
IITM-CS6840: Advanced Complexity Theory Jan 25, 2012

Lecture 11 : Amplification Lemma

Lecturer: Jayalal Sarma M.N. Scribe: Princy Lunawat

In the last lecture, we saw the polynomial identity testing problem and a randomized
algorithm for it. We also discussed how branching machines with guarantees on the number
of erroneous paths characterize randomized algorithms. We ended the last lecture with a
question about how two sets of languages compare. BPPε and BPPε′ . for different ε and ε′?

1 Amplification of Success Probability

We showed that if ε < ε′ then BPPε ⊆ BPPε′ . A strategy to prove the other direction
was the following : Repeat the randomized algorithm (experiment) multiple times (say k),
and then take the majority of the outcomes in order to improve our success probability.
One remark is that the repetition is sequential and happens on each branch. Thus we are
essentially producing a new branching machine with many deeper computation paths.

Why would this improve the success probability? and if so, how does it depend on k?. The
following lemma answers these.

Lemma 1. If E is an event that Pr(E) ≥ 1
2 + ε, then the probability the E occurs atleast k

2

times on k independent trials is at least 1− 1
2(1− 4ε2)

k
2

Proof. Let q denote the probability the E occurs atleast k
2 times on k independent trials.

Let qi = Pr(E occurs exatly i times in k trials), 0 ≤ i ≤ k. Thus, q = 1−
∑b k

2
c

i=0 qi. We will

analyse the complementary event: Pr(E occurs atmost k
2 times) =

∑b k
2
c

i=0 qi.
We show an upper bound on each qi and thus show an lower bound on q.

qi =

(
k

i

)
(
1

2
+ ε)i(

1

2
− ε)k−i

≤
(
k

i

)(
1

2
+ ε

)i(1

2
− ε
)k−i(1

2 + ε
1
2 − ε

) k
2
−i

(∵ ε ≤ 1

2
)

=

(
k

i

)(
1

2
+ ε

) k
2
(

1

2
− ε
) k

2

=

(
k

i

)(
1

4
− ε2

) k
2

11-1

Now we analyse the sum:

b k
2
c∑

i=0

qi ≤
b k
2
c∑

i=0

(
k

i

)(
1

4
− ε2

) k
2

q = 1−
b k
2
c∑

i=0

qi ≥
b k
2
c∑

i=0

(
k

i

)(
1

4
− ε2

) k
2

= 1−
(

1

4
− ε2

) k
2

2k−1

= 1− 1

2

(
1− 4ε2

) k
2

Thus, q ≥ 1− 1

2

(
1− 4ε2

) k
2

In the last lecture, we defined the class BPPε (Bounded Error Probabilistic Polynimial
Time) and now we can use the above amplification lemma to prove that

BPPε = BPPε′ ∀0 ≤ ε, ε
′ <

1

2

We want to calculate In general, the above lemma can be used to prove that , at the cost of
running time, the the error probability of a language L , L ∈ BPP can be reduced to 1

2q(n)

where q(n) is a polynomial in n.

Lemma 2. L ∈ BPP if an only if for any polynomial q(n) there is a machine M that runs
for time p(n) (which depends on q(n)) such that

Pr(M errs on input x)) ≤ 2−q(n)

In terms of number of paths,
#errM (x) ≤ 2p(n)−q(n)

Proof. Given a language L ∈ BPPε with PTM M , we design a PTM N such that L(N) ∈
BPP and L(n) = L as follows:

• Run the machine M on input x k times independently where choice of k is such that

1

2

(
1− 4ε2

) k
2 ≤ 2−q(n) (1)

The above equation (1) yields a value of k polynomial in n and hence N runs a polynomial
number of times. The amplification lemma ensures that the error probability reduces to
the LHS of the equation (1).

11-2

The Structure of BPP

We explore some interesting structural properties about the class BPP.

Proposition 3. BPP is closed under complementation.

