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Foreword

Every proof in this book is ultimately reduced to a counting problem—typically enu-
merated in two different ways. Counting leads to beautiful, often elementary, and very
concrete proofs. While not necessarily the simplest approach, it offers another methad 1o
gain understanding of mathematical truths. To a combinatorialist, this kind of proof is the
only right one. We offer Proafs Thar Really Count as the counting equivalent of the visual
approach taken by Roger Nelsen in Proafs Withour Words I & 11 [37, 38).

Why count?

As human beings we leam to count from a very early age. A typical 2 year old will proudly
count to 10 for the coos and applause of adoring parents. Though many adults readily
claim ineptitude in mathematics, no one ever owns up to an inability to count. Counting
is one of our first tools, and it is time to appreciate its full mathematical power. The
physicist Emst Mach even went so far as to say, “There is no problem in all mathematics
that cannot be solved by direct counting™ [36].

Combinatorial proofs can be particularly powerful. To this day, I (A.T.B.) remember
my first exposure to combinatorial proof when I was a freshman in college. My professor
proved the Binomial Theorem

@iy =3 (F)etvt

k=0
by writing
E+y)"=(+y)z+y)-(x+y)
n times
and asking “In how many ways can we create an =¥y ~* term?” Sudden clarity enswed.

The theorem made perfect sense. Yes, I had seen proofs of the Binomial Theorem before,
but they had seemed awkward and 1 wondered how anyone in his or her right mind would
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X PROOFS THAT REALLY COUNT

two different ways. One answer is the left side of the identity; the other snswer is the
right side. Since both answers solve the same counting question, they must be equal. Thus
the identity can be viewed as a counting problem to be tackled from two different angles.

We use the identity
LE] ﬂ) :
> (7)=

to illustrate a proof structure found throughout this book. There is no need 1o use the
formula gl for (1). Instead, we interpret () as the number of k-element subsets |
of an n-element set, or more colorfully, as the number of ways to select a committee of

k students from a class of n students.

Question: From a class of n students, how many ways can we creale a committee?

Answer 1: The number of committees with 0 students is (). The number of com-
mittees with 1 student is (7). In general, the number of committees with exactly k
students is (};). Hence the total number of committees is 55, (7).

Answer 2: To create a committee of arbitrary size, we decide, student by student
whether or not they will be on the committee. Since each of the n students is either
“on” or “off” the committee, there are 2 possibilities for each student and thus 2
ways to create a committee,

Since our logic is impeccable in both answers, they must be equal, and the identity
follows.

Annﬂ'rqrusefulpmcf:uhrﬁqmistninmmum:leftsidenhnidmﬁtyumsiuuf
a set, the right side of the identity as the size of a different set, and then find a one-to-one

z(;)ﬁ(ﬁil) for n > 0.

k=0

Both sums are finite since () = 0 whenever i > n. Here it is easy to see what both sides
count. The challenge is to find the correspondence between them.
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FOREWORD xi

Offten we shall prove an identity more than one way, if we think a second proof can
bring new insight to the problem. For instance, the last identity can be handled by counting
the number of even subsets directly. See Identity 129 and the subsequent discussion.

What can you expect when reading this book? Chapter 1 introduces a combinatorial
interpretation of Fibonacci numbers as square and domino tilings, which serves as the
foundation for Chapters 2-4. We begin here because Fibonacci numbers are intrinsically
interesting and their interpretation as combinatorial objects will come as a delightful sur-
prise to many readers. As with all the chapters, this one begins with elementary identities
and simple arguments that help the reader to gain a familiarity with the concepts before
proceeding to more complex material. Expanding on the Fibonacci tilings will enable us
to explore identities involving generalized Fibonacci numbers including Lucas numbers
{Chapter 2), arbitrary linear recurrences (Chapter 3), and continued fractions (Chapter 4.)

