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Abstract We revisit a well studied linear algebraic problem, computing the rank and
determinant of matrices, in order to obtain completeness results for small complexity
classes. In particular, we prove that computing the rank of a class of diagonally domi-
nant matrices is complete for L. We show that computing the permanent and determi-
nant of tridiagonal matrices over Z is in GapNC1 and is hard for NC1. We also initiate
the study of computing the rigidity of a matrix: the number of entries that needs to
be changed in order to bring the rank of a matrix below a given value. We show that
some restricted versions of the problem characterize small complexity classes. We
also look at a variant of rigidity where there is a bound on the amount of change
allowed. Using ideas from the linear interval equations literature, we show that this
problem is NP-hard over Q and that a certain restricted version is NP-complete. Re-
stricting the problem further, we obtain variations which can be computed in PL and
are hard for C=L.

Keywords Complexity classes · Matrix rank · Determinant · Matrix rigidity

1 Introduction

A series of seminal papers by a variety of people including Valiant, Mulmuley, Toda,
Vinay, Grigoriev, Cook, and McKenzie, set the stage for studying the complexity of
computing matrix properties (in particular, determinant and rank) in terms of logspace
computation and poly-size polylog-depth circuits. This area has been active for many
years, and an NC upper bound is known for many related problems in linear algebra;
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Table 1 RANK BOUND, SINGULAR, and DETERMINANT for special matrices

Matrix type (over Q) RANK BOUND SINGULAR DETERMINANT

general C=L-complete C=L-complete GapL-complete

(even 0-1) [3] [3] [13, 34]

[31, 33]

symmetric non-neg. C=L-complete C=L-complete GapL-hard under

[3] [3] ≤log
T

reductions

[18]

symmetric non-neg. L-complete L-complete

diag. dominant (d.d.) (Theorem 5) (Theorem 5) ?

symmetric d.d. L-hard even when det ∈ {0,1} (Theorem 10) ?

diagonal TC0-complete AC0 TC0-complete

(Prop 1) (Prop 1) (Prop 1)

tridiagonal ? C=NC1 (Theorem 11) GapNC1 (Theorem 11)

tridiagonal non-neg. non-negative perm equivalent to planar #BWBP (Theorem 11)

see for instance [5]. Some of the major results in this area are that computing the de-
terminant of integer matrices is GapL-complete and that testing singularity of integer
matrices is C=L-complete. In particular, the complexity of computing the rank of a
given matrix over Q has been well studied. For general matrices, checking if the rank
is at most r is C=L-complete [3].

Complete problems for complexity classes are always promising, since they pro-
vide a set of possible techniques that are associated with the problem to attack various
questions regarding the complexity class. Such results can be expected to flourish
when the complete problem has well-developed tools associated with it. With this
motivation, we look at special cases of the matrix rank problem and try to charac-
terize small complexity classes. We consider restrictions which are combinations of
non-negativity, 0-1 entries, symmetry, diagonal dominance, and tridiagonal support,
and we consider the complexities of three problems: computing the rank, computing
the determinant and testing singularity. These, though intimately related, can have
differing complexities, as Table 1 shows.

However, the corresponding optimization search problems can be considerably
harder. Consider the following existential search question: Given a matrix M over a
field K, a target rank r and a bound k, decide whether the rank of M can be brought
down to below r by changing at most k entries of M . Intuitively, one would expect
such a question to be in ∃ ·NC: guess k locations where M is to be changed, guess the
new entries to be inserted there, and compute the rank in NC [22]. However, this intu-
ition, while correct for finite fields (this case was recently shown to be NP-complete
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[14]), does not directly translate to a proof for Q and Z
1 since the required new

entries may not have representations polynomially-bounded in the input size. Using
results about matrix completion problems, we can obtain upper bounds of PSPACE
over reals and complex numbers, and decidability over p-adic numbers, [8]. How-
ever, in the case of arbitrary infinite fields, the best upper bound we can see in the
general case is recursive enumerability, and in particular, this is the situation over Q.
We also do not know any lower bounds for this question over Q. In this paper, we
explore the computational complexity of several variants of this problem.

The above question is a computational version of rigidity of a matrix, which is
the smallest value of k for which the answer to the above question is yes. The no-
tion of rigidity was introduced by Valiant [32] and independently proposed by Grig-
oriev [17]. The main motivation for studying rigidity is that good lower bounds on
rigidity give important complexity-theoretic results in other computational models,
like linear algebraic circuits and communication complexity. Though the question we
address is in fact a computational version of rigidity, it has no direct implications for
these lower bounds. However, it provides natural complete problems based on linear
algebra for important complexity classes.

An important aspect of computing rigidity is its possible connection to the theory
of natural proofs developed by Razborov and Rudich [30]. Valiant’s reduction [32]
identifies “high rigidity” as a combinatorial property of functions, based on which
he proves linear-size lower bounds for log-depth circuits. However, the model of
arithmetic circuits has not been studied in sufficient detail such that in the setting of
natural proofs this can directly provide some evidence about the power of the proof
technique. Nevertheless, this could be thought of as motivation for the computational
question of rigidity.

Our question bears close resemblance to the body of problems considered under
matrix completion, see for instance [8, 19]. Given a matrix with indeterminates in
some locations, can we instantiate them in such a way that some desired property
(e.g. non-singularity) is achieved? In Sect. 4, we discuss how results from matrix
completion can yield upper bounds for our question.

