure 1.1: Relationship between various topological restrictions in the context of MCVP

4. We consider a restricted generalization to higher genus in Section 6.2 and show that
such monotone circuits can be evaluated in NC.

5. We also consider planar non-monotone circuits with restrictions on the placement
of negation gates, in Section 6.3, and show that such circuits too can be evaluated
in NC.

(Monotone) Embedding Our upper bound Previous
Circuit type bound
Cylindrical given LogDCFL (Thm. 5.1) NC2

stratified ([Yan91] Sec. 2)
One input face not needed L(PDLP ⊕ LogDCFL) (Thm. 5.2) NC2

([Yan91] Sec. 3)
Cylindrical given AC1(LogDCFL) (Thm. 5.5) –
Planar not needed AC1(LogCFL) = SAC2 (Thm. 5.8) NC3 [Yan91]
Toroidal given AC1(LogCFL) = SAC2 (Thm. 6.3) P
Non-monotone
planar, polylog not needed NC (Lem. 6.4,6.5) P
negation-height

Table 1.1: Improved upper bounds

2. Basic definitions

2.1. Circuits. The underlying graph of any circuit is a directed acyclic graph (DAG).
We consider circuits with gates labeled AND, OR, NO-OP, 0, 1. A gate labeled AND or
OR has fan-in two, a gate labeled NO-OP has fan-in one, and a gate labeled by a constant
has fan-in zero and is a source node. Without loss of generality, we assume that constant
gates have fan-out one and that no gate has fan-out greater than two. We do not assume
that there is a single sink. The earlier NC algorithms for MPCVP made this assumption,
since if there are multiple sinks, each of them can be evaluated independently. However,

3



removing nodes with no path to the designated sink may not be possible in logspace, so
we explicitly note this as a computational requirement.

A circuit with variables is a circuit in which some fan-in zero gates are labeled by
variables. By generalized circuits we mean circuits which also have constant gates with
non-zero fan-in and possible fan-out more than one; the output of such a gate is inde-
pendent of its inputs, but the input wires could play a role in determining the planar
embeddings. Generalized circuits, with or without variables, arise in the recursive steps
of the algorithms from [DK95, Yan91].

A circuit is said to be layered if there is a partition V = V0 ∪ V1 ∪ . . . ∪ Vh such that
all edges go from some layer Vi to the next layer Vi+1. A circuit is said to be stratified if
it is layered and all source nodes are in layer V0.

A language L is said to be in NC if there is a family of polynomial-size polylog
depth circuits {Cn} with AND, OR, and NOT gates, with all NOT gates at the leaves,
such that x ∈ L iff C|x|(x) = 1. Circuit Cn having depth O(logi n) corresponds to
NCi if the AND/OR gates have bounded fan-in, to ACi if they have unbounded fan-
in, and to SACi if only the AND gates are constrained to bounded fan-in. Clearly,
NCi ⊆ SACi ⊆ ACi ⊆ NCi+1.

2.2. Topological Embeddings and Drawings. In this paper, we are concerned with
directed acyclic graphs, denoted DAGs. Though many of the definitions below apply to
general graphs, we will use them specialized to DAGs.

A graph is said to be planar if it can be embedded in the plane without crossings. That
is, the nodes and edges of the graph can be drawn in such a way that the representations
of no two edges intersect, except at shared endpoints. A plane graph is a graph along
with a planar embedding. Note that planarity is independent of whether the graph is
directed or not. By the results of [RR94, AM04, Rei05], deciding if a given graph is
planar and if so finding a planar embedding is in AC1, SL, and now L.

A planar embedding is bimodal if at every vertex v, all outgoing (incoming) edges
appear consecutively around v. It is easy to see ([TT86], [Han06] Lemma 5, [Yan91]
Lemmas 3.1 and 3.2) that in a planar DAG with a single source and a single sink,
(a) every embedding is bimodal, and (b) for every face f , the edges incident on f form a
simple (undirected) cycle consisting of two directed paths.

A planar embedding of a DAG is said to be a one-input-face embedding if all source
nodes lie on the same face. Testing if a planar DAG is one-input-face, and if so, uncovering
such an embedding, is easy: add a new source node with edges to all the old sources, and
test for planarity.

A drawing (not necessarily planar) of a digraph on the plane is upward if the drawing
of every edge is monotonically increasing in the vertical direction. Every DAG has an
upward embedding, which can be recovered by a topological sort. (Also, only DAGs have
upward embeddings, since a cycle cannot be embedded in an upward way.)

A digraph is upward planar if it has an embedding that is simultaneously upward
and planar. Though all DAGs are upward, not all planar DAGs are upward planar.
Figure 2.1 shows a standard instance of a planar DAG which is not upward planar (see
for instance [BT88]). In fact, given a planar DAG, deciding whether it is upward planar
is NP-complete [GT01]. (It is also known that every upward planar graph has an upward
planar embedding using only straight-line drawings of all edges [BT88]. Furthermore, if

4



A
B C

D

E

F

Figure 2.1: A planar DAG that is cylindrical but not upward planar

the DAG is layered, all nodes in the same layer will have the same y-coordinate.)
A digraph is cylindrical if it can be embedded on a cylinder surface, in a way such

that all edges are monotonically increasing in the direction of the axis of the cylinder.
(Clearly such a digraph must also be acyclic, a DAG.) As observed in [Han06], this
generalizes upwardness, with the edges embedded on the surface of the cylinder rather
than on a plane. Note that the surface of the cylinder can be embedded on a plane in a
straightforward way: place the right end of the cylinder (the end towards which all edges
flow) on the plane, and dilate the cylinder in a continuous way into a cone section until
its surface lies flat around the end placed first. (In fact, the converse is also true: any
embedding on the plane can be drawn on the surface of the cylinder. But the edges may
not be monotone along the cylinder axis.) Thus a cylindrical embedding will give rise to
a planar embedding where all edges flow in an inward direction towards a central face.
It follows that every cylindrical embedding is also bimodal, even if it is not single-source
single-sink.

Cylindricality strictly generalizes upward planarity, as Figure 2.1 shows. The example
of Figure 2.2 shows that cylindricality does not capture all planar DAGs.

B

C E

F G

A

D

H

I

J

Figure 2.2: A planar DAG that is not cylindrical

A layered cylindrical embedding of a layered digraph is a cylindrical embedding where
layers correspond to disjoint circles of the cylinder (or concentric circles on the plane, in

5



the corresponding inward drawing). In recent literature in the graph drawing commu-
nity, the term radial drawing is used. For instance, the radial leveled planar drawings of
[BBF03] are exactly layered cylindrical embeddings. We continue to use the term cylin-
drical rather than radial, since the main issue in radial leveled planar drawings appears to
be: given the partition of the vertex set into sets lying on the same layer, find the ordering
on each layer. On the other hand, we are often concerned with finding the partition as
well, and this could well be a harder problem.

Recall that a layered circuit (in general, a layered DAG) is said to be stratified if
all source nodes appear at layer 0. A DAG is said to be upward stratified (cylindrical
stratified) if it is layered, stratified, and has an upward planar (cylindrical respectively)
embedding. It follows that an upward/cylindrical stratified circuit has a one-input-face
embedding. Figure 2.3 shows a layered planar DAG which has an upward planar em-
bedding and a one-input-face embedding but no upward one-input-face embedding. In
[DK95], the term restricted stratified is used to denote circuits which are cylindrical strat-
ified as defined above (without the restricted, the authors of [DK95] mean generalized
circuits). On the other hand, in [BLMS99], stratified refers to upward stratified as de-
scribed here.

A

B
D

H

I
J

L

M

G

P

N
O

Q

S

R

F

E

K

C

A

B
D

H

I

L

M

G

P

N

Q

J

O

F

C

S

R

K

E

Figure 2.3: A layered planar DAG with an upward planar embedding and a one-input-face
embedding but with no upward one-input-face embedding

A planar embedding of a DAG G is focused if there is a subset S of source nodes, all
of which are embedded on a single face, and every node of G not reachable from S is
itself a source node. This is a topological analogue of a skewness condition on circuits.
Note that one-input-face embeddings are (vacuously) focused; S is the set of all source
nodes.

