
CS6840: Advanced Complexity Theory Jan 10, 2012

Lecture 4 : Quest for Structure in Counting Problems

Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K.

Theme: Between P and PSPACE.
Lecture Plan:Counting problems and their structural complexity. Various attempts to
develop the theory and the class #P. Basic containments.

In the previous lecture, we saw that the counting problem can be as hard as (or harder
than) the decision problem as given an algorithm for counting problem the decision prob-
lem reduces to just checking the count to be zero or not. We also saw an easy decision
problem CYCLE whose counting version #CYCLE is NP-hard (by reduction from HAMCY-
CLE) implying that easy decision problems can also have corresponding counting problems
hard. We also argued that talking about counting problems still makes sense as the count
value, though exponential, can still be represented in polynomial number of bits.

In this lecture, we will study counting problems and understand their structural complexity.
We shall also make attempts to develop the theory of complexity classes capturing the
counting problems (especially #P). We shall also discuss their basic containments.

1 Preliminaries

Firstly, we fix our computation model where we have a Turing machine with an input tape,
work tape and an output tape. We are interested in the resources used by the Turing
machine - space (considering only the work tape) and time.

We want to capture the notion of counting formally. One such way is to see it as computing
a function f : Σ∗ → N where Σ = {0, 1} which gives an integer value. So, how can we
capture the notion of computing a function? There are two possible ways of capturing
function computation.

Variant 1 We say that a function f is computable if each bit of the output can be computed
in some decision complexity class C.

Variant 2 f is computable if the value of the function computation can be written down
within the resource bounds.

Analogous to the decision problems, we define complexity classes for function computation
problems. A natural extension of P is FP which is defined as

4-1

FP= {f | f : Σ∗ → N, f(x) for any x ∈ Σ∗ can be written down in poly(|x|) time}

Now, we shall plugging in the two variants of function computation and see which of them
is more appropriate.

2 Comparing the variants

We quickly observe that the first and the second variant really coincides when we are talking
about deterministic computations. Let us do this analysis by attempting the definition of
FP. Following the first variant f ∈ FP iff there exists an algorithm that can compute each
bit of f in class P. But since the algorithm is deterministic, this is equivalent to saying that
∀ i, the language defined by the ith bit

Lfi = {x : (f(x))i = 1} ∈ P

On the other hand, if each bit can be computed in polynomial time and since the count value
can be represented in polynomial number of bits, for evaluation, we just run a polynomial
time algorithm polynomial times which is still a polynomial. Hence we have an algorithm
that satisfies the second variant.

Hence for deterministic polynomial time computation both variants are equivalent. We
can define other classes for deterministic computation like FL(log space bounded function
computation), FPSPACE (polynomial space bounded function computation). Containments
of these classes are analogous to their decision versions. We leave the proof as an exercise.

Lemma 1. FL ⊆ FP ⊆ FPSPACE

Now we turn into the non-deterministic world. Following variant 1 of definition of function
computation, we must have each bit computable in class NP. But variant 2 is not useful
because an non-deterministic poly time Turing machine by our model is not set to output
a value. How can we capture the function computation for a non-deterministic machine for
decision problems which works by guess-verify mechanism?

Now, consider the non-deterministic algorithm we had for SAT, which does guessing of an
assignment and verifying it. We can observe the following additional property.

Observation 2. Number of satisfying assignments is exactly equal to the number of accept-
ing paths.

This leads to the question as to whether this is accidental or is there some hidden structure?
It also assigns a function value to the non-deterministic Turing machine. This motivates us
to give a new model, for us to call f is computable by a non-deterministic polynomial time
Turing machine.

4-2

Definition 3. f is #P if there exists a non-deterministic Turing machine M running in
time p(n) such that ∀x ∈ Σ∗, f(x) =

∣∣{y ∈ {0, 1}p(n) : M accepts on path y }
∣∣.