In this paper, we restrict our attention to Z and Q (some extensions to finite fields
are discussed at the end). Since even an upper bound of NP is not obvious, we restrict
the choice available in changing matrix entries. We consider two variants: (1). In the
input, a finite subset S ⊆ K is given. M has entries over S, and the changed entries
must also be from S; rank computation continues to be over K. (For instance, we
may consider Boolean matrices, so S = {0,1}, while rank computation is over K.)
It is easy to see that this variant is indeed in NP. (2). In the input, a bound θ is
given. We require that the changes be bounded by θ ; we may apply the bound to each
change, or to the total change, or to the total change per row/column. (See for instance
[20].) This version has close connections with another well-studied area called linear
interval equations which arises naturally in the context of control systems theory (see
[28]).

1Technically, rank over Z is not defined, since Z is not a field. In Sect. 2, we define a natural notion of
rank over rings. Under this, since Z is an integral domain, the rank is the same as over the corresponding
division ring Q.
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Table 2 Our bounds on RIGID when k ∈ O(1) or r = n

K, S ⊂ K Restriction Bound

(if ∗, then S = K)

Z or Q, {0,1} in NP

Z or Q, {0,1} k ∈ O(1) C=L-complete (Theorem 13)

Z or Q, ∗ k ∈ O(1) C=L-hard [3]

Q, ∗ r = n C=L-complete [3]

witness-search in LGapL (Theorem 15)

Z, ∗ r = n and k = 1 in LGapL (Theorem 16)

Z or Q, ∗ bounded rigidity, r = n NP-complete (Theorem 18)

Z or Q, ∗ bounded rigidity, r = n, k = 1 In PL, and C=L-hard (Theorem 22)

We obtain tighter lower and upper bounds for some of these questions. We show
completeness for C=L when k ∈ O(1) in the first variant, for NP when the target rank
r equals n in the second variant, and for C=L when r = n in the general case. Table 2
summarizes the results.

2 Preliminaries

Over any field F, the rank of a matrix M ∈ F
n×n (we consider only square matrices

in this paper) has the following equivalent definitions: (1) The maximum number of
linearly independent rows or columns in M . (2) The maximum size of a non-singular
square submatrix of M . (3) The minimum r such that M = AB for some A ∈ F

n×r

and B ∈ F
r×n. (4) The minimum r such that M is the sum of r rank-1 matrices,

where a rank-1 matrix is one for which there exists a vector v (not necessarily in the
matrix) such that every row in the matrix can be expressed as a multiple of v. These
definitions need not be equivalent when the underlying algebraic structure is not a
field. Hence, the notion of rank is not well-defined over arbitrary rings. However, if
the ring under consideration is an infinite integral domain (like Z) (notice that a finite
integral domain has to be a field), then the above definitions are indeed equivalent,
and can be taken as a definition of rank. In fact, the rank in that case can be easily
seen to be same as the rank over the corresponding quotient field; thus rank over Z as
defined above is the same as rank over Q.

Now we introduce the basic notions in complexity theory that we need. Land NL
denote languages accepted by deterministic and nondeterministic logspace classes
respectively, and FLis the class of logspace-computable functions. #L is the class
of functions that count the number of accepting paths of an NL machine, and GapL
is its closure under subtraction. Computing the determinant over Z is complete for
GapL. In contrast, computing the permanent is complete for #P, the class of func-
tions counting accepting paths of an NP machine. NC1 is the class of languages with
polynomial-size logarithmic-depth Boolean circuits. #NC1 is the class of functions
computed by arithmetic circuits (gates compute + and ×) with the same size and
depth bounds as NC1, and GapNC1 is its closure under subtraction. AC0 (TC0) is the
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class of languages with polynomial-size constant-depth unbounded fanning Boolean
circuits, where gates compute AND, OR, NOT (and MAJORITY). For more details,
see [35].

A language L is in the exact counting logspace class C=L (or probabilistic
logspace PL) if and only if it consists of exactly those strings where a certain GapL
function is zero (positive, respectively). The languages

SINGULAR(K) = {M | Over K, M is not full rank},

RANK BOUND(K) = {(M, r) | Over K, rank(M) < r}
for K = Z or Q are complete for C=L [3]. Note that for any type of matrices, and any
complexity class C, C-hardness of SINGULAR implies C-hardness of RANK BOUND.
However the converse is not true:

Proposition 1 (folklore) Restricted to diagonal matrices, SINGULAR(Z) is in AC0

while RANK BOUND(Z) and DETERMINANT are TC0-complete.

The rigidity function, and its decision version, are as defined below.2 (Here
support(N) = #{(i, j) | N(i, j) �= 0}.)

RM(r)
def= min

N
{support(N) : rank(M + N) < r} ,

RIGIDK = {(M, r, k) | RM(r) ≤ k}.

Lemma 2 (Valiant, folklore) Over any field F, rank(M)− r ≤ RM(r +1) ≤ (n− r)2.

The inequality on the left also follows from the following lemma which we will
use later:

Lemma 3 (folklore) Over any field F, for any two matrices M and N of the same
order,

support(M − N) = 1 	⇒ |rank(M) − rank(N)| ≤ 1.

To see this, use the facts that rank is sub-additive and that rank(−A) = rank(A).
Hence for any two matrices A and B , rank(A)−rank(B) ≤ rank(A+B) ≤ rank(A)+
rank(B). Further, rank(A) ≤ support(A), yielding the claim.

3 Computing the Rank for Special Matrices

Computation of rank is intimately related to computation of the determinant. Mulmu-
ley [22] showed that over arbitrary fields, rank can be computed in NC (with the field

2In much of the rigidity literature, rank(M + N) ≤ r is required. We use strict inequality to be consistent
with the definition of RANK BOUND from [3].
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operations as primitives). Over Z and Q, RANK BOUND is C=L-complete [3], and
we wish to characterize its subclasses by restricting the types of matrices. A natural
approach is to use characterizations of matrix rank in terms of associated combina-
torial objects, like graphs. However, no known parameter of the graph of a matrix
characterizes the matrix rank in general.