We use the terms SSPD and SMPD to mean single-source single-sink planar DAGS
and single-source multiple-sink or multiple-source single-sink planar DAGs respectively.

2.3. Representing embeddings.

Planar embeddings: By the results of [RR94, AM04, Rei05], deciding if a given graph
is planar and if so finding a planar embedding is in AC1, SL, and now L. The embedding
so obtained is a planar combinatorial embedding, specifying the cyclic (clockwise, say)

6



ordering of edges around each vertex in some plane embedding. (In fact, specifying for
each vertex the clockwise cyclic ordering of edges around it is what is called a combinato-
rial embedding, and corresponds to an embedding of the graph on some orientable surface
of appropriate genus.) Checking whether a given combinatorial embedding corresponds
to an embedding on the plane can be done in logspace.

We briefly discuss how faces are specified in any planar embedding. Recall that
embeddings ignore directions on edges. In fact, for each (undirected) edge (u, v), the
embedding will specify where arc (u, v) figures in the circular list around u, and where
arc (v, u) figures in the circular list around v. The arcs (u, v) and (v, u) are expected to be
superimposed in the corresponding geometric embedding. We use the term edges to refer
to directed edges of the original graph, while we use the term arcs to refer to the directed
arcs in the combinatorial embedding. For every arc e = (u, v), there are faces L(e) and
R(e) to the left and right, respectively, of the edge. (These could both be the same, if,
say, e is a bridge in the underlying graph.) If G is a connected graph when directions on
edges are ignored, then for every face f , the set of edges e with f ∈ {L(e), R(e)} form a
connected graph. This set can be traversed systematically as follows. Start with an arc
e = (u, v) such that, say, f = R(e). Let e′ = (v, w) be the arc preceding (v, u) in the cyclic
ordering around v. Then f = R(e′). Keep advancing in this way until the starting arc is
encountered again; in the process, the entire boundary of f will be traversed. We assume
that f is “named” by the lexicographically smallest arc a = (u, v) such that f = R(a).
See [MT01, Whi73] for more about representing embeddings.

Layered cylindrical or Layered upward planar embeddings: We assume that the
embedding is given in the following form: (a) the cyclic ordering of edges around each
vertex (the planar combinatorial embedding) corresponding to the geometric embedding,
and (b) the circular or left-to-right ordering of vertices at each layer. It is straightforward
to see that given such information, we can verify in logspace that it indeed corresponds
to some layered cylindrical or layered upward planar geometric embedding.

Cylindrical embeddings: For cylindrical embeddings of non-layered graphs, we need
to specify some more information. Imagine circles drawn along the surface of the cylinder,
through each vertex. The ordering of the circles along the axis of the cylinder imposes
a partial order on the vertices (total, if no two vertices lie on the same circle); consider
any total order extending this. This ordering corresponds to non-decreasing distance of
vertices from the bottom end of the cylinder. For each vertex u, we can talk of its left
face and its right face: the left face is the face between u’s leftmost incoming edge (last
incoming edge in clockwise ordering) and leftmost outgoing edge (first outgoing edge in
clockwise ordering), while the right face is the face between its rightmost incoming and
outgoing edges. If u is a source, then the left and the right face are the same, and it is
the face containing the (initial segment of) the ray drawn out of u against the cylinder
axis. Similarly, if u is a sink, it is the face containing the (initial segment of) the ray
drawn out of u along the cylinder axis. Given the clockwise ordering of edges around
each vertex, the left and right faces can be determined for each u that is not a source or
sink. For a source/sink u, if we explicitly specify the leftmost outgoing/incoming edge,
then this face can be determined. We call this edge L(u). For instance, see the example
in Figure 2.4. The total order is A B E F C D. For source A, L(A) = (A, B), while for

7



sink D, L(D) = (C, D). The left faces of B and C are fl and fr respectively. The right
face of B is the region inside the quadrilateral BFEA, while the right face of C is the
region inside the triangle BCD.

C

D

F

B

A

E

f

ft

b

Figure 2.4: Representing a cylindrical embedding

With this background, we now assume that the following information about the cylin-
drical embedding is available: (a) the cyclic ordering of edges around each vertex (the
planar combinatorial embedding), (b) a total order v1, v2, . . . , vn of the vertices, extend-
ing the partial order induced by the cylindrical embedding, and (c) for each source/sink
u, the edge L(u). In particular, the edges L(v1) and L(vn) specify the faces fb and ft

corresponding to the bottom and top ends of the cylinder.
It is not clear that given (a), (b), (c) above, one can check in logspace if the corre-

sponding plane embedding is cylindrical. However, this information is sufficient for the
results of this paper.

3. Graphs on cylinders

Upward planar graphs have been characterized independently in [Kel87] and [BT88]: A
DAG is upward planar if and only if it is a subgraph of a planar st-digraph, that is, a
planar DAG with a single source s, a single sink t, and an edge from s to t. Extending this
result, [Han06] characterizes layered cylindricality: a layered digraph is layered cylindrical
if and only if it is a subgraph of a layered planar DAG with a unique source and a unique
sink (an SSPD). While the result is implicit in the work of [TT89], the major contribution
in the proof of [Han06] is to make the transformation uniform. In a similar vein, we
characterize cylindricality (without the layered property); while the topological ideas are
already there in the proofs of [TT89, Han06], we prove it in a different way to obtain
suitable uniformity bounds. We then use these to evaluate cylindrical circuits.

One direction of our characterization crucially uses a layered embedding algorithm
independently due to [Yan91] and [DK95]. The algorithm of [Yan91] is stated for single-
sink digraphs where there is a one-input-face planar embedding (an embedding in which

8



all sources appear on the same face), while that of [DK95] is stated for what are called
focused circuits. We will use the algorithm for single-sink one-input-face planar DAGs,
and we observe that this includes, as a special case, SSPDs. ([Yan91] uses the notation
layered one-input-face for cylindrical stratified (all source nodes at the first layer)). An
important property of such embeddings is that all vertices are bimodal; thus left and
right faces of a vertex are defined. The algorithm is described in Figure 3.1.

Input: a one-input-face single-sink planar directed acyclic graph H .

Output: A layered cylindrical embedding of a graph H ′, obtained from H by sub-
dividing edges into directed paths.

Method: Let t be the sink of H .

1. For each node v in H find the longest distance d(v) to t. Let d =
maxv{d(v)}; there are d+1 layers. The input nodes are in V0. A non-input
node u is in layer l(u) = d − d(u).

2. For a directed edge (u, v) in the graph, let k = l(v)−l(u)−1. If k > 0, then
introduce dummy nodes n1, n2 . . . nk and add the edges (u, n1),(n1, n2) . . .

(nk, v). (That is, we subdivide edge (u, v) into a directed path of length
l(v) − l(u).) The dummy node ni will be in layer l(u) + i.

3. For each node u (including dummy nodes), walk along the boundary of the
left (or right, respectively) face of u beginning at u. The first node encoun-
tered with the same layer number as u is the left (or right, respectively)
neighbour of u.

Figure 3.1: Layered embedding algorithm ([Yan91] Section 3, [DK95] Section 4)

Steps 1-2 of the algorithm provide the layering, step 3 provides the cylindrical embed-
ding of the layered graph. To see why the algorithm is correct, see Section 3 of [Yan91]
or [DK95]. We observe the following:

Proposition 3.1. The layered embedding algorithm above runs in L(PDLP). �

Now we establish our characterization by the following two lemmas.

Lemma 3.2. If a planar DAG G is a spanning subgraph of an SSPD H (a planar DAG
with a single source and a single sink), then G has a cylindrical embedding which, given
G and H , can be constructed in L(PDLP).

