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Matrix Rank

Rank of a matrix M ∈ F
n×n has the following equivalent

definitions.

◮ The size of the largest submatrix with non-zero determinant.

◮ The number of linearly independent rows/columns of a matrix.

◮ The smallest r such that M = AB where A ∈ F
n×r is an

B ∈ F
r×n matrix.

◮ The smallest k such that M is the sum of k rank-1 matrices.

singular: Given a matrix M, is rank(M) < n?

rank bound: Given a matrix M and a value r , is rank(M) < r?



Computing the Rank

Some motivation ...

◮ From Linear Algebra : Computation of the dimension of the
solution space of a system of linear equations.

◮ From Control Theory : Rank of a matrix can be used to
determine whether a linear system is controllable, or
observable.

◮ From Algorithmics : Some natural algorithmic problems can
be expressed in terms of rank computation and determinant
computation.

◮ From Complexity Theory : In the context of seperating
complexity classes, it might facilitate application of the well
developed algebraic techniques.
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Circuits are directed acyclic graphs with ∧, ∨ and ¬ gates at the
vertices.

◮ AC0 : poly size constant depth and unbounded fanin circuits.

◮ TC0 : AC0 with “majority” gates



Why are they interesting ?

Class Resource Bound Complete Problem

L log space Reachability in
TM undirected graphs

NL log space TMs with Reachability in
guess & verify power directed graphs

C=L log space TMs with Singularity of
“balanced” guess & verify 0-1 matrices

AC0 poly size, constant Reachability in
depth circuits constant width maze-graphs

TC0 AC0 + “majority” Testing Majority
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So ?
Turing/Circuit Model : Combinatorial !

Seperation of small classes : Unknown

Rank Computation : Algebraic !

Characterising computation using this might help.



Computing the Rank

◮ The natural approach takes exponential time.

◮ Can be computed in Polynomial time :
Gaussian elimination (1800s)
But it is inherently sequential.

◮ Elegant parallel algorithm ([Mul87]) by relating the problem
to testing if some coefficients of the characterstic polynomial
are zeros. Rank can be computed in NC.

◮ Refined complexity bounds by [ABO96]. Upperbound testing
exactly characterises C=L.



Computing the rank of special matrices

◮ Complexity theoretic characterisations.

◮ Several applications have inherent structure for the matrices.

Restrictions we are interested in :

◮ M = [ai ,j ] is diagonally dominant if

|aii | ≥
∑

j 6=i

|aij |

Fun fact : If dominance is strict for all i , M is non-singular.

◮ Diagonal matrices : Non-zero entries only on the main
diagonal.



Characterising Log space

Theorem
Computing the rank of symmetric non-negative diagonally

dominant matrices is complete for the complexity class L.

◮ Membership: The proof uses a nice combinatorial
characterisation of the dimension of the null-space of the
matrix due to [Dah99]. We can reduce the problem to
counting the number of bipartite components in a graph.

◮ Hardness :The problem of testing reachability in undirected
forests where there are exactly two components is L-complete.
We reduce this problem to rank computation on symmetric
non-negative diagonally dominant matrices.
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Matrix type rank bound singular

General C=L-complete C=L-complete
[ABO96] [ABO96]

Sym.Non-neg. C=L-complete C=L-complete
[ABO96] [ABO96]



For Special Matrices...

Matrix type rank bound singular

General C=L-complete C=L-complete
[ABO96] [ABO96]

Sym.Non-neg. C=L-complete C=L-complete
[ABO96] [ABO96]

Sym.Non-neg.
Diag. Dom. L-complete L-complete

Diag TC0-complete in AC0



How close is M to a rank r matrix?

Definition (Rigidity)

Given a matrix M and r < n, rigidity of the matrix M (RM(r)) is
the number of entries of the matrix that we need to change to
bring the rank below r .

◮ A natural linear algebraic optimisation problem; and it arises
in control theory.

◮ Interesting in a circuit complexity theory setting. Highly rigid
linear transformations(matrices) have some “nice” size
lowerbounds for log-depth circuits computing them [Val77].

◮ It is related to the “power” of Valiant’s proof technique.



Computing Rigidity

rigid(M, r , k): Given a matrix M, values r and k , is RM(r) ≤ k .

◮ Over any finite field F, rigid is in NP. The algorithm will
simply guess the positions and the changed values and simply
verify if the rank has gone down.

◮ Over F2, rigid is NP-complete [Des]. The hardness comes
from a reduction from a problem in the coding theory setting :
the nearest neighbour decoding problem.

◮ Over infinite fields the only upperbound we know is r .e.

◮ If k is constant, restriced to boolean matrices, rigid is
C=L-complete.



Bounded Rigidity

Too much change involves too much “cost”.

◮ Given a matrix M and r < n, bounded rigidity of the matrix
M (RM(b, r)) is the number of entries of the matrix that we
need to change to bring the rank below r , if the change
allowed per entry is atmost b.

◮ b-rigid(M, r , k , b): Given a matrix M, values b, r and k , is
RM(b, r) ≤ k?

◮ Another formulation : Define an interval of matrices [A] where

mij − b ≤ aij ≤ mij + b

Question : Is there a rank r matrix B ∈ [A] such that M − B

has atmost k non-zero entries?



Why should there be?

Consider the matrix
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◮ RM(b, n − 1) is undefined unless b ≥ 2k
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◮ Question : For a given matrix M, bound b, target rank r , can
we efficiently test, whether RM(b, r) is defined ?
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It is NP-hard.



A restricted case

For a given matrix M, bound b, testing whether RM(b, n − 1) is
defined, is NP-complete.

◮ Membership: The bound b defines an interval for each entry
of the matrix.
Determinant is a multlilinear polynomial on the entries of the
matrix.
Now use the following lemma:

Lemma (Zero-on-an-edge)

For a multilinear polynomial p(x1, x2 . . . xt), consider the

hypercube defined by the interval of each of the xi s. If there is a

zero of the polynomial in the hypercube then there is a zero on an

edge of the hypercube.

◮ NP algorithm : Guess the “nice” singular matrix and verify.

◮ Hardness: A reduction from MAX-CUT problem.



Thank You
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