The following is easy to see:

Proposition 4 The languages RANK BOUND(Z) and SINGULAR(Z) remain C=L-
hard even if the instances are restricted to be symmetric 0-1 matrices.

Proof Let A′ be the symmetric matrix
[ 0 A

AT 0

]
. Since rank(A′) = 2(rank(A)),

RANK BOUND(Z) remains C=L-hard when restricted to symmetric matrices. Further,
DETERMINANT remains GapL-hard even when the matrices are restricted to be 0-1
(see for instance [31]). Thus SINGULAR remains C=L-hard even when restricted to
0-1 matrices. Since M is in SINGULAR if and only if (M,n) is in RANK BOUND if
and only if (M ′,2n) is in RANK BOUND, it follows that RANK BOUND(Z) remains
C=L-hard for symmetric 0-1 matrices as well. �

DETERMINANT remains GapL-hard for 0-1 matrices, but it is not clear that sym-
metric instances are GapL-hard under many-one reductions. The above trick does not
work for computing determinants, because det(A′) will equal ±det(A)2 and GapL is
not known to be closed under taking square-roots. We do not know (any other way of
showing) many-one hardness for symmetric DETERMINANT. Recently, Kulkarni [18]
has observed that symmetric instances are GapL-hard under Turing reductions. The
idea is to first use Chinese Remaindering: any determinant can be computed in L if its
residues modulo polynomially many primes are available. Small primes (logarithmi-
cally many bits) suffice and can be obtained explicitly. Now to find the determinant
modulo a small prime p, range over all a ∈ {0,1, . . . , p − 1} and test if it equals a

modulo p. But this can be recast, using the GapL-completeness proofs of the deter-
minant, as asking if a related determinant is 0 modulo p. Finally, using the idea in
the proof of Proposition 4, we can ask the oracle for the determinant of a related
symmetric matrix and test (in L) if it is 0 modulo p.

We now consider an additional restriction. A matrix M is said to be diagonally
dominant if for every i, |mi,i | ≥ ∑

j �=i |mi,j |. (If all the inequalities are strict, then M

is said to be strictly diagonally dominant.) We show:

Theorem 5 SINGULAR(Z) restricted to non-negative diagonally dominant symmet-
ric matrices is L-complete. The hardness is via uniform AC0 many-one reductions.

Proof This result exploits a very nice combinatorial connection between such matri-
ces and graphs. For a non-negative symmetric diagonally-dominant matrix M , its sup-
port graph GM = (V ,EM) has V = {v1, . . . , vn}, and EM = {(vi, vj ) | i �= j mi,j >

0} ∪ {(vi, vi) | mi,i >
∑

i �=j mi,j }. The following is shown in [12] for R, and it can be
verified that the same holds over Q.
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Lemma 6 [12] Let M be a non-negative symmetric diagonally dominant matrix of
order n over Q or R. Then rank(M) = n − c, where c is the number of bipartite
components in the support graph GM .

Hardness: The reduction is from undirected forest accessibility UFA, which is L-
complete and remains L-hard even when the graph has exactly 2 components [10].
Without loss of generality, we can assume that the input instances have a nice form,
as stated in the following lemma.

Lemma 7 ([10]) Given an undirected forest G, of bounded degree with exactly two
components, and three special vertices s, t and q , with the guarantee that t and q are
in different components, deciding which component s belongs to is L-hard.

Proof The reduction is from the machine model for L, and is essentially reproduced
from [10]. We rephrase the proof here to highlight the fact that the normal form we
need is indeed achievable.

To begin with, modify the machine description such that whenever the computa-
tion is on an infinite loop, the machine clears off the work-tape and goes to an error
state e. Thus there are only two possible final states for the machine, one is the error
configurations e, and the other is the accepting configuration t .

The set of configurations of a Turing machine with a fixed input w forms the
vertices of such a graph G, and the (unique) accepting configuration is accessible
from the initial configuration if and only if the Turing machine accepts the input
w. G can be made acyclic by associating a time stamp with the configurations, and
insisting that an edge always joins a configuration at time i to a configuration at time
i + 1. If p(n) is an upper bound on the computation time of the Turing machine with
input w, then we let the node t in the graph be the accepting configuration with time
stamp p(n), and s will be the initial configuration with time stamp 0.

By definition, the number of possible (in/out)-neighbors of any node is bounded
by a constant. In addition there are exactly two nodes of outdegree 0, and they corre-
spond to the configurations e and t .

Viewing each edge in the resulting digraph as undirected yields an undirected for-
est such that s and t belong to the same tree if and only if a directed path existed
from s to t in the original digraph. Note that the resulting undirected forest has pre-
cisely two components, and the three vertices satisfy the required properties of the
reduction. �

We now construct G′ as follows: Make two copies G1 and G2 of G. Add a new
vertex u. Add edges (s1, s2), (t1, u), (t2, u). Add self-loops at q1 and q2.

G′ has at most three components (copies of the components containing t join up
via u). The component(s) containing copies of q are necessarily non-bipartite.

If there is an s � t path ρ in G, then in G′ the two copies of the path, along with
the edges (s1, s2), (t1, u), (u, t2) create an odd cycle, so the new joined up component
is also not bipartite. Hence G′ has no bipartite components.