Proof. Using the algorithm of Fig. 3.1, a cylindrical embedding can be found for H ′

obtained from H by edge subdivision. Replacing the directed paths obtained through
subdivision by original edges, we get a cylindrical embedding of H , and hence of G. The
upper bound for constructing the embedding of H follows from Proposition 3.1. �

9



Lemma 3.3. If a planar DAG G has a cylindrical embedding, then it is a spanning
subgraph of a cylindrical DAG H with a single source and a single sink.

Proof. Consider the layout of the graph on the cylinder surface, with vertices in order
v1, v2, . . . , vn as specified by the cylindrical embedding. Clearly, v1 is a source and vn is
a sink. Without loss of generality, we assume that the normal circles of the cylinder
through v1 and vn do not contain any other vertex. (If they do, move vertex v1 slightly
towards the cylinder bottom, vn towards the top. This does not change the combinatorial
specification of the embedding.)

If any vertex vi other than vn is a sink, we need to add an edge from it to some vj

with j ≥ i without destroying cylindricality. Such a vj can always be found as follows:
imagine a particle moving out of vi along the direction of the cylinder axis. It aims
to avoid intersecting any edge. So if it encounters an edge, it moves parallel to and
infinitesimally close to the edge. Since all edges are cylindrical, its movement is still
monotonic with respect to the axis. As soon as it reaches (infinitesimally close to) a
vertex, we declare that vertex to be vj . If it never encounters an edge or a vertex, then
it will exit at the right end of the cylinder. In this case we declare vn to be the desired
vj . The movement of the particle ensures that the edge (vi, vj) can be added preserving
cylindricality. A similar procedure applied after this will work to make all sources other
than v1 have incoming edges. �

Theorem 3.4. Let G be any planar directed acyclic graph. The following are equivalent.

(i) G has a cylindrical embedding.

(ii) G is a spanning subgraph of a cylindrical SSPD.

(iii) G is a spanning subgraph of an SSPD.

It follows that testing for cylindricality is in NP. However, though cylindricality gen-
eralizes upward planarity, testing for which is NP-complete, it is possible that testing for
cylindricality is easier.

One direction of the theorem above is already constructive using Lemma 3.2. We
make the proof of Lemma 3.3 constructive via a more complicated construction. This
construction works only for one stage (multiple sinks to single sink or multiple sources to
single source), and yields only a planar (not cylindrical) embedding of H . The advantage
is that it is implementable in logspace.

Lemma 3.5. Let G be a connected (in the undirected sense) cylindrical DAG with S

sources and T sinks. Given the cylindrical embedding of G, we can construct, in L,
a planar single-source DAG Hs with T sinks and a planar single-sink DAG Ht with S

sources such that G is a spanning subgraph of both.

Proof. We describe how to construct Hs; the construction of Ht is symmetric. Since
G is connected, for every face f , the edges incident on f form a connected graph. For
each face f , let i be the smallest index such that vi is on the boundary of the face. Then
there is some edge e = (vi, vj) such that f = R(e). Start traversing the boundary of f ,

10



(c) Eliminating all but one sink

(a) The graph G, with 5 sources and 5 sinks

(b) Eliminating all but one source

Figure 3.2: Obtaining H from a connected G.

starting with such an edge e = (vi, vj). For each vk encountered on the boundary with
in-degree 0, add edge (vi, vk). See Figure 3.2 (a), (b) for an example.

Clearly this preserves acyclicity, since all new edges are from a lower indexed to larger
indexed vertex. This also preserves planarity. The new edges are inserted, in the order
encountered, into the cyclic ordering around vi immediately after the arc (vi, vj). A new
edge (vi, vk) is inserted into the cyclic ordering around vk immediately after the arc (vl, vk)
which led to the discovery of vk on this face boundary. Thus we can easily compute the
new planar combinatorial embedding.

As the figure shows, we may end up adding far more edges than is necessary. (Multiple
edges will not get added if we process each face sequentially. But in logspace, we cannot
cascade polynomially many such stages. So while processing each face, we check for in-
degree zero in the original graph.) Since G is connected, every source has a path to v1.
Hence every source lies on the boundary of at least one face with a lower indexed vertex,
and hence acquires an incoming edge. Thus at the end, only v1 is a source. �

As figure 3.2 (b) shows, applying the above construction on a graph to remove multiple

11



sources may trap a sink. So we cannot sequentially remove multiple sources and then
multiple sinks. In fact, after removing multiple sources, we do not know if the graph H

so constructed necessarily has a cylindrical embedding. Even if it does, we do not know
how to recover one.

In the above proof, connectedness ensured that every source other than v1 acquired
an incoming edge. We observe in the following lemma that absolute connectedness is not
a critical requirement.

Lemma 3.6. Let G be a cylindrical DAG where each connected component of the un-
derlying undirected graph has either a single source or a single sink. Then a planar
single-source single-sink DAG H of which G is a spanning subgraph can be constructed
in L.

Proof. Partition the underlying undirected graph of G, in L, into connected compo-
nents G1, . . . , Gc. For each component, there is a cylindrical embedding inherited from
that of G, which can be efficiently retrieved. By Lemma 3.5, each Gi is a spanning
subgraph of a planar DAG Hi, with a single-source si and single-sink ti, and Hi can be
constructed in logspace. All that remains is to combine these Hi. Since each Hi is acyclic,
the graph H obtained by adding edges ti, si+1 is also acyclic, and has a single source s1

and single sink tc. To see why it is planar, consider planar embeddings of each Hi with
si on the external face. (The construction of Lemma 3.5 does yield such embeddings.)
Consider any face f for which ti is on the boundary. We insert the embedding of Hi+1 in
this face, and connect ti to si+1. (See Figure 3.3.)

s t1
1

s2

t1

t2

1s
2s

2t

Figure 3.3: Patching H1 and H2 preserving planarity.

To construct a planar embedding of H , we can simply construct afresh a planar
embedding of H in L. (Strictly speaking, this is not necessary. The edge (ti, si+1) can be
inserted anywhere in the cyclic ordering of ti. In the cyclic ordering of si+1, it should be
inserted in such a way that it lies on the external face of Hi+1. Given the way Hi+1 is
constructed from Gi+1, this information about the external face is indeed available.) �

4. Circuits on cylinders

We now show that for circuit evaluation, any technique applicable to layered upward
planar circuits also applies to cylindrical circuits, with a uniformity requirement in

12



L(PDLP) ⊆ L(NL). The result is obtained in two stages: first we show how to deal
with layered cylindrical circuits, and then we show how to layer arbitrary cylindrical
circuits. We also show that one-input-face circuits reduce to upward stratified circuits,
with a similar uniformity requirement.

Lemma 4.1. Given a circuit C with a layered cylindrical embedding E , we can in logspace
obtain an equivalent circuit C ′ with a layered upward planar embedding E ’. Further, if
E is stratified, so is E ’. Also, if C is monotone, so is C ′.

Proof. Intuitively, what we want to do is as follows. Consider a geometric embedding
of C on the plane, with layers corresponding to concentric circles and edges travelling
inwards. By rotating a ray shooting out of the root, we can find an angular position
where it does not contain the embedding of any node. By deforming edge representations
if necessary, we can ensure that each edge intersects the ray (at this angular position)
in at most one point. Now simply “cut” the circuit C along the ray. This gives rise to
dangling in-edges and out-edges and a circuit D which is layered upward planar. Patch
multiple copies of D side-by-side, feeding zeroes to the dangling edges of the extremal
copies, and let the root of the middle copy be the new root. See Figure 4.1.

(a) A layered cylindrical circuit

    around the cylinder)
   (the dashed edge is embedded (b) After cutting along right end

(c) Joining up copies of cut circuit

Figure 4.1: Obtaining an upward circuit equivalent to a cylindrical one.

To translate this into a formal proof, we need to describe (a) how to obtain, in
logspace, the curve along which we will cut the circuit C to get D, (b) how the copies
will be patched functionally, (c) how the embeddings of the copies will be patched, and
(d) why the resulting circuit is equivalent to C.

