
IITM-CS6840: Advanced Complexity Theory Jan 24, 2012

Lecture 10 : Polynomial Identity Testing

Lecturer: Jayalal Sarma M.N. Scribe: Sunil K S

Towards the end of last lecture, we introduced the following problem : Given a polynomial
p, test if it is identically zero. That is, do all the terms cancel out and become the zero
polynomial. Described as a language :

PIT = {p | p ≡ 0}

We also saw some easy cases of the problem:

1. When it is given as a sum of monomials: Given p, run over the input to figure out
the coefficient of each monomial, and if all of them turn out to be zero, then report
that p is in PIT. This algorithm runs in O(n2) time.

2. When it is given as a Black Box: In uni-variate case, check p(x) for d + 1 different
points where d is the degree bound. If the polynomial is not equivalent to zero, then
at-least one of the steps gives a non-zero value. Indeed, if the polynomial is zero, then
all the (d + 1) evaluations will result in a zero value. Thus the algorithm is correct
and runs in time O(d) where d is the degree of the polynomial.

As we observed, this strategy could not be generalized in multi-variate case. We took an
example as p(x1, x2) = x1x2. For the assignment x1 = 0, whatever x2 chose, the value will
always be 0. However, if p ≡ 0, no matter what we choose as the substitution for x1, and
x2, the polynomial will be identically zero.

The strategy that we will follow is as follows: If the total degree of the polynomial is ≤ d,
and if S ⊆ F, such that |S| ≥ 2d, instead of picking elements arbitrarily, we pick elements
uniformly at random from S. Indeed, there may be many choices for the values which may
lead to zero. But how many?

Lemma 1 (Schwartz-Zippel Lemma). Let p(x1, x2, · · · , xn) be a non-zero polynomial over
a field F. Let S ⊆ F

Pr[p(ā = 0] ≤ d

|S|

Proof. (By induction on n) For n = 1: For a univariate polynomial p of degree d, there
are ≤ d roots. Now in the worst case the set S that we picked has all d roots. Thus for a
random choice of substitution for the variable from S, the probability that it is a zero of
the polynomial p is at most d

|S| .

10-1

For n > 1, write the polynomial p as a univariate polynomial in x1 with coefficients as
polynomials in the variables p(x2, . . . , xn).

d∑
j=0

xj1pj(x2, x3, . . . , xn)

For example: x1x
2
2 + x21x2x3 + x23 = (x2x3)x

2
1 + (x22)x1 + x01(x

2
3).

To analyse the probability that we will choose a zero of the polynomial (even though the
polynomial is not identically zero). For a choice of the variables as (a1, a2, · · · , an) ∈ Sn,
we ask the question : how can p(a1, a2, · · · , an) be zero? It could be because of two reasons:

1. ∀j : 1 ≤ j ≤ n, pj(a2, a3, . . . , an) = 0.

2. Some coefficients pj(a2, a3, . . . , an) = 0 are non-zero, but the resulting univariate
polynomial in x1 evaluates to zero upon substituting x1 = a1.

Now we are ready to calculate Pr[p(a1, a2, . . . , an) = 0]. For a random choice of (a1, . . . , an).
Let A denote the event that the polynomial p(a1, . . . , an) = 0. Let B denote the event that
∀j : 1 ≤ j ≤ n, pj(a2, a3, · · · , an) = 0. Now we simply write : Pr[A] = Pr[A ∧ B] +
Pr[A ∧ B̄].

We calculate both the terms separately: Pr[A ∧ B] = Pr[B].P r[A|B] = Pr[B] where
the last equality is because B ⇒ A. Let ` be the highest power of x1 in p(x). That
is p` 6= 0. Since the event B insists that for all j, pj(a2, a3, . . . , an) = 0, we have that
Pr[B] ≤ Pr[p`(a1, a2, . . . , an) 6= 0]. By induction hypothesis, since this polynomial has
only n− 1 variables and has degree at most d−`

S . Thus, Pr[B] ≤ d−`
S .

