
IITM-CS6840: Advanced Complexity Theory March 31, 2012

Lecture 59 : Instance Compression and Succinct PCP’s for NP

Lecturer: Sivaramakrishnan N.R. Scribe: Prashant Vasudevan

1 Introduction

Classical Complexity Theory is concerned with studying the time needed for computing
functions as a funciton of the input size. Parametrised Complexity studies the same running
time as a function of both the input size and of a parameter of the problem instance.

Definition 1. A parameterization of a decision problem is a function that assigns a pa-
rameter k to each input instance x. Each input x is thus transformed to (x, 1k).

This formalism is useful in cases where a problem that is difficult to solve in general be-
comes tractable for inputs in which some parameter is constrained. The following definition
formalises this notion.

Definition 2. A parameterized problem is fixed parameter tractable(FPT) if it has an
f(k)nO(1) time algorithm, where n is the size of the original input and k is the attached
parameter.

Thus, when the parameter is small, we have efficient algorithms for an FPT problem.

As an example, we look at the Vertex Cover problem. Here, the input is an undirected
graph G(V,E) on n vertices and the objective is, given k, to find or report the absence of
a subset S of V of size k such that for any edge {u, v} ∈ E, atleast one of u and v is in S
(the vertex cover).

A straightforward, though inefficient, solution is the following recursive procedure:

1. Pick an edge u, v ∈ E.

2. Pick u and delete all edges adjacent to it.

3. If k vertices have been picked:

i) If all edges have been deleted, report success and return.

ii) If some edge remains, try again by picking v. If then too edges remain, report
failure and return.

59-1

4. If less than k vertices have been picked, repeat process on the remaining graph.

5. If procedure reports success on remaining graph, report success and return.

6. If procedure reports failure on remaining graph, try steps 2 to 4 by picking v instead.
If this too fails, report failure and return.

The search tree has depth at most k, as only k vertices are picked, and hence at most 2k

nodes. Processing at each node involves deleting edges, of which there are at most n2.
Hence this procedure runs in O(2kn2) time.

This might be bettered using the observation that if we require a vertex cover of size k,
then any vertex of degree greater than k is necessarily part of the cover. If this were not
so, then all other neighbours of the vertex would have to be in the cover, but as there are
more than k neighbours, this cannot be the case. Hence, as part of preprocessing, if there
is a vertex v of degree greater than k, we add it to the cover, remove all edges adjacent to
it, and look for a cover of size k − 1 in the remaining graph, performing the preprocessing
again if applicable.

Note that, if the initial graph had a vertex cover of size k, the resulting graph after pre-
processing has at most k2 edges. This is because the maximum degree of any vertex in
this graph is k, and it has a cover of at most k vertices which can cover no more than k2

edges. It also has at most k2 + k vertices by the same argument. This way, if k is constant,
this preprocessing reduces the problem instance to one of constant size in O(n2) time (if a
vertex cover exists, that is).

What the above preprocessing essentially does is to, in steps, reduce a given problem in-
stance to a smaller one. We try now to generalise this notion. Consider a language L . We
ask whether there exists some polynomial-time computable function f such that for any x,
f maps x to a smaller string whose membership L is the same as that of x. If this, a notion
related to Kernelisation in Parametrised Complexity Theory, can be done, we may attempt
to apply it iteratively until the instance size reduces to a constant, similar to what we did
in the Vertex Cover problem.

2 Parametric Problems

If L is NP-Complete, we go a bit further and ask for such an f that compresses the problem
to size polynomial in the witness size (which could be logarithmically smaller than the input
size). To this end, we make the following definitions. (Throughout this section, m is the
input size and n is the parameter.)

Definition 3. Let L be a parametric problem and A ⊆ {0, 1}∗. L is said to be compressible
within A if there is a polynomial p and a polynomial-time computable function f such that
for each x ∈ {0, 1}∗ and n ∈ N:

59-2

1. |f(x, 1n)| ≤ p(n)

2. (x, 1n) ∈ L⇔ f(x, 1n) ∈ A

Further, L is compressible if there is some A for which L is compressible within A. L is
self-compressible if L is compressible within L.

Definition 4. A parametric problem L is said to be compressible with advice s if the
compression function is computable in deterministic polynomial time when given access
to an advice string of size s(|x|, n). L is non-uniformly compressible if s is polynomially
bounded in m and n.

We now define a few parametric problems.

1. SAT = {(φ, 1n) | φ is a satisfiable formula, and n is atleast the number of variables in
φ}

2. V C = {(G, 1k logm) | G has a vertex cover of size at most k}

3. OR − SAT = {({φi}, 1n) | at least one φi is satisfiable and each φi has size at most
n}

Also is pertinent the following notion of reductions between parametric problems.

Definition 5. Given parametric problems L1 and L2 , L1 W -reduces to L2 (denoted by
L1 ≤W L2) if there is a polynomial-time computable function f and polynomials p1 and p2
such that:

1. f(x, n1) is of the form (y, n2) where |y| ≤ p1(n1 + |x|) and n2 ≤ p2(n1).

2. f(x, n1) ∈ L2 ⇔ (x, n1) ∈ L1.

This is useful because if L1 ≤W L2 and L2 is compressible, then L1 is also compresible.