If there is no s � t path in G, the component containing t1 and t2 will remain
bipartite. Thus there is exactly one bipartite component now.
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To complete the proof, we need to produce a matrix M such that G′ is its support
graph. We construct M as follows:

For each i �= j mi,j =
{

1 if (i, j) ∈ E′,
0 otherwise,

For each i mi,i =
{

1 + ∑
j �=i mi,j if (i, i) ∈ E′,∑

j �=i mi,j otherwise.

From Lemma 6, M is singular if and only if there is no s � t path in G.
It is clear that M can be constructed from G′, and hence from G, by a uniform

TC0 circuit. Now we show that in fact it can be constructed in AC0. First, observe
that the forest that we start with (as the L-hard instance) has bounded degree. So we
would like to rewrite the summation

∑
j �=i mi,j as

∑
j �=i;mi,j �=0 mi,j . But how do we

know a priori which entries are non-zero? For a node i, define Li to be the list of
nodes for which mi,j can possibly be non-zero. Since the logspace Turing machine
alters only a small part of the configuration in one step, this list is of bounded length,
with the bound l depending only on the machine’s description and not on the input
length. Let list(i, t) denote the t th element in a lexicographical enumeration of Li ; on
input i, t , list(i, t) can be determined in AC0. Now the required summation is exactly∑

j∈Li
mi,j = ∑l

t=1 mi,list(i,t), and thus it can be computed by an AC0 circuit.
Membership in L: Given a matrix M satisfying the stated conditions, it is straight-

forward to construct the support graph GM . By [4, 25, 27], checking whether two
vertices belong to the same component in an undirected graph, counting the number
of components, and checking bipartiteness of a named component are all in L. Hence,
by Lemma 6, rank(M) can be computed in L. �

Corollary 8 The language RANK BOUND(Z), restricted to symmetric non-negative
diagonally dominant instances, is L-complete.

However, the hardness of RANK BOUND(Z) is not derived just from the hardness
of SINGULAR. An obvious way to obtain hardness at other values of rank (rather
than r = n in the case of SINGULAR) is to pad out the matrix with zero rows and/or
columns. We present here a slightly different proof of Theorem 5, establishing hard-
ness of deciding whether the rank is n − 1 or n − 2.

Proof The reduction is again from undirected forest accessibility UFA, using nice
instances as guaranteed by Lemma 7.

Let G,s, t be an instance of UFA, where G has two trees. We construct a new
graph G′ = (V ′,E′) as follows: take two disjoint copies of G. Add a new vertex u

and connect it to both copies of t . Connect the two copies of s. Also, add self-loops
at both copies of t .

If there is an s � t path ρ in G, then G′ has three components: the copies of
the component containing s and t join up, while the copies of the other component
remain disconnected (and hence bipartite). The two copies of the path, along with the
edges (s1, s2), (t1, u), (u, t2) create an odd cycle, so the new joined up component is
not bipartite. Hence G′ has exactly two bipartite components.
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If there is no s � t path in G, the component containing s1 and s2 will remain
bipartite. The other component is not bipartite due to the self loops at t,t2. Thus there
is exactly one bipartite component now.

To complete the proof, we need to produce a matrix M such that G′ is its support
graph. This can be done in AC0 as described in the previous proof. �

Note that though rank for these matrices can be computed in L, we do not know
how to compute the exact value of the determinant itself. (Note that by Theorem 5,
this is hard for FL.) In a brief digression, we note the following: if a matrix is to have
no trivial (all-zero) rows, and yet be diagonally dominant, then it cannot have any
zeroes on the diagonal. One may ask if it is easier to compute determinants when there
can be no zeros on the main diagonal. We do not know if computing determinants of
such matrices is complete under many-one reductions, although the following lemma
shows that it is complete under a restrictive type of Turing reduction.

Lemma 9 For every GapL function f and every input x, f (x) can be expressed as
det(M) − 1, where M has no zeroes on the diagonal. M can be obtained from x via
projections (each output bit is dependent on at most one bit of x).

Proof Consider Toda’s proof [31] for showing that DETERMINANT is GapL-hard (see
also [3, 24]). Given any GapL function f and input x, it constructs a directed graph G

with self-loops at every vertex except a special vertex s. G also has the property that
every non-trivial cycle (not a self-loop) in G passes through s. If A is the adjacency
matrix of G, then the construction satisfies f (x) = det(A). Now consider the matrix
B obtained by adding a self-loop at s. What additional terms does det(B) have that
were absent in det(A)? Such terms must correspond to cycle covers using the self-
loop at s; i.e. cycle covers in G\ {s}. But G\ {s} has no non-trivial cycles, so the only
additional cycle cover is all self-loops, contributing a +1. Thus det(B) = 1+det(A),
and B is the required matrix. �

We also show via a somewhat different reduction that the L-hardness of SINGULAR

in Theorem 5 holds even if we allow negative values, but disallow matrices with
determinant other than 0 or 1.

Theorem 10 SINGULAR(Z) for symmetric diagonally dominant matrices is L-hard,
even when restricted to instances with 0-or-1 determinant.

Proof As in the proof of Theorem 5, we begin with an instance (G, s, t) of UFA
where G has exactly two components. Add edge (s, t) to obtain graph H . By the
matrix-tree theorem (see for example Theorem II-12 in [9]), if A is the Laplacian
matrix of H (defined below), and B is obtained by deleting the topmost row and
leftmost column of A, then det(B) equals the number of spanning trees of H .