Chapter 5 approaches the traditional combinatorial subject of binomial coefficients.
Counting sets with and without repetition leads to identities involving binomial coeffi-
cients. Chapter 6 looks at binomial identities with alternating signs. By finding corre-
spondences between sets with even numbers of elements and sets with odd numbers of
elements, we avoid using the familiar method of overcounting and undercounting provided
by the Principle of Inclusion-Exclusion,

Harmonic numbers, like continued fractions, are not integral—so a combinatorial ex-
planation requires investigating the numerator and denominator of a particular represen-
tation. Harmonic numbers are connected to Stirling numbers of the first kind. Chapter 7
investigates and exploits this connection in addition to identities involving Stirling num-
bers of the second kind.

Chapter 8 considers more classical results from arithmetic, number theory, and alge-
bra including the sum of consecutive integers, the sum of consecutive squares, sum of
consecutive cubes, Fermat's Little Theorem, Wilson's Theorem, and a partial converse to
Lagrange’s Theorem.

In Chapter 9, we tackle even more complex Fibonacci and binomial identities. These
identities require ingenious arguments, the introduction of colored tiles, or probabilistic
models. They are perhaps the most challenging in the book, but well worth your time.

Occasionally, we digress from identities to prove fun applications. Look for a divisi-
bility proof on Fibonacci numbers in Chapter 1, a magic trick in Chapter 2, a shortcut to
calculate the parity of binomial coefficients in Chapter 5 and generalizations to congru-
ences modulo arbitrary primes in Chapter 8.

Each chapter, except the last, includes a set of exercises for the enthusiastic reader
to ty his or her own counting skills. Most chapters contain a list of identities for which

Who should count?

The short answer 10 this question is “Everybody counts!” We hope this
enjoyed by readers without special training in mathematics. Most of the
book can be appreciated by students at the high school level, On the other hand, eachers

, a nd this book o be a valuable resource for classes




xii PROOFS THAT REALLY COUNT
survey of combinatorial proofs. Rather, it is a beginning. After reading it, you will never
view quantities like Fibonacci numbers and continued fractions the same way again. Char

hope is that an identity like

Identity 5. fans1 = i: i (n ;,, i) (n : j)

i=0 j=0

for Fibonacci numbers should give you the feeling that something is being counted and
the desire to count it. Finally, we hope this book will serve as an inspiration for mathe-
maticians who wish to discover combinatorial explanations for old identities or discover
new ones. We invite you, our readers, to share your favorite combinatonal proofs with us

for (possible) future editions.
After all, we hope all of our efforts in writing this book will count for something.

Who counts?

We are pleased to acknowledge the many people who made this book possible—either
directly or indirectly.

Those who came before us are responsible for the rise in popularity of combinatorial
proof. Books whose importance cannot be overlooked are Constructive Combinatorics
by Dennis Stanton and Dennis White, Enumerative Combinatorics Volumes | & 2 by
Richard Stanley, Combinatorial Enumeration by lan Goulden and David Jackson, and
Concrete Mathematics by Ron Graham, Don Knuth & Oren Patashnik. In addition to these
mathematicians, others whose works continue to inspire us include George E. Andrews,
Daﬁdﬂnmmui.ﬁjchmﬂﬂmﬂdi,Lmdﬂmimhﬁmsﬂ.ﬁﬁmmw
Grimaldi, Richard Guy, Stephen Milne, Jim Propp, Marta Sved, Herbert Wilf, and Doroa
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Binomial Identities

Definition The binomial coefficient (%) is the number of k-element subsets of {1, ... ,n}.

Definition The multichoose coefficient ((3)) is the number of k-clement multisubsets of
il,...,n}

Examples of binomial coefficients are L(}) =4 (3) =6 L.,} =4,and (J) =1
Examples of multichoose coefficients 3.1': {{u” = [[‘]} =4, “a” = 10, {{;}] =20
and ((J)) = 35.