Proof. Let L ∈ BPP via PTM M with error probability ε < 1
2 . We show that L̄ is in BPP.

We design a new machine M̄ by switching the accept and reject states of M .

x ∈ L ⇒ #accM (x) ≥ (1− ε)#pathM (x)

⇒ #rejM (x) ≤ ε#pathM (x).

⇒ #accM̄ ≤ ε#pathM̄ (x).

⇒ x /∈ L(M̄).

x /∈ L ⇒ #accM (x) ≤ ε.#pathM (x).

⇒ #rejM (x) ≥ (1− ε)#pathM (x).

⇒ #accM̄ ≥ (1− ε)#pathM̄ (x).

⇒ x ∈ L(M̄).

Hence, we have,
x ∈ L ⇐⇒ x /∈ L(M̄)

Therefore, L(M̄) = L̄ and L ∈ BPP via machine M̄ . Hence, BPP is closed under comple-
mentation.

One-sided Error Randomized Algorithms

Consider the language , PIT that is, Polynomial Identity Testing,

PIT = {p|p ≡ 0}

where p is a polynomial. From, the last lecture, we make the following observation about
PIT, if p ∈ PIT , PTM makes no error, if p /∈ PIT , PTM makes some error (less than half
the number of paths).

We now explore how complexity theory can be extended to these kind of algorithms too.

Definition 4. (RP) A language L is said to be in RP if there is an ε such that 0 < ε < 1
2 ,

and a randomized algorithm A such that :

x ∈ A ⇒ Pr[A accepts] ≥ 1

2
+ ε

x /∈ A ⇒ Pr[A accepts] = 0

11-3

Hence we have the following proposition:

PIT ∈ coRP (2)

Proposition 5. RP ⊆ NP

Proof. Consider language L ∈ RP via machine M such that x ∈ L ⇒ M accepts x with
some error ε < 1

2 ⇒M accepts x on atleast 1 path.
x /∈ L⇒M accepts x with probability 0⇒M rejects on all paths. Thus L ∈ NP. Moreover,
even with the acceptance condition of a non-deterministic machine, the branching machine
corresponding to the RP algorithm accepts the language L itself.

P

RP CoRP

NP CoNP

PP

BPP

P

RP CoRP

BPP

PP

NP

PSPACE

CoNP

2

2 Derandomization of BPP

There are several questions connected to the new class BPP that contains several natural
problems. We saw one example of multivariate polynomial identity testing problem. Is
BPP ⊆ P? This would amount to showing that in the world of efficient computations,
randomization does not add any power. There are reasons to remotely believe this to be
the case, but till date there is no proof.

A question of slightly different flavour is, if problems in BPP are contained in NP? That is,
can we trade non-determinism with randomness? We already know that if the randomness
causes only one-sided error, then it can be replaced by simple non-deterministm (RP ⊆ NP).
But extending this to two-sided error version is an interesting open problem in the area.

We show a relaxed containment which can be seen to be an improved upper bound for
problems in BPP compared to the trivial upper bound of PSPACE.

Theorem 6. BPP ∈ Σ2

11-4

Proof. Let L ∈ BPP. By using amplification lemma for q(n) = n we can state: there is a
probabilistic Turing machine M and polynomial p(n) such that,

#errM (x) ≤ 2−n2p(n)

Let us recall the definition and a characterization of the class Σ2 Σ2 is defined as follows:
L ∈ Σ2 iff ∃B ∈ P such that:

x ∈ L ⇐⇒ ∃y,∀z, (x, y, z) ∈ B

There is a clear mindblock here. How do we tradeoff quantifiers to randomness?

Let us define a set A(x) as follows:

A(x) = {y ∈ {0, 1}p(n)|M accepts x on path y}

Observe that,
x ∈ L⇒ |A(x)| ≥ (1− 2−n)2p(n)

that is, no. of y’s such that M(x, y) = 1 is large.

x /∈ L⇒ |A(x)| ≤ 2−n2p(n))

that is, no, of y’s such that M(x, y) = 1 is small.