The Laplacian matrix A is defined as follows:

ai,i = the degree of vertex i in H,

ai,j = −1 if i �= j and (i, j) is an edge in H,

ai,j = if i �= j and (i, j) is not an edge in H.
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◦X0

a12

a11

◦
a21 ◦

X2

a33

a34 ◦
a42 ◦

X4 ◦
an,n−1

ann

Xn

◦
X1

a22

a23

◦
a32

◦
X3 a45

a44

◦ ◦
Xn−1

Fig. 1 Width-2 branching program for tridiagonal permanent

Clearly, A is diagonally dominant (in fact, for each i, the constraint is an equality);
also, since H is an undirected graph, A is symmetric.

Now the number of spanning trees in H is 1 if s ��G t (H itself is a tree) and is 0
if s �G t (H still has two components, since the edge in H \ G joins vertices in the
same component of G). �

The next restriction we consider is tridiagonal matrices: mi,j �= 0 	⇒ |i − j | ≤ 1.
We show that DETERMINANT and PERMANENT are in GapNC1, by using bounded-
width branching programs BWBP. In the Boolean context, BWBP equals NC1. How-
ever, in the arithmetic context, they are not that well understood. It is still open [5, 11]
whether the containment #BWBP ⊆ #NC1 is in fact an equality (though it is known
that GapBWBP = GapNC1). Layered planar BWBP are the G-graphs referred to
in [1]. Counting paths in G-graphs may well be simpler than GapNC1 due to pla-
narity. However [1] (see also [5]) shows that even over width-2 G-graphs, it is hard
for NC1 (under AC0 [5] reductions). We show that the permanent and determinant
of tridiagonal matrices are essentially equivalent to counting in width-2 G-graphs. In
what follows we have a weighted BWBP, where the weight of a path is the product of
the weights of the edges on the path. The value of a weighted BWBP is the sum, over
all s-t paths, of the weights of the paths.

Theorem 11 Computing the permanent and determinant of a tridiagonal matrix over
Z is equivalent to evaluating a layered planar weighted BWBP of width 2.

Proof Given a tridiagonal matrix A, let Ai be the top-left submatrix of A of order i,
and let Xn and Yn denote its permanent and determinant respectively. We have the
following recurrences:

X0 = Y0 = 1, X1 = Y1 = a1,1,

Xi = ai,iXi−1 + ai−1,iai,i−1Xi−2, Yi = ai,iYi−1 − ai−1,iai,i−1Yi−2.

Fig. 1 shows a weighted branching program for Xn that has width 2 and can be
drawn in a layered planar fashion. The construction for the determinant Yn is similar,
using some negative weights. This completes the proof of one direction.

We remark that in the construction for the permanent (Xn), when all entries are
nonnegative, this problem reduces to counting paths in unweighted planar branching
programs of width 5. To see this, replace each weighted edge in Fig. 1 with a width-
three gadget having the appropriate number of paths in a standard way.
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Fig. 2 Components of width-2
layered planar graphs ◦ a

b
◦ ◦ d ◦

◦
c

◦
f

e

◦
D U

To see the other direction, notice that any layer of a planar width-2 BWBP should
look like one of the following structures.

Any width-2 graph G corresponding to the BP can be encoded as a sequence of D

and U components as indicated in Fig. 2. First consider the case where the sequence
consists of alternating D and U; that is consider sequences in (DU)∗. Each such
sequence looks exactly like the graph in Fig. 1. By just reading off the weights on the
corresponding edges in the graph, we can produce two matrices M1 and M2 such that
permanent of M1 and the determinant of M2 (by putting in appropriate negations)
equal the value of the weighted BWBP.

Now it is sufficient to argue that the graph corresponding to any BWBP can be
transformed to this form. If the string does not start with a D component, we will
just put in a prefix D with abc = 101. Similarly, add a suffix U component with
def = 101 if necessary. We need to handle the case when there are two consecutive
components of the same type; UU or DD. Simply put in a D component with abc =
101 between two U s, and a U component with def = 101 between two Ds. Notice
that the new width-2 graph when encoded will be an element of (DU)∗, and the
weights of the paths are preserved in the transformation. The above reduction now
gives the two matrices M1 and M2.

In addition, observe that if the BWBP is unweighted, then the matrix M1 that we
produce has only 0,1 entries, and M2 will have entries from {−1,0,1}. �

From Theorem 11 and the discussion preceding it, we have the following corollary.

Corollary 12 Computing the permanent and determinant of a tridiagonal matrix
over Z is in GapNC1, and is hard for NC1 under AC0 [5] reductions.

4 Complexity Results on Rigidity

In this section we study the problem of computing matrix rigidity, RIGIDK, and also
its restriction RIGIDK,S defined below, where the matrices can have entries only from
S ⊆ K.

RIGIDK,S =
{
(M, r, k)

∣∣∣∣
M over S, ∃M ′ over S :
rank(M ′) < r ∧ support(M − M ′) ≤ k

}
.

We will mostly consider S to be either all of K, or only B = {0,1}. We also consider
the complexity of RIGID when k is fixed, via the following language:

RIGIDK,S(k) = {(M, r) | (M, r, k) ∈ RIGIDK,S}.



Theory Comput Syst

As mentioned in the introduction, matrix rigidity and matrix completion are re-
lated. The MinRank problem takes as input a matrix with variables, and asks for the
minimum rank achievable under all instantiations of the variables in the underlying
field, see for instance [8]. 1-MinRank is its restriction where every variable occurs at
most once, and is also called minimum rank completion. MaxRank and 1-MaxRank
are similarly defined. The naive algorithm for rigidity, mentioned in the introduction,
easily translates to an upper bound of NP(1-MinRank). More precisely, RIGID is in
∃·1-MinRank. While MinRank over Z is undecidable [8], this hardness proof does not
carry over for 1-MinRank. Nonetheless, the best known upper bound for 1-MinRank is
recursive enumerability. Thus the naive algorithm does not give any reasonable upper
bound for RIGID.

