
IITM-CS2200: Languages, Machines and Computation Jan 25, 2012

Lecture 12 : Myhill-Nerode Relations

Lecturer: Jayalal Sarma Scribe: Jayalal Sarma

Over past two lectures, we developed a strategy for proving that some languages are not
regular. As we noticed, proving such impossibility results is a difficult task intuitively
because one has to rule out all ”smart designs” possible for a finite automata. The strategy
was to observe some structural property of the automata. So far, the structural study was
simply making use of the fact that there are only finite states, and by pigeon hole principle
there must be at-least one state that gets repeated if the automaton runs on a long enough
string. We also saw how to use this observation to produce new strings that should be
accepted by the automaton. We abstracted this out as a lemma thus stating the pumping
lemma.

In this lecture we provide an alternate view towards automata as a machine and present
a beautiful theory which gives some fundamental understanding about the automata. The
results are due to John Myhill and Anil Nerode, in 1958.

We view an automata as a classifier of strings in Σ∗ based on which state it lands up if it
is run on each string. More formally, let M = (Q,Σ, δ, s, F) be a finite state automaton
accepting a language A. We define the following relation.

∀x, y ∈ Σ∗ : xRy ⇐⇒ δ̂(s, x) = δ̂(s, y)

We study this relation more carefully and observe first that it is an equivalence relation.

• Reflexive: : ∀x ∈ Σ∗ : xRx. That is, δ̂(s, x) = δ̂(s, x).

• Symmetric : ∀x, y ∈ Σ∗ : xRy ⇒ yRx. Let xRy. That is, δ̂(s, x) = δ̂(s, y), hence
δ̂(s, y) = δ̂(s, x).

• Transitive : ∀x, y, z ∈ Σ∗ : xRy ∧ yRz ⇒ xRz. Let xRy and yRz, δ̂(s, x) = δ̂(s, y) and
δ̂(s, y) = δ̂(s, z) and hence δ̂(s, x) = δ̂(s, z). Thus xRz.

Since it is a an equivalence relation, let us change notation to conform to standards. We
will denote R by ≡M (because it is defined based on M).

Is ≡M merely an equivalence relation? Are there nicer properties that it satisfies. Note
that we used only properties about ”equality” in the above proofs?. Now we will use the
fact that these are defined using δ̂.

12-1

• Right congruent: Suppose we run the automaton M on string x and y independently
starting from the start state. The strings will be in the same equivalence class defined
by ≡M if we land up in the same state. What if we run the machine on xa and ya for
an a ∈ Σ? Indeed, our intuition tells us that they should land up in the same state.
To formally state this :

∀x, y ∈ Σ∗ (x ≡M y ⇒ ∀a ∈ Σ : xa ≡M ya)

We will formally prove this. Let x, y ∈ Σ∗ such that x ≡M y. That is, by definition of
≡M , we have δ̂(s, x) = δ̂(s, y). Let a ∈ Σ. We want to prove that δ̂(s, xa) = δ̂(s, ya).
To do this, let us understand the LHS first.

δ̂(s, xa) = δ(δ̂(s, x), a)

= δ(δ̂(s, y), a)

= δ̂(s, ya)
⇒ xa ≡M ya

By using the above property as a base case, we can extend right congruence from the
alphabet a ∈ Σ to arbitrary strings z ∈ Σ∗. That is we show the following.

Claim 1. ∀x, y ∈ Σ∗, if x ≡M y, then ∀z ∈ Σ∗ : xz ≡M yz.

Proof. We proceed by induction on |z|. Bases case is |z| = 0. That is, z = ε. In
this case it follows trivially. Checking one more base case, the above stated right
congruence property is the claim when |z| = 1.

Induction Step : Let the claim be true for |z| = k. We will prove it for |z| = k + 1.
Let x, y ∈ Σ∗ such that x ≡M y. Let z ∈ Σk+1. Our aim is to show that xz ≡M yz.
Let us write z = wa where |w| = k and a ∈ Σ. The induction hypothesis gives us :
xw ≡M yw. That is, δ̂(s, xw) = δ̂(s, xw).