Parity Map: For two strings y, z ∈ {0, 1}p(n), let y ⊕ z denote the bit-wise parity of the
two strings. We can extend the parity map to operate on subsets of {0, 1}p(n) as follows:

S ⊕ z = {y ⊕ z | y ∈ S z ∈ {0, 1}p(n)}

Observation 7. For a fixed z, ⊕z is a bijection from {0, 1}p(n) → {0, 1}p(n). That is, for
any z ∈ {0, 1}p(n), and S ⊆ {0, 1}p(n), |S| = |S ⊕ z|.

Ask the question : how many z’s do we need to cover {0, 1}p(n) entirely? That is, how large
do we need m to be, such that there exists strings z1, z2, . . . , zm such that:

m⋃
i=1

(A(x)⊕ zi) = {0, 1}p(n)

Intuitively, we expect the answer to be small when the size of A(x) is large, and large when
the size of A(x) is small. Now we formalize this.

11-5

Case 1: Small |A(x)| ≤ 2−n2p(n) In the best case, let each zi maps A(x) to non-intersecting
sets.

∀i, j(A(x)⊕ zi) ∩ (A(x)⊕ zj) = φ, i 6= j

|
m⋃
i=1

(A(x)⊕ zi)| ≥ |{0, 1}p(n)|

⇒ m(2−n)2p(n) ≥ 2p(n)

⇒ m ≥ 2n

Hence, the no. of z’s required is exponential in n when A(x) is small, that is, when x /∈ L.

Case 2: Large |A(x)| ≥ (1 − 2−n)2p(n) We prove that ∃z1, z2, z3...zm for a small m such
that

|
m⋃
i=1

(A(x)⊕ zi)| = |{0, 1}p(n)|

We call the m-tuple z1, z2, z3...zm bad, if ,

|
m⋃
i=1

(A(x)⊕ zi)| 6= |{0, 1}p(n)|

⇒ ∃w ∈ {0, 1}p(n), zi ⊕ y 6= w,∀y ∈ A(x), ∀i

⇒ {zi ⊕ w|1 ≤ i ≤ m} ⊂ R(x)

where R(x) = Ā(x). |R(x)| = 2p(n) − |A(x)| ⇒ |R(x)| ≤ 2p(n)−n

For a given w and a given subset of R(x) of size m, we get a bad m-tuple z1, z2, z3...zm.
Hence,
Number of bad z1, z2, z3...zm ≤ Number of of w’s × Number of subsets of R(x) of size m.
⇒ Number of bad z1, z2, z3...zm ≤ 2p(n)(2p(n)−n)m

Total number of z1, z2, z3...zm = (2p(n))m. m should be such that,

2p(n)(2p(n)−n)m < (2p(n))m

p(n) + (p(n)− n)m < p(n)m

p(n)− nm < 0

m >
p(n)

n

This goes well with our intuition. If m is allowed to be very small, then we should not be
able to cover the entire set {0, 1}n. For, m > p(n)

n we are guaranteed to have atleast one
good m-tuple, that is,

zi ⊕ w = y, y ∈ A(x)

11-6

Hence we conclude that,

∃z1, z2, z3...zm, ∀w ∈ {0, 1}p(n)

(
m∧
i=1

[zi ⊕ w ∈ A(x)]

)

∃z1, z2, z3...zm, ∀w ∈ {0, 1}p(n),

(
m∧
i=1

[M(x, zi ⊕ w) = 1]

)

Checking if M accepts x on a given path is a polynomial time operation, and repeating it
for each zi where the number of zi’s is polynomial in n is also a polynomial time operation.
Fix m = p(n), Thus we have a B ∈ P such that

x ∈ L ⇐⇒ ∃z ∈ {0, 1}p(n)2 ,∀w ∈ {0, 1}p(n)(x, z, w) ∈ B

Hence, the above language L ∈ Σ2.

11-7