Theorem 13 For each fixed k, RIGIDZ,B(k) is complete for C=L.

Proof Membership: We show that for each k, RIGIDZ,B(k) is in C=L. An instance
(M, r) is in RIGIDZ,B(k) if there is a set of 0 ≤ s ≤ k entries of M , which, when
flipped, yield a matrix of rank less than r . The number of such sets is bounded
by �k

s=0

(
n
s

) = t ∈ nO(1). Let the corresponding matrices be denoted M1,M2 . . .Mt ;
these can be generated from M in logspace. Now (M, r) ∈ RIGIDZ,B(k) ⇐⇒
∃i : (Mi, r) ∈ RANK BOUND(Z). Hence RIGIDZ,B(k) ≤log

dtt RANK BOUND(Z). Since
RANK BOUND(Z) is in C=L, and since C=L is closed under logspace disjunctive
truth-table reductions (see [6]), it follows that RIGIDZ,B(k) is in C=L.
Hardness: To show a corresponding hardness result, we use Lemma 3 below. The
hardness for RIGIDZ,B(0) holds because SINGULAR remains C=L-hard even when
restricted to 0-1 matrices (Proposition 4). Hardness for all the languages mentioned
in the lemma also follows from this fact, and from the following claim:

(1) M ∈ SINGULAR(Z) 	⇒ (M⊗Ik+1, n(k+1)−k) ∈ RIGIDZ,B(0) ⊆ RIGIDZ,B(k).

(2) M �∈ SINGULAR(Z) 	⇒ (M ⊗ Ik+1, n(k + 1) − k) �∈ RIGIDZ(k).

Here ⊗ denotes tensor product and Ik+1 denotes the (k +1)× (k +1) identity matrix.
Note that rank(M ⊗ Ik+1) = (k + 1)rank(M). To see the claim, observe that if M ∈
SINGULAR(Z), then rank(M) ≤ n − 1 and so rank(M ⊗ Ik+1) ≤ (k + 1)(n − 1) <

n(k + 1)− k. If M �∈ SINGULAR(Z), then rank(M ⊗ Ik+1) = n(k + 1). Thus we want
to reduce the rank by at least k + 1. By Lemma 3, we need to change at least k + 1
entries. �

Remark 14 The membership bound of Theorem 13 crucially uses the fact that C=L is
closed under ≤log

dtt reductions. We also observe that this result holds for any finite S,
even if S is not fixed a priori but supplied explicitly as part of the input.

The hardness of Theorem 13 essentially exploits the hardness of testing singu-
larity. Therefore we now consider the complexity of RIGID at the singular-vs-non-
singular threshold, i.e. when r = n. From Lemma 2 we know that over any field F,
(M,n, k) is in RIGID whenever k ≥ 1. And (M,n,0) is in RIGID if and only if
M ∈ SINGULAR(F). So the complexity of deciding this predicate over Q is already
well understood. We then address the question of how difficult it is to come up with
a witnessing matrix.
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Theorem 15 Given a non-singular matrix M over Q, a singular matrix N satisfying
support(M − N) = 1 can be constructed in LGapL.

Proof For each (i, j), let M(i, j) be the matrix obtained from M by replacing mi,j

with an indeterminate x. Then det(M(i, j)) is of the form ax + b, and a and b can
be determined in GapL (see for instance [2]). Since RM(n) = 1 (Lemma 2), there is
at least one position (i, j) where the determinant is sensitive to the entry, and hence
a �= 0. Setting mi,j to be −b/a gives the desired N . �

Another question that arises naturally is the complexity of RIGID at the singularity
threshold over rings. Note that Lemma 2 does not necessarily hold for rings. For
instance, changing one entry of a non-singular rational matrix M suffices to make it
singular. But even if M is integral, the changed matrix may not be integral, and over
Z, RM(n) may well exceed 1. (It does, for the matrix

[ 2 3
5 7

]
.) Thus, the question of

deciding RM(n) over Z is non-trivial. We show:

Theorem 16 Given M ∈ Z
n×n, deciding if (M,n, k) is in RIGID(Z) is (1) trivial for

k ≥ n, (2) C=L complete for k = 0, and (3) in LGapL for k = 1.

Proof (1) holds because zeroing out an entire row always gets singularity. (2) merely
says that SINGULAR(Z) is C=L-complete. (3) follows from the proof of Theorem 15
and additionally checking the integrability of b/a. �

In particular, (3) above implies that if over Z, RM(n) = 1, then the non-zero entry
of a witnessing matrix is polynomially bounded in the size of M .

However, if RM(n) > 1 we do not know such a size bound. To demonstrate this
difficulty, consider the case in which k = 2. Following the general idea in Theo-
rem 15, for each choice of two entries in the matrix, replace them by variables x and
y. This defines a family of

(
n
2

) = O(n2) matrices and a family P of bilinear bivariate
polynomials representing the corresponding determinants. The coefficients of each
p ∈ P can be computed in GapL. Now, to test if RM(n) ≤ 2, it suffices to check if at
least one of the Diophantine equations defined by p ∈ P (or equivalently, the single
multilinear Diophantine equation q(x1, x2, . . . , y1, y2 . . .) = ∏

p∈P p(xp, yp) = 0 )
has an integral solution. However, we do not know how to do this.