13



We first perform some preprocessing on the circuit. Since we are given the layering as
well as the label r of the circuit output gate, we can throw away all gates at a larger layer
than r. Now, treating all edges as undirected, use the logspace connectivity algorithm
to delete all gates with no (undirected) path to r. Let the resulting circuit be C1, with
layers V0, V1, . . . , Vh and r at layer h. We replace each vertex u by vertices uin and uout

with a directed edge from uin to uout. The type of gate uin is the type of u, while uout is a
NO-OP gate. An edge (u, v) is replaced by the edge (uout, vin). The resulting circuit, call
it C2, has 2h layers: an out layer for V0, an in layer for Vh, and two for all other layers.
The layered cylindrical embedding of C2 is easily obtained from that of C1, and hence of
C, in logspace. The only tricky point is handling sources/sinks of C1. If u is a source of
C1, we need to decide where to insert the edge (uin, uout) into the cyclic ordering of edges
leaving uout. This is where we need the third part of the representation of cylindrical
embeddings: we insert this edge just before the edge L(u). Similarly for a sink v, we
insert (vin, vout) in the ordering around vin just after L(v). C2 is clearly equivalent to C;
further, it has the nice property that no layer has a source as well as a sink.

To see (a), we start with vertex r of C2. At some stage, suppose that the path ρ under
construction has reached vertex g from above. If g is at the lowest layer, we are done.
Otherwise, move down to any neighbour of g at a lower layer. Suppose there is no such
neighbour; that is, g is a source node. Then g is of the form vin for some v ∈ C1. Traverse
the boundary of the face to the right of (vin, vout), until it first encounters a vertex g′ at
a layer lower than g. Such a vertex must exist, since g has undirected connectivity to r

which has undirected connectivity to the layer below g. The path ρ now proceeds from
g to g′.

The path ρ constructed uses some circuit edges and some dummy edges. Let C3 be
the graph C2∪ρ. The above procedure of constructing ρ also gives us a layered cylindrical
embedding of C3.

We cut C3 to the immediate right of the path, starting at r, to obtain a layered upward
planar circuit C4. The embedding of C4 is specified as follows: Retain edges (u, v) where
neither u nor v is on ρ. For u on ρ, retain edges leaving or entering u to/from the left of ρ.
Replace an edge (u, v) leaving ρ on its right by the edges (x, v) and (u, x′), where x and
x′ are new gates of fan-in/fan-out zero. Similarly, replace an edge (w, u) entering ρ from
its right by the edges (y′, u) and (w, y), where y′ and y are new gates of fan-in/fan-out
zero. It is clear that this can be performed in logspace. C4 is the circuit D informally
described earlier.

Let d be the depth of C2. Place 2d+1 copies of C4 side by side in a row. Identify new
node x′ of copy i with new node x of copy i + 1. Identifying x and x′ gives a subdivision
of an edge present in a copy of C4. Restore the subdivision to a single edge (remove the
identified node). New nodes x of the leftmost copy, and new nodes x′ of the rightmost
copy, are fed constant 0, via paths of NO-OP gates of appropriate length (this is done to
preserve stratifiedness). See Figure 4.1 (c). Designate the root of copy d + 1 as the new
root. Let this circuit be called D. It is easy to see that D is layered upward planar, and
that its embedding can be obtained from that of C4 in logspace. Also, if C2 is stratified,
so are C4 and D.

We claim that D is equivalent to C2, and hence to C. The reason is simple: at the
lowest level, all nodes of D are correct (they evaluate to the same value as corresponding
nodes in C2). If at level l, the copies i − 1, i, i + 1 of C4 are correct, then at level l + 1

14



the ith copy of C4 is correct. Thus over 2d + 1 levels, we may lose at most 2d copies, but
the central copy will correctly evaluate the root of C2. �

In the above proof, the layering of the given circuit appears crucial. We observe below
that without layering, the same conversion can be performed in L(PDLP).

Lemma 4.2. Evaluating a circuit C with a cylindrical embedding E reduces in L(PDLP)
to evaluating a layered cylindrical circuit C ′ with embedding E ’. Further, if E is one-
input-face, then E ’ is stratified. Also, if C is monotone, so is C ′.

Proof. We proceed in four steps.

1. We remove from C all nodes with no directed path to the output gate of C. This
gives an equivalent circuit G with a single sink, and with an inherited cylindrical
embedding.

2. From the given cylindrical embedding of G, we construct the SSPD H with the
same vertices as G and containing all the edges of G.

3. Using the layered embedding algorithm of Figure 3.1, we obtain a layered cylindrical
embedding of an SSPD H ′, obtained by subdividing edges of H into directed paths.

4. We recover a layered cylindrical embedding of a digraph G′ from that of H ′ by
simply throwing away all directed paths corresponding to edges in H \ G. We
convert G′ to a circuit by specifying that all the new subdivision vertices have type
NO-OP.

Since C is a planar DAG, Step (1) can be performed in L(PDLP). Step (2) uses Lemma 3.5,
and can be performed in logspace. Step (3) uses Lemma 3.2, and runs in L(PDLP). It is
straightforward to see that Step (4) can be performed in logspace. �

Note that the layered embedding algorithm needs a single-sink one-input-face embed-
ding. In the above proof, the one-input-face condition is achieved in step 2 by exploiting
cylindricality. However, if the given circuit already has a one-input-face embedding, then
cylindricality is not needed. Thus we have:

Lemma 4.3. Evaluating a circuit C with a one-input-face embedding E is reducible, in
L(PDLP), to evaluating a stratified cylindrical circuit C ′ with embedding E ’. Also, if C

is monotone, so is C ′. �

5. Improved Upper bounds for MPCVP

In this section we revisit some of the MPCVP algorithms in the literature. We observe
that some of these algorithms have tighter bounds than claimed. Wherever possible, we
apply (some of) the reduction lemmas of Section 4 to expand the class of circuits for which
the algorithm applies. Wherever possible, we also try to weaken the input requirements.

Goldschlager [Gol80] considered upward stratified circuits. He showed that in this
special case, if the corresponding embedding is given with the input, then MPCVP is
in NC2. This upper bound was improved to LogCFL by Dymond and Cook [DC89].

15



They use the characterization (due to [Coo71, Sud78]) of LogCFL as languages accepted
by polynomial-time-bounded pushdown automata augmented with an auxiliary logspace
worktape, AuxPDA(poly) in short. (Similarly, LogDCFL is characterized as languages
accepted by deterministic polynomial-time-bounded pushdown automata augmented with
an auxiliary logspace worktape, DAuxPDA(poly).)

The main idea behind obtaining the LogCFL bound is as follows: since the circuit
is monotone, intervals of contiguous 1s at the input level travel upwards as contiguous
segments which may shrink, expand, or merge, but never split. (This last property breaks
down if the embedding is not stratified.) So evaluating the given circuit C amounts to
proving that an interval is true (or valid), by finding a set of intervals at the previous level
which imply its validity, and recursively proving their validity. An important property of
a minimal set of intervals proving validity of the root (a “proof tree” on intervals) is that
it is polynomial sized; hence an auxiliary push-down automaton performing the recursive
verification nondeterministically will run in polynomial time. But this is precisely the
class LogCFL.

The work of Barrington et al.[BLMS99] brings the evaluation of monotone upward
stratified circuits, presented along with such an embedding, down to LogDCFL by evalu-
ating the circuit in a bottom up fashion. The DAuxPDA algorithm repeatedly transforms
the input by (a) detecting when a 0- or 1- interval at the input layer fails to propagate
high enough, and (b) replacing the interval by all 1s or all 0s. The transformation thus
preserves the value of the output gate. The stack is used to keep track of the frontier
up to which simplifying transformations have been made. Polynomial running time is
ensured, amongst other things, by the placement of a virtual blocking interval of 0s on
either extreme at each level. The algorithm requires the upward stratified embedding to
be supplied as input. Though not stated explicitly, it also works for circuits with multiple
sinks. (The only point to be checked is that intervals of 1s may merge though separated
not just by a 0 interval but by 0- and 1- intervals, all arising at sinks; see the discussion
preceding Proposition 8 of [BLMS99]. This makes no difference to the technical claims.)