3 Deterministic Compression

We now prove a theorem that indicates the infeasibility of deterministic compression.

Theorem 6. If OR− SAT is compressible, then coNP ⊆ NP/poly, and so PH collapses.

Proof. Consider OR − SAT instances of size m with each sub-formula of size at most n.
According to the hypothesis, ∃ a set A and function f poly-time in m such that:

59-3

1. |f(φ, 1n)| ≤ O(poly(n, logm)).

2. φ is satisfiable iff f(ϕ, 1n) ∈ A.

The size of the compressed instance is k = (n+ logm)O(1).

Let S be the set of unsatisfiable formulae of of size at most n, and T be the set of strings
in Ā of length at most k. f is now found to induce a map g : Sm/n → T .

Now, if we can find a C ⊆ T , of size polynomial in n, such that any formula in S is contained
in at least one tuple that maps to a string in C under g, then we can do the following to
decide the membership of ψ in ¯SAT :

1. Guess a tuple of m/n formulae of size n with ψ as one of them.

2. Check if this tuple maps to a string in C under g.

This gives us a non-deterministic algorithm, with advice C, running in time polynomial
in m to decide ¯SAT which, if m is polynomial in n, is also polynomial in n too, giving
coNP ⊆ NP/poly.

We now show the existence of such a set C by constructing one. We start with an empty
set and add strings to it iteratively.

After the ith iteration, let Si be the set of formulae in S that are yet to be covered, and
Ci be the set of strings picket yet. Let Xi ⊆ Sm/n be the set of tuples that are not in the
pre-image set of Ci.

At the (i+ 1)th iteration, we pick a string in T with the maximum number of pre-images in
Xi and add it to Ci. Do this till all tuples in Sm/n are covered. If this procedure terminates
in polynomial (in n) number of steps, we would have our set C.

We have the following observations which may be arrived at by counting arguments:

1. |Xi−1| − |Xi| ≥ |Xi−1|
2k

2. |Si−1| − |Si| ≥ |Xi−1|
n
m

2
kn
m

3. |Xi−1|
n
m ≥ |Si−1|

These give us |Si−1| − |Si| ≥ |Si−1|
2
kn
m

.

As k = (n + logm)O(1), we may pick m = nc for a c such that kn < m. This gives us

|Si| ≤ |Si−1|
2 . This way, the number of uncovered formulae reduces by a factor of 2 in each

59-4

iteration. As there are initially O(2n) of these, the procedure halts in polynomial (in n)
number of steps. As each step adds only one string to C, C is also of size polynomial in n,
giving us the required advice string.

4 Probabilistic Compression

We now relax the notion of compression a bit to allow for probabilistic algorithms with
errors.

Definition 7. Let L be a parametric problem and A ⊆ {0, 1}. L is said to be probabilis-
tically compressible with error ε(n) within A if there is a polynomial p and a probabilistic
polynomial-time computable function f such that for each x ∈ {0, 1} and n ∈ N, with
probability atleast 1− ε(|x|) we have :

1. |f(x, 1n)| ≤ p(n)

2. f(x, 1n) ∈ A⇔ x ∈ L

Such a probabilistic compression function is said to have randomness complexity R if it uses
atmost R random bits.

But even so, compression with considerably less error is unlikely, as indicated by the fol-
lowing theorem, akin to the one proven earlier.

Theorem 8. If OR− SAT is compressible with ε(m) = 2−m, then too coNP ⊆ NP/poly.

This may be proven by noting that, following the same counting argument used to show
BPP ⊆ P/poly, an error of only 2−m implies the existenct of a single random string that
works without error for all instances of a given length. This string may be taken as part of
the advice in the previous proof, yielding the same result.

5 Succinct PCPs

The following is the traditional statement of the PCP Theorem:

Theorem 9 (PCP Theorem). NP = PCP (O(log n), O(1)).

59-5

In words, any language in NP has a proof polynomial in size of input n that can be verified
with O(log n) random bits and O(1) queries such that a positive answer to membership can
always be certainly verified and any negative answer is verified with mistakes at most half
the time. (And vice versa.)

We now ask whether this proof, instead of being polynomial in the input size, may indeed be
made as small as polynomial in the size of the witness for the NP problem (which, as noted
earlier, may be logarithmically smaller than the input). The following definition formalises
that which we seek.

Definition 10. Let L be a parametric problem. L is said to have a succint PCP with
completeness c, soundness s, proof size S and query complexity q if there is a probabilistic
polynomial-time oracle machine V such that the following holds for any instance (x, 1n):

1. If (x, 1n) ∈ L, then there is a proof y of size S(n) such that on input (x, 1n), V makes
atmost q queries to y and accepts with probability at least c.

2. If (x, 1n) /∈ L, then for any string y of size S(n), on input (x, 1n), V makes atmost q
queries to y and accepts with probability at most s.

L is said to have a succint PCP if it has a succint PCP with completeness 1, soundness 1
2 ,

proof size polynomial in n and constant query complexity.

We end with the statement of the following theorem which ties in with what we have
proven earlier, indicating again the improbability of the existence of succinct PCP s for all
NP problems:

Theorem 11. If SAT has a succinct PCP , then SAT is self-compressible with error less
than 2−m.

59-6