5.1 Combinatorial Interpretations of Binomial
CoefTicients

Binomial coefficients were bom to count! Unlike most of the quantities we have dis-
cussed in this book, binomial coefficients are almost always defined as the answer to a
counting problem. Specifically, we define (}) to be the number of k-element subsets of
{1,2,...,n}. Put another way, (}) counts the ways to select a committee of k students
from a class of n students where the order of the selection is not important, By definition
we have, for n > 0, (7) = 1, and for k < 0, (}) = 0. (Although it's possible to define
= fu'n:gnuuvn]ues of n, we will not do so here.)
Binomial coefficients have a simple algebraic formula

(D i k'—{rsi_w (5.1)

which can be easily seen by the following identity:
Identity 125 For 0 < k < n, n! = (})k!(n — k)!
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o CHAPTER 5. RINOMIAL IDENTITIES

the first k. Once these are chosen, there are k! ways to ammange them, :ﬂ‘h‘“d h':
(n — k)! ways to arange the remaining elements. Hence the numbers through

can be arranged in () &!(n - k)! ways.

We shall take pains to avoid invoking equation (5.1), in the same way that ¥ sk
using Binet's formula (Identity 240) when proving idﬁ“"'—‘;‘“ for Fibonaccl binsiorisl
Chapter 1. Our goal is to understand binomial identities entirely Im m g
definition and 1o avoid algebraic arguments (such as proofs by induction) as

possible.

5.2 Elementary Identities

In this section, we nresent simple combinatorial proofs of binomial coeificient :ﬁ.‘ﬂmﬂ
Although the arguments we present in this section are quite we]l-hrﬂ"_m- they are bﬂl'“f"]
nonetheless. In subsequent sections of this chapter, the arguments will become trickier.

T i ]

k)]  \n=-k)
Question: How many ways can we create a size k committee of students from a
class of n students?
Answer 1: By definition. (}).
Answer 2: We may choose n — k students to exclude from the committee, which
can be done (") ways.

Identity 126 For 0 < k < n,

Identity 127 ForO <k < n, (excepin=k =0),
n n=1 n=-1
(k)”( K )*(ﬁ—l)‘
Question: How many ways can we create a size k& committee of students from a
class of n students?

Answer 1: As before, (7).

Answer 2: Condition on whether or not student n is on the committee. There are
(";") committees that exclude student n, and (7~1) committees that include student
o N

' 127 (along with initial conditions (J) = 1 and (7 =0 for n < k) can be

cients in a convenient table

5 MR e R




5.2 ELEMENTARY IDENTITIES 5
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Fipure 5.1. Numbering our rows and columns with nonnegative imtegers, the number in row
and column k is (). and all missing entries are zero.

Question: How many ways can we creale a committee (of any size) from a class of
n students?

Answer 1: Since for 0 < k < n, there are ':::l committees of size k, there are
Ek:-fr Iz'l:} such commitlees.

Answer 2: Decide, student bv student, whether or not to put that student on the
committee. Since there are two possibilities for each student (on or off), there are 2°

possible commuttees.

Identity 129 Forn = 1,

n __ gn—1
Z (g 1—) T
k20
Question: How many ways can we create a committee with an even number of
members from a class of n studenis?
Answer 1: Since for 0 < 2k < n, there are (J,) committees of size 2k, there are
¥ 4o (25) such committees,
Answer 2: The first n — 1 students can be freely chosen to be on or off of the
committee, as in the previous proof. Once these choices are made, then the fawe of
the nith student is completely determined so that the final committee size is an even
number. Consequently, there are 2"~} such commitiees.

Notice that the last two identities imply that exactly half of all subsets of {1,....7}

are even. Consequently, half of them must also be odd. Equivalently, this says

i (:){—u" = 0.

k=)
We shall have more to say about such alternating sums in the next chapter.

Identity 130 For 0 < k < n,
: n n=1
k(*) ““(l’— l)'
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J: commi
QuuﬂmHnwnwnywnwcmw:mutcu:m oy
class of n students, where one of the commitice members is designated hair]

tee, then k ways o select the

Answer 1: There are (3} ways to choose the commit 1
ible oulcomes. !
chair. Hence there are k(}) possible outco W tafng

Answer 2: First select the chair from the class of n students. mmhe n{n :}
n—1 students, pick the remaining k— 1 committee members. This done i

ways.
The next identity can be treated as a continuation of Identity

130.