Since virtual blocking intervals cannot be placed at extremes of each layer for a cylin-
drical embedding, we do not see how to extend this algorithm to work for stratified
cylindrical circuits. However, we can still obtain this upper bound by using Lemma 4.1
in conjunction with this algorithm:

Theorem 5.1. Given a monotone planar circuit C with a stratified cylindrical embed-
ding, determining whether C evaluates to 1 is in LogDCFL. �

What if the embedding needed for Theorem 5.1 is not explicitly given, but there is
the promise that such an embedding exists? At some cost, we can recover a suitable
embedding. The cost is high enough that we can weaken the premise further. Note that
stratified cylindrical embeddings are one-input-face, though the converse may not hold.
But one-input-face embeddings can be constructed in logspace. With such an embedding,
we can apply Lemma 4.3 and Theorem 5.1; thus we get a slightly weaker upper bound
for a more general class:

Theorem 5.2. Given a monotone planar circuit C, if C has a one-input-face embedding,
then C can be evaluated in L(PDLP ⊕ LogDCFL) ⊆ L(NL ⊕ LogDCFL) ⊆ LogCFL.

16



Proof. We first construct a one-input-face embedding of C in logspace, as described
in Section 2.2. Then we apply Lemma 4.3 to obtain an equivalent cylindrical stratified
circuit C ′, and use Theorem 5.1. �

Layered one-input-face circuits were considered by Yang [Yan91] as a step towards
placing general MPCVP in NC. Note that these are precisely cylindrical stratified circuits.
In Section 2 of [Yan91], an upper bound of NC2 is obtained for evaluating such circuits.
Rather than use a tool like Lemma 4.1 followed by the bound of [Gol80], Yang devised
a somewhat different algorithm, since a modification of it was used in a later section.
The essence of his algorithm was the same as in [DC89]: evaluating the given circuit C is
equivalent to evaluating a circuit C ′ which tries to determine, for each interval or segment
of gates at each level, whether this interval evaluates to all 1s. Further, he carried the
range of inputs used in proving validity as a parameter. That is, for each interval i, j

of gates numbered between i and j at level l, and for each input range x, y, determine
if the interval i, j, l can be proved valid using only inputs from the range x, y. (Note:
it is not claimed that all inputs in the range x, y are 1s, merely that 1s outside this
range are not needed for proving validity.) By doing this, he was able to establish that
C ′ has polynomial algebraic degree. Then he appealed to [MRK88] to obtain the NC2

bound. However, it is now known that circuits of degree polynomial in circuit size can
be evaluated in LogCFL [Ruz80, Ven91]. Thus we have

Proposition 5.3. The algorithm of Section 2 from [Yan91], for evaluating instances of
MPCVP presented with cylindrical stratified embeddings, has a LogCFL implementation.
�

Another notable point is that though Yang assumed a single-sink circuit, his algorithm
works also in the presence of multiple sinks.

This bound was independently obtained by Delcher and Kosaraju [DK95], who ob-
served that the algorithm of [DC89], though presented only for upward stratified circuits,
works also for the cylindrical stratified case. This is because even for such embeddings, the
proving sub-circuit for validity of intervals has a tree structure which is polynomial-sized.

In [Kos90], the requirement that the circuit be stratified was dropped for the first
time. The input is required to be a monotone layered upward planar circuit, with the
witnessing embedding supplied. Dropping the stratified (one-input-face, for layered cir-
cuits) condition means that intervals of contiguous 1s can split due to the presence of
an input node at an intermediate layer, and this makes all the preceding algorithms for
upward-planar or cylindrical stratified circuits inapplicable. Kosaraju’s idea is, however,
quite simple and elegant: repeatedly split the circuit horizontally at a layer such that
both pieces are between 1/4 and 3/4 of the entire circuit in size. Evaluate each piece
recursively, replacing cut off wires by variables. (The details of the recursive splitting are
a bit sketchy in [Kos90] but are supplied in full in [DK95] for the stratified case.)

But what does it mean to evaluate a circuit with variables? Due to monotonicity, if
a gate evaluates to 1 (0) even when all variables are set to 0 (1, respectively), then the
gate evaluates to 1 (0, respectively) for all settings of the variables. So by evaluating
such a circuit on two settings — all variables 1, and all variables 0 — the gates can be
partitioned into three sets: evaluating to 1, or 0, or depending on the input variables.
Once the recursive evaluation is done, the bottom piece is entirely evaluated and the top

17



piece has some variable gates. But now the values of all its variable inputs are known
from the bottom piece, so this piece can be fully evaluated.

Clearly, the recursion depth is logarithmic, and the base case of recursion is a mono-
tone upward stratified circuit with variables. As observed above, [Kos90] used the fact
that the NC2 bound of [Gol80] applies also in the presence of variables to obtain the three-
part partition. Using this bound for the base case, [Kos90] reported an upper bound of
NC3.

It is worthwhile noting that at internal stages of the recursion, the circuits could
become generalized; they could have constant gates with non-zero fan-in (e.g. an OR
gate could get as inputs one 1 and one variable from the preceding level of recursion).
So, to apply Goldschlager’s algorithm to the base case, the constant gates with non-zero
fan-in are explicitly removed. That is, to patch up the two pieces, only the sub-circuit
induced by gates which depend on variables is considered.

It is also worthwhile noting that this algorithm is also insensitive to multiple sinks,
since the strategy evaluates not just a designated sink but every gate in the circuit.

Kosaraju’s upper bound can be tightened by noting that a log-recursion-depth algo-
rithm, using the algorithm of [BLMS99] rather than [Gol80] for the base case, yields an
implementation in AC1(LogDCFL).

Proposition 5.4. The algorithm of [Kos90], for evaluating instances of MPCVP pre-
sented with layered upward planar embeddings, has an AC1(LogDCFL) implementation.
�

Further, the class of circuits for which this bound applies can be expanded to cylin-
drical circuits:

Theorem 5.5. An instance of MPCVP, presented with a cylindrical embedding, can be
solved in AC1(LogDCFL). �

Proof. Let C be the given circuit with a cylindrical embedding. Using Lemma 4.2,
we obtain in L(PDLP) ⊆ NL ⊆ AC1 an equivalent circuit C ′ with a layered cylindrical
embedding E . Applying Lemma 4.1 gives, in L ⊆ AC1, an equivalent layered upward
planar circuit C ′′, to which the preceding proposition can be applied. Note that for
subcircuits evaluated at recursive steps, embeddings are inherited from E . �

Bi-cylindrical Circuits : We now consider a generalization of cylindrical circuits, which
we call bi-cylindrical circuits. These strictly subsume cylindrical, while still lying within
planar circuits.

Definition 5.6 (Bi-cylindrical circuits). A DAG or circuit G is bi-cylindrical if it has
an embedding on the surface of the cylinder such that there is a circle C going around
the cylinder surface, and all edges go towards C.

Thus C splits G into two pieces (overlapping only on C) where each piece is cylindrical.
(See Figure 5.1.)

