
IITM-CS6840: Advanced Complexity Theory January 28, 2012

Lecture No. 13 : Self Reducibility of SAT, Complete problem for ΣP
k

Lecturer: Jayalal Sarma M.N. Scribe: Sajin Koroth

Theme: Polynomial Hierarchy and its relation to P/ poly
Lecture Plan:Recall that we introduced the advice based class P/ poly in the last
lecture. We also saw that BPP (P/poly, and by definition P (P/ poly. But we don’t
know whether NP (P/ poly or not. Hence if we could prove that NP 6⊂ P/ poly then
we would essentially be separating P from NP. The reason why most of the complexity
theorists believe NP 6⊂ P/ poly is, if NP ⊂ P/ poly then we would be able to prove that
PH = ΣP

2 , contrary to the common belief that PH does not collapse. In today’s lecture we
will detail two key ingredients needed for showing the above mentioned conditional collapse
of PH, a complete problem for ΣP

k and self reducibility property of SAT

1 Complete problem for the hierarchy

We will first show a complete problem for the kth level of polynomial hierarchy. We will
do this by generalizing SAT to SAT with quantified expressions. Later on we will use
the self-reducibility nature of this problem to show the conditional collapse mentioned in
the beginning. We know that a language L ∈ NP if and only if there is a deterministic
polynomial time Turing machine M , such that x ∈ L ⇐⇒ ∃y ∈ {0, 1}p(n),M(x, y) = 1.
Cook-Levin theorem guarantees that this machine M can be converted into a formula φ(x, y)
on variables xi, yi such that φ correctly simulates M on the non-deterministic branch y on
input x by φ(x, y) = 1 if and only if M(x, y) accepts. Hence all of NP can be captured by
∃ − SAT which is defined as L ∈ ∃ − SAT if there exists a polynomial p and a formula φ
such that x ∈ L if and only if the quantified expression ∃y ∈ {0, 1}p(n)φ(x, y) is true.

Note that the above definition can be generalized to arbitrary number of quantifiers. Recall
that a language L is said to be in ΣP

k if there exists polynomials p1, . . . , pk and a machine
M running in deterministic polynomial time such that

x ∈ L ⇐⇒ ∃y1∀y2∃y3 . . . Qkyk [M(x, y1, y2, y3, . . . , yk) = 1] ,∀i, |yi| ≤ pi(|x|)

Cook-Levin theorem guarantees that machine M on input x can be converted into formula
φx in polynomial time on variables y1, y2, . . . , yk such that φx(y1, y2, y3, . . . , yk) is satisfiable
if and only if M(x, y1, y2, y3, . . . , yk) accepts. Hence we can say that the following problem
is complete for ΣP

k ,

No. 13-1

Definition 1 (Σk − SAT). Σk − SAT is the set of all quantified Boolean formulas with at
most k alternations (starting with an existential quantifier) which are true. That is

Σk − SAT = {∃y1∀y2∃y3 . . . Qkykφ(y1, . . . , yk) | ∃y1∀y2∃y3 . . . Qkykφ(y1, . . . , yk) is true}

The above problem is clearly in ΣP
k as you can in polynomial time construct from a formula,

a machine in P for checking if the formula is satisfiable or not given an assignment of all
the variables as input. The problem is ΣP

k hard because of Cook-Levin reduction from any
machine in P to an equivalent formula.

2 Self reducibility of SAT

Suppose we are given that NP ⊂ P/ poly then we know that there is a polynomial time de-
terministic Turing machine and a polynomial length advice string for each input length such
that the machine decides a given language in NP. We will sketch how this can cause a col-
lapse in the Polynomial Hierarchy, without giving the details but exposing some difficulties
which we have to overcome before getting to the proof.

To prove that PH collapses to ΣP
2 it suffices to show that ΣP

3 = ΣP
2 . Recall that ΣP

3 is the set
of true quantified Boolean formulas which are of the form ∃y1∀y2∃y3M(x, y1, y2, y3), and ΣP

2

are true quantified Boolean formulas which are of the form ∃y1∀y2M(x, y1, y2). Also we are
given that NP ⊂ P/ poly hence for any L ∈ NP there exists h : N → {0, 1}∗ and an M ∈ P
such that x ∈ L if and only if (x, h(|x|)) is accepted by M . The idea to place ΣP

3 in ΣP
2 is

the following, the third there exists y3 and M(x, y1, y2, y3) can be combined to a machine
in NP, where it first guesses a string y3 of size p3(|y3|) and then runs M on (x, y1, y2, y3).
We have assumed that equivalent to this NP machine there is a P/ poly machine, and even
though we don’t know the advice string we know there exists a good advice string, and given
the advice string the last “there exists” quantifier in ΣP

3 can be eliminated by replacing it
with the polynomial time machine which is given the advice string, hence we would a get
a language in ΣP

2 . But unfortunately we don’t know the advice string, hence the next best
thing to do is to guess the advice string using the first “there exists” quantifier in ΣP

2 .

Even though we are guaranteed that at least one guess is the correct advice string, there is a
catch here, we could have guessed the advice string incorrectly in some branch which in turn
could have led the machine M to accept incorrectly thus falsely accepting a string outside
the language L in ΣP

3 . To get around this problem we will use the first part to reduce the
problem in ΣP

3 to Σ3 − SAT and then use an algorithm for SAT which given a sub-routine
which tells a formula is satisfiable or not, which uses a crucial property of the SAT problem,
self-reducibility to construct a satisfying assignment for the given formula. And irrespective
of whether the advice string is good or bad, we would not be able to construct a satisfying
assignment for an unsatisfiable formula. This guarantees the correctness of the computation
captured by the SAT formula.

No. 13-2

Self reducibility of SAT refers to the property of the SAT problem that checking a formula
on n variables is satisfiable reduces to checking the satisfiability of two formulas on n − 1
variables. This property leads to a polynomial time algorithm for constructing a satisfying
assignment given a polynomial time sub-routine deciding the decision version of SAT prob-
lem correctly. Algorithm 2 constructs a satisfying assignment given a sub-routine which
correctly solves SAT instances of up to n variables. Notice that one important property
of Algorithm 2 is that even if the sub-routine which checks the satisfiability of a formula
is wrong, the algorithm would not be accepting an un-satisfiable formula as a satisfiable
formula. Because at the end of the algorithm we are checking whether the assignment
constructed by the algorithm is satisfiable or not, so even if the sub-routine for SAT, SAT-
ISFIABLE is erroneous we would not be able to construct a satisfying assignment for an
un-satisfiable formula. But it might fail to construct a satisfying assignment for a satisfiable
formula if the sub-routine is erroneous.

SATISFYING-ASSIGNMENT(φ(x1, . . . , xn))

1 ψ(x1 , . . . , xn)← φ(x1, . . . , xn)
2 for i← 1 to n

3 do

4 ψ
′ ← ψ(xi = 0)

5 ψ
′′ ← ψ(xi = 1)

6 if (SATISFIABLE(ψ
′
))

7 then ai ← 0
8 ψ ← ψ(0, x2, . . . , xn)

9 elseif (SATISFIABLE(ψ
′′
))

10 then ai ← 1
11 ψ ← ψ(1, x2, . . . , xn)
12 else
13 return impossible
14 if φ(a1, . . . , an) = 1
15 then return (a1, . . . , an)
16 else return impossible

No. 13-3

