
CS6840: Advanced Complexity Theory Jan 30, 2012

Lecture 14 : Karp-Lipton-Sipser Collapse Theorem

Lecturer: Jayalal Sarma M.N. Scribe: Anup Joshi

We showed that BPP ⊆ P/poly, and as we argued P/poly seems to be a huge class containing
P and BPP, and even some undecidable languages. A natural question is whether NP is
also contained in P/poly. We show that both answers to this question has interesting
consequences.

Suppose we are able to prove that NP 6⊆ P/poly, then we are indeed are proving that
NP 6⊆ P. That is big !.

Suppose we are able to prove that NP ⊆ P/poly. Does it have any consequences? In this
lecture, we will prove the Karp-Lipton-Sipser theorem, which says that if NP is contained
in P/poly, then the polynomial hierarchy collapses to Σ2. It is believed that the polynomial
hierarchy does not collapse, since the flavour of the question about each level of the hierarchy
is about elimination of a quantifier, and is of a similar difficulty to to P vs NP question.

Summarising this discussion; we believe that NP 6⊆ P, but we do not know how to prove it.
But then, since P ⊆ P/poly is this not a harder problem to solve that PvsNP? Yes, but why
do we even bother to address it when we do not know how to attack the easier question? As
we will see later in the course (when we do circuit complexity) this class P/poly provides this
nice escape from the ”combinatorics of a Turing machine” and helps us to prove theorems
which we do not know how to prove otherwise. It was for precisely this reason that, in
the definition of P/poly we did not make the advice function even computable (to avoid
references to Turing machines).

We state the theorem.

Theorem 1 (Karp-Lipton-Sipser, 1980). If NP ⊆ P/poly, then PH collapses to Σ2.

We prove the theorem by proving two lemmas. We first show that our assumption implies
something much stronger. That is if NP ⊆ P/poly then not only NP, but the entire PH will
be in P/poly.

Lemma 2. If NP ⊆ P/poly, then PH ⊆ P/poly.

Proof. It suffices to show that Σk ⊆ P/poly for any k. We prove this by induction on k.
For k = 1, it is trivially true, since Σ1 = NP. Hence, the base case is true. Consider an
L ∈ Σ2, then L ∈ NPB for some B ∈ NP. But NP ⊆ P/poly (by the induction hypothesis),
hence, ∃h : N → {0, 1}∗ and C ∈ P , such that, y ∈ B ↔ (y, h(y)) ∈ C. Now, membership
in B is decidable in polynomial time with the help of the advice function. Hence, we do not

14-1

need to make oracle query to B to resolve membership questions in L, we can embed the
polynomial time computation of the oracle with advice function in the NTM for L itself.
So we can say that, L ∈ NP with the advice function h : N→ {0, 1}∗. We can rewrite it as
∃h : N→ {0, 1}∗ ∧ C ′ ∈ NP such that x ∈ L↔ (x, h(|x|)) ∈ C ′.

Now, what can we say about C ′? We know that C ′ ∈ NP, hence C ′ ∈ P/poly. Hence there
is an advice function for C ′ also, so that membership in C ′ is computable in polynomial
time with the help of that advice function. That is, ∃g : N → {0, 1}∗ ∧ D ∈ P such that
y ∈ C ′ ↔ (y, g(|y|)) ∈ D. Rewriting it we get:

(x, h(|x|)) ∈ C ′ ↔ (x, h(|x|), g(p(x))) ∈ D

Hence from the above argument we see that L ∈ P/poly.

Now we show that if any level of PH is in Ppoly, then it essentially gives a way to express
the acceptance condition using only two quantifiers. This is done in the following lemma.

Lemma 3. For any k > 2, if Σk ⊆ P/poly, then Σk ⊆ Σ2.

Proof. It suffices to show that L ∈ Σk ⇒ L ∈ Σ2. For this, we take the language SATk

which is a quantified boolean formula with at most k alternating quantifiers. Since SATk is
Σk-complete for any k, the lemma follows.

Let us assume that for any k > 2, Σk ⊆ P/poly. Let L ∈ Σk, and since SATk is Σk-
complete, then by our assumption, SATk ⊆ P/poly. By the definition of P/poly, ∃h : N →
{0, 1}∗ ∧ B ∈ P such that φ ∈ SATk ↔ (φ, h(|φ|)) ∈ B. If |φ| = n, then h(n) ∈ {0, 1}p(n).
Let us define a new function w in the following way:

w = g(n) = (h(0), h(1), ..., h(n))

For any φ ∈ Σk, such that |φ| ≤ n, the string w has the following properties:

1. (0, w) /∈ B ∧ (1, w) ∈ B

2. If φ = ∃y, ψ ∧ φ ∈ SATk, then (ψ|y=0, w) ∈ B ∨ (ψ|y=1, w) ∈ B.

3. If φ = ∀y, ψ ∧ φ ∈ SATk, then (ψ|y=0, w) ∈ B ∧ (ψ|y=1, w) ∈ B.

Hence, (φ,w) ∈ B ⇒ 1, 2, and 3 are satisfied.

It is also true in the other direction. That is, if 1, 2, and 3 are satisfied, then in order to
check if φ is true, it suffices to check if (φ,w) ∈ B. We can show this inductively. When

14-2

φ is either 0 or 1, then by 1, the above claim is true. Suppose, φ = (∃x)ψ, then we can
apply 2 on ψ to evaluate it. Otherwise, if φ = (∀x)ψ, then we can apply 3 on ψ to evaluate
it. Thus, by recursively evaluating, we can reach upto the leaf where we apply 1. Hence
by a consistency check we can make sure that the advice does not give us a wrong answer,
and indeed, if it gives a wrong answer to us, we can detect it at some point in the recursive
evaluation. Note that we are using the self-reducibility property of SATk here. Thus we
have proved that,

φ ∈ SATk ↔ (∃w, |w| ≤ p(n))(∀ψ, |ψ| ≤ n)(1 ∧ 2 ∧ 3 ∧ (φ,w) ∈ B).

14-3

