IITM-CS2200: Languages, Machines and Computation
Date: Mar 1, 2012
Tutorial \#4
Attempt the last question only in the end.

1. (2 points) Construct a DFA corresponding the following regular expression.

$$
\left(0(01)^{*}(1+00)+1(10)^{*}(0+11)\right)^{*}
$$

2. (2 points) Construct a regular expression corresponding to the following NFA.

Figure 1: DFA for question 2
3. (2 points) Let A be a regular language. Show that the following language is also regular.

$$
B=\left\{x: x^{r} x x^{r} \in A\right\}
$$

4. (3 points) (a) Argue that if an NFA having k states accept any string at all, then it accepts a string of length at least $k-1$ or less.
(b) Can non-deterministic 2-way finite automaton accept the language $\left\{a^{n} b^{n}: n \geq 0\right\}$. Why? or Why not?
5. (1 point) Let A be a regular language. Show that the following language is also regular.

$$
B=\left\{x \mid x^{|x|} \in A\right\}
$$

Use 2-way finite automata, and use your answer to the part(b) of the previous question.

