
IITM-CS6840: Advanced Complexity Theory January 28, 2012

Lecture 12 : One random string for all

Lecturer: Jayalal Sarma M.N. Scribe: Sajin Koroth

Theme: Advice Classes and BPP
Lecture Plan:Today we will be showing an interesting consequence of amplification
of BPP introduced earlier. We will show that for an amplified BPP algorithm there is a
good string of random bits for each input length n such that the algorithm run with these
random bits is correct for all inputs x of length n. Hence if you could get this good random
string some how then you can decide a language in BPP in polynomial time without any
randomness. But there is a catch, although we prove the existence of such a random string
we do not know how to compute such a string efficiently. Hence we will introduce a new
model of computation where you are given such advice strings for free, but the advice for
all inputs of length n has to be the same. We will introduce an advice string based class
called P/poly, and will discuss its connection to BPP

1 One random string for all

Recall that amplification allows to transform in polynomial time any BPP algorithm to a
BPP algorithm with error bound 2−2n(i.e. at most 2−2n fraction of random strings are
“bad”) using p(n) randomness. We will show that for a BPP algorithm with the above
mentioned error bound there is one random string for every length n such that for any
input of that length n, the BPP algorithm outputs correctly on that random string. For the
rest of the lecture we will work with sufficiently amplified success probability BPP machines,
where the notion of sufficient success probability is defined as given below :

x ∈ L⇒ Pr
y

[M(x, y) accepts] ≥ 1− 2−2n (1)

x /∈ L⇒ Pr
y

[M(x, y) accepts] ≥ 2−2n (2)

That is in such a machine the number of random strings y which lead the machine to output
a wrong answer is bounded by 2−2n. Now let us consider a matrix A whose rows are indexed
by inputs of length n and columns are indexed by random strings of length p(n), and the
(i, j)th entry is 1 if on fixing the random bits to be j the machine M on input i outputs
correctly and it is 0 otherwise. That is A(i, j) = 1 if and only if M(i, j) = χL(i), where
χL(i) is the membership function of the language L (i.e. χL(i) = 1 if and only if i ∈ L). By
the amplification we are guaranteed that for a given input i at most 2−2n fraction of the
random strings can have A(i, j) = 0. Hence the total number of zeros in the A matrix is at

12-1

most the number of rows times the maximum number of zeros in a row, which is equal to

0’s in matrix A ≤ 2n × 2−2n × 2p(n)

≤ 2p(n)−n

But the total number of zeros, 2p(n)−n is strictly less than the number of columns in the
matrix A. Hence there must be at least one column with no zeros in it. If a column in the
A matrix has no zeros then by the definition of A matrix, the random string represented
by this column when fed as random bits to machine M would output correctly χL(x) for
every x ∈ {0, 1}n.

2 Class P/poly

Even though we have proved the existence of a fixing of random bits for an arbitrary input
length n of an amplified BPP machine M such that the M on these random bits decides
all inputs x of a given length correctly for L(M), we do not know how to compute such a
string efficiently (deterministically or using a randomized algorithm) for arbitrary amplified
BPP machines. Also note that the good random string can vary with the input length.
But if we can get this random string for each input length n for free then we can decide
a language in BPP in P. That if there is a function h : N → {0, 1}∗ such that h(n) is at
most polynomial in n and is the correct random string for the given BPP machine M , for
all inputs of length n, for all n then we can construct a machine M

′
such that it on input

(x, h(|x|)) will simulate M on x using h(|x|) as the random bits tape.

We will generalize the above ideas to define a class such that every language in BPP is also
in this class.

Definition 1 (P/poly). A language L is in P/poly if there exists a polynomial p(n), an
advice function h : N → {0, 1}∗ and a language B ∈ P such that ∀n, |h(n)| ≤ p(n) and

x ∈ L ⇐⇒ (x, h(|x|)) ∈ B

where |x| denotes the length of the string x.

2.1 BPP ⊂ P/poly

This is a straight forward corollary of the existence of a good random string for any BPP
machine, which works correctly for all inputs of a given length. To show that for any
L ∈ BPP it is also true that L ∈ P/poly we will use the fact that there a BPP machine
ML accepting L with error at most 2−2n using at most p(n) random bits. We have already
shown that for such a machine for every input length n at least one of 2p(n) possible random

12-2

strings is good for all inputs of length n. We define the advice function h(n) to be a good
random string which works for all inputs of length n. Hence |h(n)| = p(n) is at most
polynomial in input length. Note that definition of P/poly doesn’t have any requirements
on the computability of such a function, but needs the guarantee that such a function
exists. We will construct a machine MB running in deterministic polynomial time which
would accept the language B ∈ P which accepts (x, h(|x|)) for all x ∈ L. The machine MB

on input (x, h(|x|)) starts simulating ML on input x using h(|x|) as the random bits. By
the definition of h(|x|), ML(x) using random bits h(|x|) accepts if and only if x ∈ L. Hence
the proof.

2.2 With advice comes the undecidable

A consequence of the above definition of class P/poly is that it not only contains BPP , but
it also contains some undecidable languages as we do not insist on computability of advice
function h. One such undecidable language is Unary Halting Problem defined as

UHP = {1n | Turing machine encoded by bin(n) halts on all inputs}

It is easy to note that the general halting problem reduces to the unary halting problem.
Hence UHP is undecidable because HP is.

We can also show that UHP is in P/poly. This is very straight forward because the language
is a unary language and there is exactly one input of length n. Hence the advice function
is simply a bit representing the answer to the UHP on input 1n. Since we just need a
single bit of advice note that UHP is also in P/θ(1). Also from the above argument we
can deduce that complement of UHP is also in P/poly because by modifying the P/poly
machine for UHP to accept when h(n) = 0 and reject otherwise where h() is the advice
function for UHP, we get a P/poly machine for UHP. Hence P/poly not only contains
complete problems for semi-decidable languages, like UHP also contains languages which
are complete for co-semi-decidable languages, like UHP.

12-3