Identity 131 Forn = 1, g
gl(:) = n2" L,

Question: How many ways can we creaic a committee (of any size) ﬁ'ﬂm a class of
n students, where one of the commitiee members is designated as

Answer 1: For a committee of size k, where 0 < k = n,um:mi:[:} such
committees. Altogether, we have 3 _, k(};) possible outcomes.

Answer 2: First select the chair from the class of n students. Then from the remaining
n — 1 students, there are 2™~ ways to choose a subset of them to form the rest of

the committee.
Dividing both sides of the last identity by 2" allows us 1o give a different combinatorial
proof of the equivalent identity:
Yor=aklp) n
an el
Question: What is the average size of a subset of {1,2,...,n}?

Answer 1: We add up the sizes of all subsets and divide by the total number of
subsets. Since for 0 < k < n, there are (1) subsets of size k, and there are 2"

-Mdu:guhwﬂuwmsmuz_--f_(ﬂ_
~ Answer 2: Pair up each subset with its complement. Since each such pair has n
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52 ELEMENTARY IDENTITIES &7

Answer 2: Condition on the number of men on the committee. For 0 < 3 =< k, we

can form & commitice with 7 men by first choosing the men r{"_'J ways), then the

remaining k — j commillee members can be chosen from the women in (" ;) ways.
Hk " -

Altogether, there are 3~/ (7) (i) such commiices

Many of the previous identities can be proved using algebraic methods based on the

Rinemial Theorem, but even that can be proved combinatorially.

Identity 133 Forn = (0,

o 2 L k. A=k
(z+w) Z (i.) -3 '
k=1
Question: In a class of n students, each student is given the choice of solving either
one of z different algebra problems or one of y different geometry problems. How
many different outcomes are possible?
Answer 1: Since each student has T + y choices for which problem 10 solve, there
are (x + y)" possible oulcomes.
"Answer ?: Condition on the number of students who choose to solve an algebra
problem. For 0 < k < n, there are (i) ways to determine which k students chose
to do an algebra problem, then z* ways for them to decide which algebra problems
to do, then y™—* ways for the remaining n — E students 1o decide which geometry
problems to do. Altogether, there are T bag (E)x y" " possible cutcomes.
The proof above assumes that x and y are integers, although the theorem is true for
real or complex values of = and y as well. There are several combinatorial ways around
this issue. One way is to observe for any fixed y, both sides of the identity are degree n

polynomials in z that agree on an infinite number of points. Hence they must be equal.
Another (slightly more algebraic) way to view this identity is to think of the EXpression

(z+y)"=(z+p)z+y)---(z+y) (n times),

and ask, “How many ways can one create an r*y"~* term?" Each such term anses by
choosing an z term from k of the x + y factors, which can be done (3} ways.
The next identity has an interesting application to number theory.

Identity 134 For0<m <k <mn,

n (ﬁ:)_' n)(n—m

kl\m/ \m/\k-m)
Question: In a class of n students, how many ways can we choose a size k commitiee
that containg a size i subcommittes?
Answer 1: The committee can be chosen (7] ways, then the subcommittee can be
dm:n[':"_l ways.
Ml:ﬁm:hmﬂnmmﬂ:mwhuwillhmlhtcmmmmf
subcommittee. This can be done () ways. From the remaining n — m students,
ﬂ-i-mmdmummmuumﬁuuhmmmwhmthcmhM

l'l....} ways.




68 CHAPTER 5. BINOMIAL IDENTITIES

As a simple consequence of this last identity, Erdds and Szckeres proved the following
simple fact about binomial coefficients, (It seems that this was not known prior 1o 19781)
Corollary 7 For 0 <m < k < n, (1) and (}) have a nontrivial common factor. That
is, ged((). (3)) > 1.