5 Computing Bounded Rigidity

We now consider the bounded norm variant of rigidity described in Sect. 1: changed
matrix entries can differ from the original entries by at most a pre-specified amount
θ . Formally, the functions of interest are the norm rigidity �M(r) and the bounded
rigidity RM(r, θ), as defined in [20], and their decision version, as given below.

�M(r)
def= inf

N

⎧
⎨

⎩

∑

i,j

|ni,j |2 : rank(M + N) < r

⎫
⎬

⎭
,



Theory Comput Syst

RM(r, θ)
def= min

N

{
support(N) : rank(M + N) < r,∀i, j : |ni,j | ≤ θ

}
,

B-RIGIDK = {(M, r, k, θ) | RM(r, θ) ≤ k}.
Over Z, the naive algorithm for B-RIGIDZ is now in NP. However over Q, the bound
θ still does not imply an a priori poly-size bound on the changed entries. Thus, unlike
in Sect. 4, here computation over Q appears harder than over Z.

The following lemma shows that the bounded rigidity functions can behave very
differently from the standard rigidity function.

Lemma 17 For any ε, and for any sufficiently large n such that n
logn

> ε +1, there is
an n × n matrix M over Q such that RM(n) = 1, �M(n) = �(4n), and the bounded
rigidity RM(n,nε) is undefined.

Proof Let M be an n × n diagonal matrix with mi,i = 2n and mi,j = 0 for i �= j .
Clearly, RM(n) = 1; just zero out any diagonal entry. This involves a norm change of
4n. Can M be made singular by a smaller norm-change, even allowing more entries
to be changed? Recall the definition of strict diagonal dominance from Sect. 3. We
invoke the Levy-Desplanques theorem (see for instance Theorem 2.1 in [21]) that
says that the determinant of a strictly diagonally dominant matrix is non-zero. Now, a
total norm-change less than 4n will not destroy strict diagonally dominance, and the
matrix will remain non-singular. Hence �M(n) = 4n, and RM(n,nε) is undefined. �

Since for a given matrix M , a rank r and a bound θ , RM(r, θ) can be undefined,
we examine how difficult is it to check this. We show the following:

Theorem 18

1. Given a matrix M ∈ Q
n×n, and a rational number θ > 0, testing if RM(n, θ) is

defined is NP-complete.
2. Given M and θ as above, and further given an integer k, testing if RM(n, θ) is at

most k is NP-complete.

Proof To begin with, notice that RM(r, θ) is defined if and only if RM(r, θ) ≤ n2.
Membership: We first show the membership in NP for (2). Membership in (1)

follows by using this with k = n2. We use a result from the linear interval equations
literature. For two matrices A and B , we say that A ≤ B if for each i,j , Aij ≤ Bij .
For A ≤ B , the interval of matrices [A,B] is the set of all matrices C such that
A ≤ C ≤ B . An interval is said to be singular if it contains at least one singular
matrix; otherwise it is said to be regular. By Theorem 2.8 of [26] (or directly from
Lemma 21), checking singularity of a given interval matrix is in NP.

Given M , θ and k, we want to test whether RM(n, θ) is at most k. In NP, we guess
k positions (i1, j1), (i2, j2), . . . , (ik, jk) and construct the matrix Vimjm = θ for all
1 ≤ m ≤ k and 0 elsewhere. Now let A = M −V and A = M +V . Then RM(n, θ) ≤ k

if and only if for some such guessed V , the interval [A,A] is singular, and this can
be tested in NP.
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Hardness: It suffices to prove hardness for (1), since hard instances of (1) along
with k = n2 gives hard instances of (2). We start with the maximum bipartite sub-
graph problem: Given an undirected graph G = (V ,E), with n vertices and m edges
and a number k, check whether there is bipartite subgraph with at least k edges. This
problem is known to be NP-complete (see [16]). In [26], there is a reduction from
this problem to computing the radius of non-singularity, defined as follows: Given
a matrix A, its radius of non-singularity d(A) is the minimum ε > 0 such that the
interval [A − εJ,A + εJ ] is singular, where J is the all-1s matrix.

We sketch the reduction of [26] below and observe that it yields NP-hardness for
our problem as well.

Given an instance G,k of the maximum bipartite subgraph problem, we define the
matrix N as,

Nij =
⎧
⎨

⎩

−1 if i �= j and i and j are adjacent in G,
2m + 1 if i = j ,
0 otherwise.

Notice that since N is diagonally dominant, by Levy-Desplanques theorem (see for
instance Theorem 2.1 in [21]), N is invertible. Let M = N−1.

By Theorems 2.6 and 2.2 of [26],

(G, k) is a Yes instance ⇐⇒ 1/d(M) ≥ (2m + 1)n + 4k − 2m

⇐⇒ d(M) ≤ θ = 1

(2m + 1)n + 4k − 2m

⇐⇒ the interval [M − θJ,M + θJ ] is singular

⇐⇒ RM(n, θ) is defined. �

Remark 19

1. It is easy to see that, by clearing denominators, we have hard instances where M,θ

take integral values. Thus, the hardness result holds for Z as well.
2. The matrices that are produced in the above reduction are all symmetric as well.

Rohn [29] considered the case when the interval of matrices under consideration
is symmetric; that is both the boundary matrices are symmetric. Notice that the
interval can still contain non-symmetric matrices. He proved that in such an inter-
val, if there is a singular matrix, then there must be a symmetric singular matrix
too.