To calculate the other term,

Pr[A ∩ B̄] = Pr[B̄].P r[A|B̄] ≤ Pr[A|B̄] ≤ `

|S|

where the last inequality holds because the degree of the non-zero univariate polynomial
after substituting for a2, . . . , an is at most ` and hence the base case applies.

This suggests the following efficient algorithm for solving PIT. Given d and a blackbox
evaluating the polynomial p of degree at most d.

The algorithm is clearly running in polynomial time. The following Lemma states the error
probability and follows from the Schwartz-Zippel Lemma that we saw before.

Lemma 2. There is a randomized polynomial time algorithm A, which, given a black box
access to a polynomial p of degree d (d is also given in unary), answers whether the poly-
nomial is identically zero or not, with probability at least 3

4 .

10-2

1. Choose S ⊆ F of size ≥ 4d.
1. Choose (a1, a2, . . . , an) ∈R Sn.
2. Evaluate p(a1, a2, . . . an) by querying the blackbox.

3. If it evaluates to 0 accept else reject.

Figure 1: A randomized algorithm for multivariate polynomial identity testing

Notice that in fact the lemma is weak in the sense that it ignores the fact that when the
polynomial is identically zero then the success probability of the algorithm is actually 1 !.

Now we connect to where we left out from Branching machines, by observing that this
randomized algorithm is indeed a branching machine. Let χL(x) denote the characterestic
function of the language. That χL(x) = 1 if x ∈ L and 0 otherwise. Let us call a compu-
tation path to be erroneous if the decision (1 for accept and 0 for reject) reported in that
path is not χL(x). Let #errM (x) denote the number of erroneous paths. Thus the braching
machine has some guarantees about #errM (x).

Corollary 3. Let L be the language PIT , then there exists a branching machine M , running
in p(n) time (hence using at most p(n) branching bits).

#errM (x) ≤ 1

4
2p(n)

Is there anything special about 1
4? As we can go back an observe, this number can be

reduced to say 1
5 by easily choosing the size of the set S to be larger than 5d where d is the

degree of the polynomial. We get better success probability then, but what do we lose? We
lose on the running time, since we have to spend more time and random bits now in order
to choose the elements from Sn as |S| has gone up.

But more seriously, this seems to be an adhoc method which applies only to this problem.
In general, if we have a randomized algorithm that achieves a success probability of 3

4 , can
we boost it to another constant?

Based on the discussion so far, we can make the following definition of a set of languages.
For a fixed ε, define the class BPPε as follows. L ∈ BPPε, for some 0ε < 1

2 , if there is a

branching machine M running in time p(n), such that #errM (x) ≤ ε2p(n).

Notice that all these sets of classes are contained in PSPACE. Let L ∈ BPPε via a machien
M . By just brute force run over all the choice bits of the machine M (reusing space across
different paths) we can exactly calculate how many paths are accepting. This information
will be sufficient to decide whether x ∈ L or not..

All of them contain P since there is a trivial choice machine which achieves any success
probability (of 1 !).

How do they compare, for different ε and ε′? Could they be incomparable with each other

10-3

(and hence form an antichain in the poset of languages)? In the next lecture we will
show a lemma which will imply that for any constants 0 < ε 6= ε′ < 1

2 , BPPε = BPPε′ .
This eliminates the possibility of an antichain in the poset and makes the definition of the
following complexity class.

Definition 4 (BPP). A language L is said to be in BPP if there is an ε such that 0 < ε ≤ 1
2 ,

and a branching machine M running in time p(n) such that: #errM (x) ≤ ε2p(n)

We begin the thoughts on proving BPPε = BPPε′ for 0 < ε 6= ε′ < 1
2 . Without loss of

generality, assume that ε < ε′. Note that BPPε ⊆ BPPε′ . To show the other direction
we need to improve the success probability of the algorithm. Viewing the success of the
algorithm as a favourable probability event, a natural strategy is to repeat the process
independently again, so that the probability of error goes down multiplicatively. Thus it
improves the success probability.

10-4