Proaf. Suppose, to the contrary, that () and I{ ) are relatively prime. By Identity 134,

() divides (7)(%). But since () and (1) have no commen factors, it follows that (")
divides [ } This is impossible, since it is (combinatorially) clear that {m] is greater than

(m)- “

5.3 More Binomial Coefficient Identities

For the identities in this section, it is more convenient to talk about subsets than com-
mittees. While Identity 128 proved that 30 () = 2", no general closed form exists
for the partial sum 37,7 () where m < n. However. if we interchange the roles of the
fixed and the indexed variable in the binomial summation, a closed form for the partial

sum does exist. Specifically;

Identity 135 For0 < k < n,

2 (0)-(Gh)
Sorady o k+1

Question: How many (& — 1)-subsets are contained in the set {1,2,..., n+1}?
Answer 1: By definition, (7).

Answer 2: Condition on the largest number in the subset. A size k + 1 subset with
maximum element m + 1 can be created (') ways. Since m + 1 can be as small as
k+ 1 and as large as n + 1, there are (i) + (*}') + -+~ + (1) subsets in total.

Identity 136 For 0 < k < n/2,

541 gy o )
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53 MORE BINOMIAL COEFFICIENT IDENTITIES i
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As we have seen before, binomial coefficients and Fibonacci numbers can't help
running into each other. The next few identities are variations on the same theme.

Identity 138 Fort > 1,n >0,

Fonpae) gl R

= 20=320 o 20

Question: In how many ways can you create subsets 5;. 55, ..., S, where §; C
{1,2,...,n}and for 2 <i <t 5 C {1,2,...,n} and S; is disjoint from §,_,?

Answer 1: Condition on the size of each subset 5;. To create subsets that are
“consecutively disjoint” with sizes z; = |5, 1 < i < n, there are (] ways to
create S). Then, since S, is disjoint from 5, there are {_“r:"] ways to create Ss.
Since S3 is disjoint from Ss, there are {";ﬂ”} ways 1o create Sy and so on. Thus
there are (%) ("27) (") - (*--") ways 16 create Sy,...,5; with respective

i Tt

sizes ry,...,T;. Altogether 5,53, ...,5; can be created in

B L Ococ) e

Ey20rg=0 320

ways.
Answer 2: For cach element j € {1,...,n}, decide which subsets contain j. By
construction, the subsets containing j must be nonconsecutive. Exercise | in Chapter
| shows that there are f;,, ways to select the nonconsecutive subsets containing
7. among the sets §,...,5;. Hence the elements 1 through n can be placed into
subsets in f", | ways.

! For those that prefer the tiling approach from Chapter 1, here is a different proof of
Identity 138,

Question: In how many ways can you create n square-domino tilings T3, ..., ..
each of length ¢ + 17

Answer 1: Each tiling can be created f,,; ways, so there are fJ%, such tilings.

Answer 2: For each cell j, 1 < j < ¢, let z; denote the number of tilings that have
a domino beginning at cell j. Conditioning on all possible values of xy,... & we
have () ways to decide which of T}, ..., T, begin with a domino. (The rest begin
with a square.) Among the n — z, tilings that do not begin with a domino, there are
("2r") ways 1o choose which tilings have a domino beginning at cell 2. (Among
these n — z; tilings, the unchosen ones have a square at cell 2.) Among the n ~ 23
Muhmm.mmmnwmmnmt*}-wh
- choose which tilings have a domino at cell 3. Continuing in this fashion,
L l“fprl_huH-]ﬂ [.‘I]{.::‘j;ﬁ”[‘-rqm-“




T CHAPTER 5. BINOMIAL IDENTITIES
Generalizing the previous argument, we obiain
Identity 139 Fort = 1,n = 0,c = 0,
5 e Bl | e (2% sty ) = e
£ 205320 x>0 ) Iz r3 [
s Tl

Question: In how many ways can you create n square-domino tilings 77,
length ¢ + 1, where T3,..., T, must begin with a square?