Unraveling the NP algorithm described in the membership part of Theorem 18,
and its proof of correctness, is illuminating. Essentially, what is established in [28]
and used in [26] is the following:

Lemma 20 [28] If an interval [A,B] is singular, i.e. the determinant vanishes for
some matrix C within the bounds A ≤ C ≤ B , then the determinant vanishes for a
matrix D ∈ [A,B] which, at all but at most one position, takes an extreme value (dij

is either aij or bij ).
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In particular, this implies that there is a matrix in the interval whose entries have
representations polynomially long in that of A and B . To see this, let D be the matrix
claimed to exist as above, and let k, l be the (only) position where akl < dkl < bkl .
The other entries of D match those of A or B and hence are polynomially bounded
anyway. Now replace dkl by a variable x to get matrix Dx . Its determinant is a uni-
variate linear polynomial αx + β which vanishes at x = dkl . Now α and β can be
computed from Dx in GapL, and hence are polynomially bounded. If α = 0, then
β = 0 and the polynomial is identically zero. Otherwise, the zero of the polynomial
is −β/α. Either way, there is a zero with a polynomially long representation.

In [28], the above lemma is established as part of a long chain of equivalences con-
cerning determinant polynomials. However, it is in fact a general property of arbitrary
multilinear polynomials, as we show below.

Lemma 21 (Zero-on-an-Edge Lemma) Let p(x1, . . . , xt ) be a multilinear polyno-
mial over Q. If it has a zero in the hypercube H defined by [
1, u1], . . . , [
t , ut ], then
it has a zero on an edge of H , i.e. a zero (a1, . . . , at ) such that for some k, ∀(i �= k),
ai ∈ {
i, ui}.

Proof The proof is by induction on the dimension of the hypercube. The case when
t = 1 is vacuously true, since H is itself an edge. Consider the case t = 2. Let
p(x1, x2) be the multilinear polynomial which has a zero (z1, z2) in the hypercube
H ; 
i ≤ zi ≤ ui for i = 1,2. Assume, to the contrary, that p has no zero on any edge
of H . Define the univariate polynomial q(x1) = p(x1, z2). Since q(x1) is linear and
vanishes at z1, p(
1, z2) and p(u1, z2) must be of opposite sign. But the univariate
linear polynomials p(
1, x2) and p(u1, x2) do not change signs on the edges either,
and so p(
1, u2) and p(u1, u2) also have opposite sign. By linearity of p(x1, u2),
there must be a zero on the edge x2 = u2, contradicting our assumption.

Let us assume the statement for hypercubes of dimension less than t . Consider
the hypercube of dimension t and the polynomial p(x1, . . . , xt ). Let (z1, . . . , zt )

be the zero inside the hypercube. The multilinear polynomial r corresponding to
p(x1, . . . , xn−1, zt ) has a zero inside the (t −1)-dimensional hypercube H ′ defined by
intervals [
1, u1], . . . , [
t−1, ut−1]. By induction, r has a zero on an edge of H ′. With-
out loss of generality, assume that this zero is (z′

1, α2 . . . αt−1) where αi ∈ {
i, ui}.
Thus the polynomial q(x1, xt ) = p(x1, α2 . . . αt−1, xt ) has a zero in the hypercube
defined by intervals [
1, u1], [
t , ut ]. Hence the base case applies again, completing
the induction. �

Analogous to Theorems 13, 15 and 16, we consider B-RIGIDK when k ∈ O(1).

Theorem 22 B-RIGIDQ and B-RIGIDZ are C=L-hard for each fixed choice of k, and
remain hard when r = n. When k = 1 and r = n, B-RIGIDQ is in PL, while B-RIGIDZ

is in LGapL.

Proof For any k, (M,n, k,0) ∈ B-RIGIDK ⇐⇒ M is singular; hence C=L-hardness.
To see the PLupper bound over Q, let θ = p

q
. For each element (i, j), define the

(i, j)th element as variable x and then write the determinant as ax + b. Thus, if |x| =
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| b
a
| ≤ p

q
for at least one such (i, j) pair, we are done. This is equivalent to checking

if (bq)2 ≤ (ap)2. The values of a and b can be written as determinants, hence (ap)2

and (bq)2 are GapL functions, and comparison of two GapL functions can be done
in PL. Since PL is closed under disjunction (see [6]), the entire computation can be
done in PL. Over Z, q = 1 and θ = p, but we need an integral value for x as well.
That is, we want an (i, j) pair where | b

a
| ≤ θ and a divides b. This can be checked in

LGapL. �

6 Discussion

While the matrix rigidity problem over finite fields is NP-complete ([14]), we can
consider restricted versions there too. It is known [7] that SINGULAR(Fp) is complete
for ModpL (computing the exact value of the determinant over Fp is in ModpL), and
that (see e.g. [5]), for any prime p, RANK BOUND(Fp) is in ModpL. Using this, and
closure properties of ModpL, we can obtain analogues of Theorem 13 and 15 over Fp :
(1) for each k, and each prime p, RIGIDFp

(k) is complete for ModpL, and (2) given
a non-singular matrix, a singular matrix can be obtained by changing just one entry,
and the change can be computed in ModpL.

We can also consider the complementary question to matrix rigidity, namely, com-
puting the number of entries that need to be changed to increase the rank above a
given value. Using arguments similar to the case of decreasing rank, we can obtain
similar complexity results in this case also. However, notably in this case, we not
only have decidability, we also have an upper bound of NP. This follows from the
framework of maximum rank matrix completion, which is known to be in P[15, 23].

For the most general question of testing rigidity over arbitrary infinite fields, as
an optimization problem, a natural direction to explore is the existence of fixed pa-
rameter tractable algorithms. More specifically, given an n × n matrix, and rank r

and a value k, is it possible to test RM(r) ≤ k in time nc.f (k) for a constant c and
an arbitrary function f . However, in this problem we do not see how such additional
time can used.
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