Now each piece can be evaluated separately, and the the root gate can then be eval-
uated from its values in the two pieces. Depending on whether the pieces are layered or
not, and whether they have one-input-face embeddings or not (if both do, then all inputs
lie on the two extreme ends of the bi-cylinder), we have the following upper bounds:

18



Figure 5.1: Bi-cylindrical embeddings

bi-cylindrical circuit type layered not layered
inputs only at extremes LogDCFL L(PDLP ⊕ LogDCFL)
inputs anywhere AC1(LogDCFL) AC1(LogDCFL)

Focused circuits : Focused embeddings are considered in [DK95], since they arise
in recursive stages of their final algorithm for general MPCVP. Recall that a focused
embedding is one where all sources other than those in a designated face f feed into a
node reachable from a source in f . This is a topological analogue of a skewness condition
on circuits. Such a circuit C can be converted to an equivalent upward stratified one
C ′ (with such an embedding explicitly obtained) by simplifying the neighbours of the
inputs not on the special face and then using Lemma 4.3 followed by Lemma 4.1. One
consequence is that some internal nodes may be constant nodes; e.g. an OR gate with a
skew 1 input from outside f simplifies to a constant gate, but still has another input wire
feeding into it. We could cut off such wires as well. (But we must do this after obtaining
the stratified cylindrical embedding; if we do it before that, then the resulting circuit is
no longer one-input-face, so Lemma 4.3 does not apply.) After this cutting, the resulting
circuit C ′′ won’t be stratified, so we can only use the bound of Theorem 5.5 and not that
of Theorem 5.1. Since C ′ can be obtained from C in L(PDLP) ⊆ AC1, and since C ′′ can
be obtained from C in logspace, we have:

Theorem 5.7. Given a monotone planar circuit C with a focused embedding, determin-
ing whether C evaluates to 1 is in AC1(LogDCFL). �

The final algorithms of both [Yan91] and [DK95] make no assumptions about the
embedding; given an instance of MPCVP with any planar embedding, they show that
evaluation is in NC. Both algorithms repeatedly evaluate carefully chosen smaller circuits
with special embeddings (cylindrical stratified or focused). But the noteworthy point is
that these special embeddings for the smaller circuits can always be obtained, in NC,
from the given planar embedding.

Yang’s analysis proceeds by showing that O(log n) iterations of the following suffice:
For each face f containing some inputs, consider the subcircuit Cf reachable (in a directed
sense) from f . Cf can have some dangling in-edges from the rest of the circuit; replace
these by variables to get a circuit with variables and a focused embedding. Evaluate
this circuit as far as possible (the variables, or unknown wires, do not allow complete
evaluation), using a generalization of the scheme leading to Proposition 5.3. Then perform
some obvious simplifications, and reiterate.

The generalization does not permit the use of [BLMS99] or Theorem 5.1. However, the
strategy is the same as originally used by Yang for one-input-face embeddings; namely,
there is an equivalent polynomial degree circuit doing this partial evaluation. Hence, by
[Ven91], it can be performed in LogCFL. Hence, a careful analysis of Yang’s algorithm

19



allows us to conclude that MPCVP is in AC1(LogCFL). However, it can be seen that this
class is the same as SAC2. Thus we have the following:

Theorem 5.8. Given a monotone planar circuit C, determining whether C evaluates to
1 is in SAC2. �

6. Extensions

In this section we extend the ideas developed in the previous sections to some non-planar
cases, as well as to the non-monotone case with limited negations.

6.1. Monotone circuits on the torus. We start with the case of a torus which is
the canonical surface of genus 1. A digraph is toroidal if it can be embedded on a torus.
We look at circuits whose underlying DAG is toroidal. We assume that the toroidal
embedding is given as a combinatorial embedding; verifying that this embedding has
genus one can be done in logspace.

Any closed curve separates the plane into disconnected regions, but a closed curve
can disconnect the surface of a torus or leave it connected. In the latter case, it is called
a surface non-separating curve. Any non-planar toroidal graph has at least one surface
non-separating cycle. The following lemma is from [ADR05a]:

Lemma 6.1 ([ADR05a]). Given a non-planar graph G with an embedding on the torus,
a surface non-separating cycle in G can be found in  L.

Using this result, we establish the following reduction lemma, which along with Theo-
rem 5.8, immediately gives the main result of this section.

Lemma 6.2. A circuit C with a toroidal embedding can be converted in log space to an
equivalent circuit C ′ with a planar embedding. Also, if C is monotone, so is C ′.

Proof. The lemma is proved by essentially using the idea from [ADR05a]. Intuitively
what we want to do is as follows. Consider a given toroidal embedding. Using Lemma 6.1,
we will find a cycle (in the undirected sense) such that “cutting” the circuit along the
cycle will make the remaining graph planar. Now we will paste together several copies as
in the cylindrical case such that one copy evaluates to the same function as the original
circuit. Also, the pasting will be done preserving planarity.

As in Lemma 4.1, to translate this into a formal proof, we need to describe (a) how to
obtain, in logspace, the curve along which we will cut the circuit (b) how the embeddings
of the copies will be patched, (c) how the copies will be patched functionally, and (d) why
the resulting circuit is equivalent to C.

For (a) and (b), we use Lemma 6.1. Borrowing the notation from [ADR05a], let
v1, v2 . . . vr be the non-separating cycle returned by the logspace procedure. Let G′ be
the graph obtained after cutting along this cycle. This graph will have two copies of
the vertices on the cycle on each end of the cylinder. Let these be v1,1, v2,1, . . . vr,1 and
v1,2, v2,2, . . . vr,2 respectively. Let d be the depth of the original circuit, we make 2d + 1
copies of the circuit and place them side by side, identifying the corresponding vertices and
edges. The combinatorial embedding of C ′ is obtained exactly as in Section 3 of [ADR05a],

20



see Figure 6.1 for an illustration. Clearly, C ′ is planar, since it has an embedding on the
surface of the cylinder. (Note, however, that the embedding may not be “cylindrical”.)

For (c), each gate in each copy behaves exactly as in the original circuit. Edges coming
into the extreme copies from outside are set to source nodes with value 0. Let this new
circuit be called C ′.

e1

eℓ

e1 e1

eℓ
eℓ

eℓ−1

e2ed

eℓ+1
eℓ+1

ed

eℓ−1

e2

v1
v2

ed

e2

eℓ+1
eℓ−1

Figure 6.1: Patching the copies

Now to argue (d), we introduce the notion of cycle-height. Let c be the non-separating
cycle with respect to which cutting has been performed. The cycle-height of gate g is the
smallest non-negative integer k such that every path from a leaf to g “crosses” the cycle
c at most k times. By a simple inductive argument, we can establish that if gate g has
cycle-height k, then all copies of g in C ′, except those in the leftmost k and rightmost k

copies of C, evaluate to the same value as g in C. If follows that in the middle copy, all
the gates will get evaluated correctly. �

Theorem 6.3. A monotone circuit, given with an embedding on a torus, can be evalu-
ated in SAC2. �

An obvious question is whether the above technique can be extended to give an NC

upper bound for higher genus circuits. The limitation is that if we do not get a genus 0
surface to make copies, then the process of making copies will increase the genus.

6.2. Monotone multi-cylindrical circuits. We extend the idea of bi-cylindrical cir-
cuits in a natural way to what we call multi-cylindrical circuits. Such circuits strictly
subsume the bi-cylindrical case, but are incomparable with planar circuits. A notewor-
thy point is that a multi-cylindrical circuit can be of arbitrary genus.

A k-cylindrical circuit can be presented as a set of k components. Each of these has
a cylindrical embedding. The edges of each cylindrical component flow towards the right

21



rim. And the right rims of each can be identified (let us call that curve c). Another
circuit sits on the gates in c such that all the inputs to this circuit come only from gates
in c. This circuit is also cylindrical.

A multi-cylindrical circuit is a k-cylindrical circuit, for some k.

Figure 6.2: Multi-cylindrical embeddings

Notice that 2-cylindrical according to this definition is stronger than the bi-cylindricality
discussed earlier. This is because we allow a circuit C ′ sitting on the nodes on c. But
allowing this is also essential, since each gate is assumed to have fan-in at most 2. If such
a construct were not allowed, then the root gate would itself have to sit on c and take
inputs from at most 2 components. The other components would play no role at all and
could be excised, making k-cylindrical equal to 2-cylindrical for k > 2. On the other hand,
allowing such a construct, bi-cylindrical circuits are exactly those 2-cylindrical circuits
for which C ′ is the trivial circuit; it merely pulls out the value of a fixed gate appearing
on the curve on c.