Remark 4. The RHS is also the number of accepting paths of M on x if the lengths of all
paths are equal to p(n). We remark that this can be achieved without loss of generality.
That is, from an arbitrary TM M , we can get to a new TM M ′ which has the same number of
accepting paths, such that the number of accepting paths on any input x remains the same.
We recall our observation that for length of all non-deterministic paths of an NP machine
on any input can be made equal without changing the accepted language1 . But this
construction makes the language accepted the same, and need not keep the number of
accepting paths the same. We modify it slightly to achieve our goal. Indeed, if a path is
shorter than p(n) bits and decided A/R, we extend it to the required length using a binary
tree of paths rooted at that node and make the left most path (in this binary tree) report
A/R respectively and make all other paths reject. The number of accepting paths does not
change due to this construction.

Remark 5. Try this as an exercise. Initiate the thought process on : how does this definition
compare with variant 1? What does computing/testing each bit to be 0/1 mean?

Counting version of SAT denoted as #SAT can be defined as

#SAT(φ) = |{σ|φ(σ) = 1, σ is a boolean assignment to variables in φ}|

It follows from our observation that #SAT ∈ #P, since we can give a non-deterministic
machine (i,e. a machine for SAT) where number of accepting paths equals to the number
of satisfying truth assignments. It can also be shown that #CYCLE ∈ #P.

Claim 6. #CYCLE ∈ #P

Proof. Following is a non-deterministic Turing machine N , such that number of cycles
equals number of accepting paths.

N = “ On input G,

1. Guess subsets V ′ ⊆ V (G) and E′ ⊆ E(G) non-deterministically.

2. Accept iff V ′, E′ form a simple cycle. ”

Now it follows that #CYCLE (G) = |{# of accepting paths of N on G}| since any cycle can
uniquely be characterised by an edge set and a vertex set.

1In particular, we showed that a language A ∈ NP if and only if there is a language B ∈ P and a
polynomial p(n) such that x ∈ A ⇐⇒ ∃y ∈ {0, 1}p(n) : (x, y) ∈ B

4-3

3 Basic Containments

In the functional world, we have the following scenario.

FPSPACE
|
FP
|
FL

So where does set of functions, #P lie? We will argue that #P lies between FPand
FPSPACE thus replicating the picture in the decision world.

Lemma 7. #P ⊆ FPSPACE

Proof. Given a non-deterministic poly time Turing machine M computing function f , we
just need to do a simulation in deterministic poly space. This can be done by simulating M
over all non deterministic paths while reusing space across the paths. Since length of any
path is polynomially bounded, space used will also be polynomial. In the process we need
to keep the count of accepting paths which can be ≤ 2p(n) but still representable with p(n)
bits in binary. Hence space requirement is only polynomial in input length.

Lemma 8. FP ⊆ #P

Proof. Given an L ∈ FP, there exists a deterministic Turing machine M which ∀x ∈ L
writes f(x) in p(n) time where p is a polynomial and n = |x|. To show that L ∈ #P, we
need to construct a non-deterministic such that

No of accepting paths = f(x).

N can compute f(x) by simulating M . Let the value obtained be k. Now, N must have
exactly k accepting paths. This can be ensured by guessing dlog ke bits and accepting all
the paths whose address have binary representations ≤ k and rejecting the remaining paths.

N runs in poly time since f(x) computation (simulation of M) takes only polynomial
time. Even though f(x) is exponential, number of bits guessed is dlog f(x)e which will be
polynomial in n. Hence depth is polynomially bounded. Also number of accepting paths
equals f(x) by construction. Thus N ′ is a #Pmachine accepting L. Hence L = L(N ′) ∈
#P.

It can be observed that if function computation can be done in polynomial time then
P = NP. This is because solving decision problem amounts to checking if the corresponding

4-4

Computing f(x)

accepted strings rejected strings

dlog f(x)e

counting function gives a non zero value or not hence making decision problem easy if
function computation is in P.

Lemma 9. #P = FP⇒ P = NP

An interesting question would be to ask if the converse it true? That is

Does P = NP imply #P = FP?

We will address this and show a weaker implication (that is, based on slightly stronger LHS)
in the next lecture.

4-5