We start with the LHS of what we aim to show: δ̂(s, xz) = δ̂(s, xwa) = δ(δ̂(s, xw), a) =
δ(δ̂(s, yw), a) = δ̂(s, ywa) = δ̂(s, yz). This completes the induction.

• Respects membership in A: We build the intuition first. For x, y ∈ Σ∗, if we have
x ≡M y, it indeed means that they make the automaton land up in the same state
(say q) when run from the starting state s. Hence they must either be both inside A
(if q ∈ F) or both outside A (if q /∈ F). More formally,

∀x, y ∈ Σ∗ : x ≡M y ⇒ (x ∈ A ⇐⇒ y ∈ A)

To complete we also give the formal proof: Let x, y ∈ Σ∗ such that x ≡M y. We have
that δ̂(s, x) = δ̂(s, y). Now,

x ∈ A ⇐⇒ δ̂(s, x) ∈ F
⇐⇒ δ̂(s, y) ∈ F
⇐⇒ y ∈ A

12-2

• Finite index: Let us understand how many equivalence classes can there be in Σ∗ for
the relation ≡M . For each state q, the strings which land up in that state are put
in the same equivalence class. Hence the number of equivalence classes is exactly the
number of states in the machine M and hence is finite.

Thus for every automatonM , we have an equivalence relation on Σ∗ defined by≡M as above.
Interestingly, these properties can be talked about, without reference to the automaton as
such, and just with reference to the language. We make the following definition.

Definition 2. An equivalence relation ≡ on Σ∗ is said to be Myhill-Nerode relation
with respect to A, if it satisfies the following properties.

• ∀x, y ∈ Σ∗ (x ≡ y ⇒ ∀a ∈ Σ : xa ≡ ya).

• ∀x, y ∈ Σ∗ : x ≡ y ⇒ (x ∈ A ⇐⇒ y ∈ A).

• ≡ is of finite index. The number of equivalence classes is finite.

We denote the fact that it is with respect to A by denoting ≡A.

Lemma 3. If a language A is regular, then there is a Myhill-Nerode relation on Σ∗ with
respect to A.

Proof. Let A be a regular language. Thus, there is an automaton M such that A = L(M).
Consider the relation ≡M . As we have already proved, ≡M is a Myhill-Nerode relation with
respect to L(M) since it satisfyies all the above properties.

This can be used to prove that certain languages are not regular. For example, to prove
that a language A ⊆ Σ∗ is not regular, it suffices to to prove that there cannot be a Myhill-
Nerode relation on Σ∗ with respect to A. In other words, if an equivalence relation on Σ∗

satisfies the first two conditions of the above definition, then it is not of finite index.

We will demonstrate this strategy for our favourite example for a non-regular language.

Theorem 4. The language A = {anbn : n ≥ 0} is not regular.

Proof. We argue that there cannot be a Myhill-Nerode relation on Σ∗ respecting the lan-
guage A. Hence by the above lemma we will be able to conclude that A cannot be regular.

Our proof is by contradiction. Suppose ≡ is a Myhill-Nerode relation on Σ∗ with respect to
A. It satisfies the above properties : the right congruence property (hence it also satisfies
claim 1), respects the membership of A, and is of finite index.

12-3

Consider k and m, k 6= m. Consider the strings x = ak and y = am. Are they in the same
equivalence class by ≡? We argue that they cannot be. Let z = bk. Thus xz = akbk, and
yz = ambk. Thus xz ∈ A and yz /∈ A. Since the equivalence relation respects membership
in A, it has to be that xz 6≡ yz. But then, if we apply claim1 for this z = bk, we conclude
that ak 6≡ am. Since there are infinitely many choices of k and m such that k 6= m, we
conclude that there has to be infinitely many equivalence classes.

Exercise : Try a similar proof for the language A = {ap : p is a prime number }.

12-4