Let C ′ be the cylindrical subcircuit sitting over the nodes in c. Now C ′ can be thought
of as a circuit which has c as its set of input nodes. We can evaluate each of the cylindrical
components separately in parallel. With this, we get the value of each node in c. Now
we can evaluate C ′ using the values of nodes in c. In fact, for upper bounds in NC, we
don’t even require C ′ to be cylindrical; it can be planar or toroidal as well. Depending
on the complexity of evaluating each component, and of evaluating C ′ from c, we have
the following upper bounds:

Inputs on ci’s Type of C ′ layered not layered
only at extremes cylindrical stratified LogDCFL L(PDLP ⊕ LogDCFL)
anywhere cylindrical AC1(LogDCFL) AC1(LogDCFL)
anywhere planar AC1(LogDCFL) SAC2

anywhere toroidal − SAC2

As one can see, this gives upper bounds only for the promise problem. Also, one
limitation is that we do not know the complexity of obtaining such an embedding if one
exists, and hence the embedding need to be explicitly given along with the input. As
far as we know, this is the first result on evaluating a class of monotone circuits which
contains some arbitrary genus circuits, in NC. Clearly, if P 6= NC, there are high genus
circuits which do not have multi-cylindrical embeddings.

22



6.3. Circuits with limited negations. We now consider planar circuits which are
not monotone, but where the negations gates are limited in some way. Without such
a limitation, there is no hope of evaluating the circuit inside NC unless P=NC, since
planar CVP is known to be P-complete [Gol77]. How many negation gates are needed to
obtain this hardness? We show in this section that unless P=NC, there are P-computable
functions requiring super-polylogarithmic number of negation gates in any poly-sized
planar (and even toroidal) circuit computing them (Lemmas 6.4,6.5).

Markov [Mar58] came up with a surprisingly tight bound on the number of negation
gates that are needed to compute any boolean circuit. He showed that to compute a
boolean function on n variables, ⌈log(n + 1)⌉ negation gates are necessary and sufficient.
One natural question to ask is whether such a bound holds for restricted families of
circuits as well. Fischer [Fis74] showed that for every poly-sized log-depth circuit, there is
another equivalent poly-sized log-depth circuit which uses at most ⌈log(n+1)⌉ negations.
A noteworthy point in Fischer’s construction [Fis74] is that it is not planar; so it does
not imply that evaluating planar circuits with O(log n) negations is P-hard. In contrast,
Santha and Wilson [SW91] showed that there are functions requiring super-logarithmic
number of negation gates in any poly-sized constant-depth circuit computing them. Our
result can be viewed as a conditional topological analogue of this result, restricted to
P-computable functions.

Let us try to evaluate a non-monotone planar circuit in parallel. The computation
proceeds in stages. For any gate g where the subcircuit rooted at g has no negations, the
value of g can be found in SAC2, by Theorem 5.8. Assume that all such gates have been
evaluated. Now let g be a gate such that in the sub-circuit rooted at g, a root-to-leaf path
has at most one negation gate. Such gates can be evaluated by an SAC2 circuit whose
inputs include the original circuit input, the values of the gates already evaluated, and
the negations of these values. Generalizing this, we define negation-height, akin to the
notion of cycle-height from the proof of Lemma 6.2. The negation-height of an input gate
(variable or constant) is 0, by convention. The negation-height of gate g is the smallest
non-negative integer h such that every path from a leaf to g has at most h negation gates.
At stage k, we evaluate all gates at negation-height k. The inputs to the stage-k circuit
are the circuit inputs, and the values as well as negated values of all gates at negation-
height j < k. Each stage k has an SAC2 circuit, obtained by putting together the SAC2

circuits for each gate at negation-height j < k. Thus if gate g has negation-height k, then
g can be evaluated by a polynomial-sized semi-unbounded circuit of depth O(k log2 n).

Of course, this requires negation-height to be explicitly available. By placing a weight
of 1 on edges out of a negation edge, and a weight of 0 on other edges, we see that negation-
height of g is exactly the maximum weight of a g-to-leaf path. Since the circuit is a DAG,
this is in NL, in SAC2. So computing the negation-height is not a real bottleneck.

We thus have the following result:

Lemma 6.4. A planar circuit in which the output gate is at negation-height k can be
evaluated by a polynomial size semi-unbounded circuit of depth O(k log2 n). Thus planar
circuits with polylog negation-height can be evaluated in NC. �

It is not necessary that the entire circuit be planar. Since the evaluation proceeds in
stages, it is sufficient if for each h, the subgraph of all gates with negation-height h is
planar. (It is easy to construct such circuits that are non-planar.)

23



Lemma 6.5. A circuit C where

(i) the output gate has negation-height k, and

(ii) for each 0 ≤ h ≤ k, the subcircuit consisting of gates at negation-height exactly h

is planar,

can be evaluated by a polynomial size semi-unbounded circuit of depth O(k log2 n). �

This result can be combined with the results of Sections 6.1 and 6.2. If the (output
gate of the) circuit has negation-height k ∈ O(logi n), and if for each 0 ≤ h ≤ k, the
subgraph of gates with negation-height exactly h is toroidal or multi-cylindrical, then
the whole circuit can be evaluated in NC, provided the appropriate embedding for each
subgraph is given. (Such embeddings are not explicitly required in proving Lemma 6.5,
since planar embeddings can be constructed in L.)

7. Discussion

This investigation leaves many questions unanswered.

1. Is cylindricality testing NP-hard? Recall that cylindricality strictly generalizes
upward planarity, testing for which is NP-hard ([GT01]), and is strictly stronger
than planarity, testing for which is in L([RR94, AM04, Rei05]). Actually, upward
planarity testing becomes hard only in the presence of multiple sources, but is in
AC1 for single-source planar DAGs [BBMT98].

2. How can a cylindrical embedding be represented so that given a representation
of this form, verifying if it is indeed cylindrical can be done in logspace? The
representation we have used does not seem to have enough information for this.

3. Given a graph with the promise that it is cylindrical/layered cylindrical/layered
upward planar, what is the complexity of recovering a witnessing embedding? This
can make a big difference to the complexity of circuit evaluation; see item 6 below.

4. Let DLPi denote the class of problems logspace many-one reducible to the problem
DAGLONGPATH where the DAGs are unrestricted for i = 0, planar for i = 1,
planar single-source or planar single-sink for i = 2, and planar single-source single-
sink for i = 3. (Thus, DLP1 is what is referred to as PDLP till now in this paper.)
Let DRi denote the class of problems logspace many-one reducible to reachability
in the corresponding DAGs. Clearly, DRi ⊆ DLPi, and DLP0 = DR0 = NL. What
other relationships can be deduced among these classes?

Notice that the layering algorithm of Figure 3.1 already needs a one-input-face
single-sink planar DAG. A circuit on such a DAG can trivially be converted to an
equivalent instance of DR3 by adding a dummy source. Thus, the upper bounds
of L(PDLP), obtained in Proposition 3.1 and Lemma 3.2, can actually be replaced
by DLP3, which may conceivably be stronger. In recent work by [ABC+06], DR3

and DR2 are shown to be in L. Thus, if DLP3 can be shown to be equivalent to
DR3, or reducible to DR2, then the upper bounds of this paper will drop further.
We need to be a bit careful: Lemma 4.2, for instance, uses Proposition 3.1 as well

24



as DR1 (step 1 uses DR1 to obtain an equivalent instance of DR2), and thus has a
fine upper bound of L(DLP3 ⊕ DR1). To establish Lemma 4.3, on the other hand,
L(DLP3) suffices, since the first step is also dispensable. These finer bounds can be
carried over to all the results of Section 5.

5. Recently, via a different approach bypassing Figure 3.1, Theorem 5.2 has been im-
proved: one-input-face MPCVP has been shown to be reducible to layered upward
planar monotone circuits, and hence is in LogDCFL [CD06]. It appears that focused
MPCVP can also be captured in LogDCFL via this approach.

6. There are very few hardness results with respect to topological constraints. A well-
known result due to [Bus87] says that evaluating a Boolean formula (the circuit
is a tree) is NC1-complete, thus MPCVP is at least NC1-hard. A more recent
notable result [Han06] shows that constant-width planar circuits characterize ACC0.
Are there natural topological restrictions which, placed on MPCVP, give instances
complete for LogDCFL, NL and LogCFL? In particular, is stratified cylindrical
MPCVP hard for LogDCFL?

