ITTM-CS6840: Advanced Complexity Theory January 28, 2012

Lecture No. 13 : Self Reducibility of SAT, Complete problem for 3
Lecturer: Jayalal Sarma M.N. Scribe: Sajin Koroth

THEME: Polynomial Hierarchy and its relation to P/ poly

LECTURE PrAN:Recall that we introduced the advice based class P/poly in the last
lecture. We also saw that BPP C P/ poly, and by definition P C P/ poly. But we don’t
know whether NP C P/poly or not. Hence if we could prove that NP ¢ P/poly then
we would essentially be separating P from NP. The reason why most of the complexity
theorists believe NP ¢ P/ poly is, if NP C P/poly then we would be able to prove that
PH = X, contrary to the common belief that PH does not collapse. In today’s lecture we
will detail two key ingredients needed for showing the above mentioned conditional collapse
of PH, a complete problem for E,'z and self reducibility property of SAT

1 Complete problem for the hierarchy

We will first show a complete problem for the kth level of polynomial hierarchy. We will
do this by generalizing SAT to SAT with quantified expressions. Later on we will use
the self-reducibility nature of this problem to show the conditional collapse mentioned in
the beginning. We know that a language L € NP if and only if there is a deterministic
polynomial time Turing machine M, such that z € L <= 3y € {0,1}*™ M(z,y) = 1.
Cook-Levin theorem guarantees that this machine M can be converted into a formula ¢(x, y)
on variables x;,y; such that ¢ correctly simulates M on the non-deterministic branch y on
input z by ¢(z,y) = 1 if and only if M (x,y) accepts. Hence all of NP can be captured by
3 — SAT which is defined as L € 3 — SAT if there exists a polynomial p and a formula ¢
such that x € L if and only if the quantified expression 3y € {0, 1}?(™ ¢(z, ) is true.

Note that the above definition can be generalized to arbitrary number of quantifiers. Recall
that a language L is said to be in E,F; if there exists polynomials p1, ..., pr and a machine
M running in deterministic polynomial time such that

r el < IyVyIyz ... Quyr [M (2, y1,92,93,-- -, yk) = 1], Vi, |ys| < pi(|z|)

Cook-Levin theorem guarantees that machine M on input x can be converted into formula
¢ in polynomial time on variables y1, 2, . .., yr such that ¢, (y1,vy2,¥s, ..., yk) is satisfiable
if and only if M (z,y1,vy2,¥s3,--.,yr) accepts. Hence we can say that the following problem
is complete for TF,

No. 13-1



Definition 1 (3, — SAT). 3 — SAT is the set of all quantified Boolean formulas with at
most k alternations (starting with an existential quantifier) which are true. That is

Y — SAT = {3n1Vy2Tys . .. Qryed(Y1, - - -, k) | FviVy2Tys ... Qryrd(y1, - .., yk) is true}

The above problem is clearly in Z,': as you can in polynomial time construct from a formula,
a machine in P for checking if the formula is satisfiable or not given an assignment of all
the variables as input. The problem is E,'z hard because of Cook-Levin reduction from any
machine in P to an equivalent formula.

2 Self reducibility of SAT

Suppose we are given that NP C P/ poly then we know that there is a polynomial time de-
terministic Turing machine and a polynomial length advice string for each input length such
that the machine decides a given language in NP. We will sketch how this can cause a col-
lapse in the Polynomial Hierarchy, without giving the details but exposing some difficulties
which we have to overcome before getting to the proof.

To prove that PH collapses to XF it suffices to show that f = ¥F. Recall that ¥ is the set
of true quantified Boolean formulas which are of the form 3y Vyo3ys M (z, y1, y2,y3), and 25
are true quantified Boolean formulas which are of the form Jy;Vyos M (z, y1,y2). Also we are
given that NP C P/ poly hence for any L € NP there exists h : N — {0,1}* and an M € P
such that = € L if and only if (z, h(|z])) is accepted by M. The idea to place X in XF is
the following, the third there exists y3 and M (x,y1,y2,y3) can be combined to a machine
in NP, where it first guesses a string ys of size p3(|ys|) and then runs M on (z,y1,y2,y3)-
We have assumed that equivalent to this NP machine there is a P/ poly machine, and even
though we don’t know the advice string we know there exists a good advice string, and given
the advice string the last “there exists” quantifier in Xf can be eliminated by replacing it
with the polynomial time machine which is given the advice string, hence we would a get
a language in ¥5. But unfortunately we don’t know the advice string, hence the next best
thing to do is to guess the advice string using the first “there exists” quantifier in EZP .

Even though we are guaranteed that at least one guess is the correct advice string, there is a
catch here, we could have guessed the advice string incorrectly in some branch which in turn
could have led the machine M to accept incorrectly thus falsely accepting a string outside
the language L in Eg . To get around this problem we will use the first part to reduce the
problem in XF to X3 — SAT and then use an algorithm for SAT which given a sub-routine
which tells a formula is satisfiable or not, which uses a crucial property of the SAT problem,
self-reducibility to construct a satisfying assignment for the given formula. And irrespective
of whether the advice string is good or bad, we would not be able to construct a satisfying
assignment for an unsatisfiable formula. This guarantees the correctness of the computation
captured by the SAT formula.

No. 13-2



Self reducibility of SAT refers to the property of the SAT problem that checking a formula
on n variables is satisfiable reduces to checking the satisfiability of two formulas on n — 1
variables. This property leads to a polynomial time algorithm for constructing a satisfying
assignment given a polynomial time sub-routine deciding the decision version of SAT prob-
lem correctly. Algorithm 2 constructs a satisfying assignment given a sub-routine which
correctly solves SAT instances of up to n variables. Notice that one important property
of Algorithm 2 is that even if the sub-routine which checks the satisfiability of a formula
is wrong, the algorithm would not be accepting an un-satisfiable formula as a satisfiable
formula. Because at the end of the algorithm we are checking whether the assignment
constructed by the algorithm is satisfiable or not, so even if the sub-routine for SAT, SAT-
ISFIABLE is erroneous we would not be able to construct a satisfying assignment for an
un-satisfiable formula. But it might fail to construct a satisfying assignment for a satisfiable
formula if the sub-routine is erroneous.

SATISFYING-ASSIGNMENT(¢(z1, ..., zn))

1 (zyy..o @)  d(z1,. .., 20)
2 fori<1ton

3 do

4 ) (= 0)

5 Y = p(x; = 1)

6 if (SATISFIABLE(4)))

7 then a; + 0

8 ¢<—¢(0,x2,...,xn)

9 elseif (SATISFIABLE ("))
10 then a; + 1
11 v P(l,xe, ..., xy)
12 else
13 return IMPOSSIBLE
14 if ¢(ay,...,an) =1
15 then return (ai,...,a,)
16 else return IMPOSSIBLE

No. 13-3



