

Fun fact : If for all i, the dominance is strict then M in non-singular.

Matrix type	RANK BOUND	SINGULAR
General	$C_{=}L$ -complete	$C_{=}L$ -complete
	[ABO99]	[ABO99]
Sym.Non-neg.	$C_{\pm}L$ -complete	$C_{=}L$ -complete
	[ABO99]	[ABO99]
Sym.Non-neg.		
Diag. Dom.	L-complete	L-complete
Diagonal	TC ⁰ -complete	in AC^0

controllable, or observable.

space of a system of linear equations.

• From Algorithmics : Some natural algorithmic problems can be expressed in terms of rank and determinant computation.

• From Control Theory : Rank of a matrix

can be used to classify a linear system as

• From Complexity Theory : Characterising complexity classes might facilitate application of the well studied algebraic techniques.

Computing the Rank

- The naive approach : **EXP**onential time.
- Can be solved in Polynomial time; Gaussian elimination : inherently sequential.
- Rank can be computed in NC. Elegant parallel algorithm ([Mul87]) by relating the problem to testing if some coefficients of the characterstic polynomial are zeros.
- Refined complexity bounds by [ABO99]. Upperbound testing is complete for $C_{\pm}L$.

Complexity Theory Preliminaries

Classification of problems in ${\sf P}$ solved by various resource bounded models of computation.

Clas	S	Resource Bound	Complete Problem		
L		log space	Reachability in		
		deterministic TM	undirected forests		
NL		log space	Reachability in		
	n	ondeterministic TM	directed graphs		
C = L		log space	Singularity of		
		"balanced" NTM	boolean matrices		
AC^0		poly size, constant	Reachability in		
		depth circuits	const. width maze		
TC ¹		AC^0 + "majority"	Testing Majority		
	The Zoo helow P				
Гт	he Zo	o below P			
Т	he Zo	o below P			
Т	he Zo	o below P	Р		
T	he Zo	o below P	P NC		
Т	he Zo	o below P	P NC C_L		
T	he Zo	o below P	P NC C_L		
T	he Zo	o below P	P NC C_L NL		
Т	he Zo	o below P	P NC C_L NL L		
T	he Zo	o below P	P NC C_L NL L TC ⁰		
T	he Zo	oo below P	P NC C_L NL L TC ⁰ AC ⁰		

How close is M to a rank r matrix? Given a matrix M and r < n, rigidity of the matrix M ($R_M(r)$) is the number of entries of the matrix that we need to change to bring the rank below r

- A natural linear algebraic optimisation problem, with important applications in control theory.
- Interesting in a circuit complexity theory setting. Highly rigid linear transformations (matrices) have some "nice" size-depth tradeoff in circuits computing them [Val77].

Computing Rigidity

RIGID(M, r, k): Given a matrix M, values rand k, is $R_M(r) \leq k$?.

• Over any finite field \mathbb{F} , RIGID is in NP. Over \mathbb{F}_2 , RIGID is NP-hard too [Des] : reduction from Nearest Neighbour Decoding problem.

tries?

matrices [A] where $m_{ij} - b \le a_{ij} \le m_{ij} + b$

Question : Is there a rank r matrix $B \in [A]$

such that M - B has at most k non-zero en-

The bound b defines an interval for each entry of the matrix. The determinant is a multilinear polynomial on the entries of the matrix. Now use the following lemma:

Zero-on-an-edge Lemma

For a multilinear polynomial p on t variables, consider the t-dimensional hypercube defined by the interval of each of the variables. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube.

NP algorithm : Guess the "nice" singular matrix and verify. Hardness: A reduction from MAX-CUT problem.

Future Work/Open Problems

- Are there characterisations of other small complexity classes (like NL) using the rank/determinant computation?
- Is there a recursive(or better) upperbound for rigidity over infinite fields?
- Can bounded rigidity be decided in NP? is there a generalisation of the zero-on-an-edge lemma to arbitrary rank?

References

- Over infinite fields we don't even know if it is decidable.
- If k is constant, restriced to boolean matrices, RIGID is $C_{\pm}L$ -complete.
- In many applications, the amount of change of the matrix entries dictates the cost. So we would like the changes to be small.

Bounded Rigidity Given a matrix M and r < n and b, bounded rigidity of the matrix M $(R_M(b,r))$ is the number of entries of the matrix that we need to change to bring the rank below r, if the change allowed per entry is atmost b.

- [ABO99] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible systems of linear equations. In *Computational Complexity, 8, 99-126, 1999*, 1999.
- [Mul87] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. *Combinatorica*, 7:101–104, 1987.
- [Val77] L. G. Valiant. Graph theoretic arguments in low-level complexity. In MFCS, 1977.

[†]Joint work with Meena Mahajan (IMSc) Email: {meena,jayalal}@imsc.res.in [‡] Full version available as ECCC technical report at http://eccc.hpi-web.de/eccc-reports/2006/TR06-100/