In [CD06], one-input-face MPCVP is shown to be hard for L. The hard instance pro-
duced here is in fact a width-2 tree. However, the result of [Han06] does not imply
that evaluating it is in ACC0, because the ACC0 evaluation procedure of [Han06]
explicitly needs the layered bounded-width presentation of the circuit, and it is
computing this that is L-hard. Similarly, the result of [Bus87] does not imply that
evaluating it is in NC1, because the NC1 evaluation procedure of [Bus87] requires
the formula to be explicitly presented in fully parenthesized form, and computing
this is L-hard. In other words, the hardness of evaluating one-input-face MPCVP
lies in the hardness of obtaining a small-width specification, or even an explicit tree
description, under the promise that the circuit is indeed a small-width tree. This
situation thus underscores the difference that supplying an embedding can make;
hence the importance of item 3.

A special case of layered upward planar MPCVP arises when all AND gates are
skew. (The hard instances of [CD06] are skew.) In this case, the circuit evaluates
to 1 if and only if there is a path from an input labeled 1 to the root; it captures
reachability in layered upward planar graphs. It is noteworthy that we do not know
L-hardness for reachability in layered grid graphs, or even in grid graphs; the best
lower bound is NC1 (see [ABC+06]). However, it is possible that layered upward
planar monotone circuits are harder to evaluate than similar skew circuits.

Acknowledgements

A preliminary version of this paper appeared in the Proceedings of STACS 2006 LNCS
vol. 3884 [LMS06]. The authors thank the anonymous referees of STACS 2006 and of
this journal for useful comments.

25



References

[ABC+06] E. Allender, D. A. Mix Barrington, T. Chakraborty, S. Datta, and S. Roy.
Grid graph reachability problems. In Proceedings of 21st IEEE Conference
on Computational Complexity (CCC), pages 299–313, 2006.

[ADR05a] E. Allender, S. Datta, and S. Roy. The directed planar reachability problem.
In Proceedings of 25th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 3821 of Lecture Notes
in Computer Science (LNCS), pages 238–249, 2005.

[ADR05b] E. Allender, S. Datta, and S. Roy. Topology inside NC1. In Proceedings of
20th IEEE Conference on Computational Complexity (CCC), pages 298–307,
2005.

[AM04] E. Allender and M. Mahajan. The complexity of planarity testing. Informa-
tion and Computation, 189(1):117–134, 2004.

[BBF03] C. Bachmaier, F.-J. Brandenburg, and M. Forster. Radial level planarity
testing and embedding in linear time. In Proceedings of 11th International
Symposium on Graph Drawing (GD), volume 2912 of Lecture Notes in Com-
puter Science, pages 393–405, 2003.

[BBMT98] P. Bertolazzi, G. Di Battista, C. Manning, and R. Tamassia. Optimal upward
planarity testing of single-source digraphs. SIAM Journal on Computing,
27:132–169, 1998.

[BLMS99] D. A. Mix Barrington, C.-J. Lu, P. Bro Miltersen, and S. Skyum. On
monotone planar circuits. In IEEE Conference on Computational Complexity
(CCC), pages 24–31, 1999.

[BT88] G. Di Battista and R. Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61:175–198, 1988.

[Bus87] S. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, pages 123–131,
1987.

[CD06] T. Chakraborty and S. Datta. One-input-face MPCVP is hard for L, but
in LogDCFL. In Proceedings of 26th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), volume 4337 of
Lecture Notes in Computer Science, pages 57–68, 2006.

[Coo71] S. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the Association of Computing Machinery, 18:4–18,
1971.

[DC89] P. W. Dymond and S. A. Cook. Complexity Theory of Parallel Time and
Hardware. Information and Computation, 80(3):205–226, 1989.

26



[DK95] A. L. Delcher and S. R. Kosaraju. An NC algorithm for evaluating monotone
planar circuits. SIAM Journal of Computing, 24(2):369–375, 1995.

[Fis74] M.J. Fischer. The complexity of negation-limited networks (a brief survey).
Lecture Notes in Computer Science, 33:71–82, 1974.

[Gol77] L. M. Goldschlager. The monotone and planar circuit value problems are
logspace complete for P. SIGACT News, 9(2):25–29, 1977.

[Gol80] L. M. Goldschlager. A space efficient algorithm for the monotone planar
circuit value problem. Information Processing Letters, 10(1):25–27, 1980.

[GT01] A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM Journal on Computing, 31(22):601–625,
2001.

[Han06] K. Hansen. Constant width planar computation characterizes ACC0. Theory
of Computing Systems, 39(1):79–92, 2006.

[HMV06] K. Hansen, P. Bro Miltersen, and V Vinay. Circuits on cylinders. Computa-
tional Complexity, 15(1):62–81, May 2006.

[Kel87] D. Kelly. Fundamentals of planar ordered sets. Discrete Mathematics,
63(2,3):197–216, 1987.

[Kos90] S. R. Kosaraju. On the parallel evaluation of classes of circuits. In Proceed-
ings of 10th International Conference on Foundations of Software Technology
and Theoretical Computer Science, volume 472 of Lecture Notes in Computer
Science, pages 232–237, 1990.

[LMS06] Nutan Limaye, Meena Mahajan, and Jayalal M. N. Sarma. Evaluating mono-
tone circuits on cylinders, planes and tori. In Proceedings of 23rd International
Symposium on Theoretical Aspects of Computer Science (STACS), volume
3884 of Lecture Notes in Computer Science, pages 660–671, 2006.

[Mar58] A. A. Markov. On the inversion complexity of a system of functions. Journal
of the Association of Computing Machinery, 5(4):331–334, 1958.

[MRK88] G.L. Miller, V. Ramachandran, and E. Kaltofen. Efficient parallel evaluation
of straight-line code and arithmetic circuits. SIAM Journal of Computing,
17:687–695, 1988.

[MT01] B. Mohar and C. Thomassen. Graphs on Surfaces. John Hopkins University
Press, Maryland, 2001.

[Rei05] O. Reingold. Undirected st-connectivity in logspace. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing (STOC), pages 376–
385, 2005.

[RR94] V. Ramachandran and J. Reif. Planarity testing in parallel. Journal of
Computer and System Sciences, 49:517–561, 1994.

27



[Ruz80] W.L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System
Sciences, 21:218–235, 1980.

[Sud78] I. Sudborough. On the tape complexity of deterministic context-free language.
Journal of the Association of Computing Machinery, 25(3):405–414, 1978.

[SW91] Miklos Santha and Christopher Wilson. Polynomial size constant depth cir-
cuits with a limited number of negations. In Proceedings of the 8th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages 228–
237, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[TT86] R. Tamassia and I. G. Tollis. A unified approach to visibility representations
of planar graphs. Discrete and Computational Geometry, 1(1):312–341, 1986.

[TT89] R. Tamassia and I. G. Tollis. Tessellation representations of planar graphs.
In Proceedings of the 27th Annual Allerton Conference on Communications,
Control and Computing, UIUC, pages 48–57, 1989.

[Ven91] H. Venkateswaran. Properties that characterize LogCFL. Journal of Com-
puter and System Sciences, 42:380–404, 1991.

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer New York Inc., 1999.

[Whi73] A. T. White. Graphs, Groups and Surfaces. North-Holland, Amsterdam,
1973.

[Yan91] H. Yang. An NC algorithm for the general planar monotone circuit value
problem. In Proceedings of the 3rd IEEE Symposium on Parallel and Dis-
tributed Processing, pages 196–203, 1991.

Manuscript received 7 May 2006

Nutan Limaye

The Institute of Mathematical Sciences
Chennai 600 113, India.
nutan@imsc.res.in

http://www.imsc.res.in/~nutan

Meena Mahajan

The Institute of Mathematical Sciences
Chennai 600 113, India.
meena@imsc.res.in

http://www.imsc.res.in/~meena

Jayalal Sarma M.N.

The Institute of Mathematical Sciences
Chennai 600 113, India.
jayalal@imsc.res.in

http://www.imsc.res.in/~jayalal

28