Answer 1: There are f7f]'7}° such tilings, since the first ¢ #-tilings can be created
fe ways, and the remaining n — e (¢ + 1)-tilings can be created fJ, " ways.
Answer 2: The exact same reasoning as in the last proof applies here. The omly
difference is that the r, tilings that begin with dominoes must be chosen from
Tet1y-.-, Ty Hence the first step can be performed [“_,:“] ways instead of {:]

Identity 138 can be generalized in a different direction to produce a Lucas identity.
Identity 140 Fort > 1,1 >0, |

585 (g o R e B

Ty 202320

; Iheprn::ofi:?.u':;esanmnsjn Identity 138, but now each of the r, tilings that begin
with a domino is given one of two phases. Even more generally, we have

Identity 141 Fort > 1,5 >0,

ST g T E R

1202320 e 20

Identity 142 Fort > 1,n >,
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5.7 Exercises
Prove each of the identities below by & direct

combinatorial argument.
Identity 151 Forn > k >0, (n = k)(3) = n("} )

Identity 152 For n > 2, k(k - 1)(3) = n(n = D(23):

Identity 153 For n > 3, Taso k(k - 1)k = 2)(3) = n(n = 1)(n - 2)("3")-
Identity 154 For n > 4, ((3)) = 3(3) +8(3)-

Identity 155 For0<m <n, Ekgﬂ {:Hr:.} o [1:]2"_”'

Identity 156 For0 < m <n, Tise (R (G5) = (m)2" ™"

Identity 157 For m,n 20, Y50 (1) (2) = ("3")-

Identity 158 Form,n > 0. ¥ (3) (n23) = (2)2™

: - L
tdentity 159 For > 1. Ty 1)* =n(3).

Identity 160 Forn >0, Tr_ (2)* = (*%).

Identity 161 For n > 0. 3,04 (53) (F)2"-2 = ().
The next identity can be proved using binomial or multinomial coefficient interpretations.
Identity 162 For m,n 20, Ty, (") = [-+-+1}" g
Identity 163 Fort > 1,0 < -:51:, {%ﬁ}"ﬂ""w e
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Other Exercises
I. Prove for n > O,m > 1, that Ehznk{:“m_i]' = n(") ") Then apply the
same logic 10 arrive at a closed form for Eny{:}{:}[n-i}

2. Many combinatorial proofs for binomial coefficients can also be dome by path
m.mmmm&mmwﬂﬁmmwﬁmmhh;ﬂ
{mb}:ﬂdﬁﬂmmhmﬁmﬂmﬂwdﬂlumuﬂqk{'ﬂ.

3. Combinatorially prove the identities below by path counting arguments.

@ Fora,d>0, (3*) = (**27) + (34)):

® For 620, Tioy () (24) = (1)

@ Foc0< s <. oo () (225) = (29

@ Fora,b>0, Tho (*1) = (221")

atb-my _ {l—lrl-l-l}
a

© For0<s<aandb>0, 50, (7)(1
(f) This last identity only looks simple. Fwngﬂ.z:_.mﬁf}-l',

4. Catalan numbers. Prove that the number of paths from (0,0) to (2n,n) that never
go above the main diagonal y = = is =2 (7).

5. Partitions of integers. Let 7(n) count the ways that the integer n can be expressed
-ﬂmdpﬁﬁwm-rmnnhmm*m'{ﬂ-l
since 4 canbeexpressed as 4 =3+ 1 =2+2=2+1+1 =14+14+04+L

: Prove that the number of integer partitions with at most @ positive parts, all of
which are at most b, is (**"). (Example: When a = 2,b = 3, the ten partitions am
3433+423+1,3,2+2,2+1,2,1+1,1,9) g

6. An ordered partition or (composition) of 1 does not require the |
in non-increas order. For instance 4 has eight ordered partitions: 4 = 3 + 1 =
E it mteinisli4imlisdslaltlsdnlii s it

...........



