
IITM-CS6840: Advanced Complexity Theory Jan 17, 2012

Lecture 8 : Zero-one permanent is #P-complete

Lecturer: Jayalal Sarma M.N. Scribe: T Devanathan

Note : Draft version - Unedited

1 Permanent of (0,1) matrix is #P-complete

In this lecture, we will discuss the proof given by Valiant for the #P-completeness of per-
manent. Recall the following the results we proved in previous lectures.

Lemma 1. For A ∈ {0, 1}n×n, perm(A) ∈ #P.

Lemma 2. Let A ∈ Zn×n. Let G be the directed weighted graph on n vertices obtained by
interpreting A as the weighted adjacency matrix of G, i.e. ∀1 ≤ i, j ≤ n,wt(i, j) = w if and
only if Ai,j = w. Let C be the set of cycle covers of G. Then, perm(A) =

∑
C∈C

wt(C).

Theorem 3. Computing the permanent of a (0,1)-matrix is #P-complete.

Proof. We will describe a reduction from #SAT to #CC(G). Given a 3-CNF formula φ =
C1 ∧C2 ∧ · · ·Cn, we will construct a matrix Aφ such that number of satisfying assignments
of φ is equal to #CC(G) where G is the graph with Aφ as its adjacency matrix. G is
constructed using 3 different kinds of gadgets.

1. There is a variable gadget corresponding to each variable in φ.

Observe that a cycle cover for the vertices in this gadget should contain exactly one of
the two paths. For the vertices in the other path, the self loops are to be considered
in the cover. Note that no cycle cover can choose self loops in both paths and cover
the entry and exit nodes. Without loss of generality, assume that the path above

8-1

corresponds to the variable being 1 and the one below corresponds to the variable
being 0. Connect all the variables in the expression in a loop.

2. There is a clause gadget corresponding to each clause in the expression.

Observe that, to cover all four vertices, at least one of the three outer edges coloured in
red must be left out. Associate each outer edge to a variable in the clause and assume
that the edge is not chosen in the cover if the corresponding variable is 1. This ensures
that every clause has atleast one variable that is 1 and hence the existence of cycle
cover implies the existence of a satisfying assignment to the expression.

3. To ensure that the value of the variable is consistent between the variable and clause
gadgets, introduce a connector gadget as shown below.

In the clause gadget, the outer edge corresponding to a variable is removed and the
above gadget is introduced so that the vertices adjacent to the removed edge in the
clause gadget are connected at u and u′. Similarly, in the variable gadget, one edge
from the top path, say the edge coloured in red, is removed and this gadget substituted
in its place so that the vertices adjacent to the removed edge are connected at v and
v′. The construction of the connector is such that both u to u′ and v to v′ would not

8-2

be in the cycle cover simultaneously. This ensures the consistency of a variable value
between the two gadgets.

To show that #CC(G) = #SAT(φ), we have to verify if the connector gadget allows only
paths u to u′ or v to v′ to contribute to the cycle cover and that the connector gadget doesn’t
contribute to the cycle cover if neither of the paths is chosen. Consider the following cases
and the corresponding ways for vertices to be a part of cycle cover and the corresponding
contribution to the final sum:

1. None of u, u′, v or v′ is used.

(a) (AB)(DC) contributes 6

(b) (ADCB) contributes -2

(c) (ACB)(D) contributes -1

(d) (ACDB) contributes -3

Net contribution = 0.

2. Cover passes from u to v′. v and u′ are not used.

(a) (BC)(D) contributes 1

(b) (CD)(B) contributes -6

(c) (BCD) contributes 3

(d) (BDC) contributes 2

Net contribution = 0.

3. Cover passes from v to u′. v′ and u are not used.

(a) (AB)(D) contributes 1

(b) (ADB) contributes -1

Net contribution = 0.

4. Cover passes from u to v′ and also v to u′.

(a) (BD) contributes 1

(b) (D)(B) contributes -1

Net contribution = 0.

5. Cover passes from v to v′ and hence u and u′ not used.

(a) (CDBA) contributes 3

8-3

(b) (CBA) contributes 1

Net contribution = 4.

6. Cover passes from u to u′ and hence v and v′ not used.

(a) (ABC)(D) contributes 1

(b) (AC)(BD) contributes -1

(c) (AC)(B)(D) contributes 1

(d) (ADC)(B) contributes 2

(e) (ADBC) contributes -1

(f) (ABDC) contributes 2

Net contribution = 4.

Observe that, for every variable in the clause, there is a contribution of 4 to the solution
of #CC. Therefore, #CC(G) = 43m#SAT(φ) as there are 3m connector gadgets in total
in the graph (m clauses in the 3-CNF). Thus, #SATis reduced to #CC which is equal to
perm(A). However, in this argument, the matrix is over {−1, 0, 1, 2, 3}. The problem of
computing permanent of an integer matrix can be reduced to the problem of permanent
computation of (0, 1)-matrix as follows.

Remark 4. We remark that the above reduction gives the following observation : for a given
graph is the sum of weights of cycle covers is positive is as hard as SAT.

1. Reduction from integer matrix to non-negative integer matrix: Let A be
an n × n integer matrix in which no entry is larger than µ in magnitude. From the
definition of the permanent, it follows that |perm(A)| ≤ n!µn. To compute perm(A) it
is sufficient to compute its value mod Q for Q > 2n!µn. Formally, given A compute
Q = 2n!µn + 1, A′ = A mod Q and P = perm(A′) mod Q. If P < Q/2 then
perm(A) = P . Otherwise perm(A) = P −Q (value is negative). This transformation
is done in polynomial time.

2. Reduction from non-negative integer matrix to matrix with only non-
negative powers of two: Replace edges as follows: if the weight of the edge is
w, such that, w = 2x1 + 2x2 + · · ·+ 2xr , replace the edge by the following construct.

8-4

This doesn’t affect the value of the sum of cycle covers.

3. Reduction from matrix with only non-negative powers of two matrix to a
(0, 1)- matrix: Replace edges as follows: if the weight of the edge is 2m, replace it
with the following construct.

Once again, observe that the value of the sum of cycle covers doesn’t change and the
resultant graph ∈ {0, 1}n×n.

Thus, for an integer matrix A, there exists an (0, 1)-matrix B, such that, perm(B) =
perm(A)(mod Q). Hence, from Lemma 1, we can conclude that perm(A) is #P-complete,
if A is a (0, 1)-matrix.

Remark 5. Why does this not contradict the fact that we can efficiently test if perm is
positive for 0-1 matrices. Notice that the mod does the trick. The value of the permanent
will be computed only mod Q. The actual value of the permanent after substitution could
be much larger, and we are guaranteed equality only mod Q. Hence a zero value under
this computation does not mean that permanent value of the matrix is zero, it just means
that it is a multiple of Q.

8-5

