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Lecture 16 : Valiant-Vazirani Lemma

Lecturer: Jayalal Sarma Scribe: Rahul CS

Theme: NP ⊆ BP.(⊕P)

In the last lecture, we outlined an approach to prove Toda’s theorem. One of the key
ingredients was a partial answer to the question that we had in one of the earlier lectures.
Is NP contained in ⊕P? In the last lecture we viewed ∃, ⊕, BP as operators on complexity
classes and stated that NP is contained in BP.(⊕P). We also interpreted this in the following
way; there is a randomized reduction from SAT to a language in ⊕P.

1 Randomized Reduction from SAT to ⊕SAT

Define languages,

USAT={φ | #φ = 1}

⊕SAT={φ | ∃k ∈ N,#φ = 2k + 1}

The following Lemma, famously known as the Valiant-Vazirani Lemma, was proved by
Valiant and Vazirani in 1986. It proved instrumental for many results later, including
Toda’s theorem which we will be taking up in the next lecture.

The lemma states the following reduction from SAT to USAT .

Lemma 1 (Valiant-Vazirani Lemma). There exists a randomized polynomial time al-
gorithm that takes input φ and produces a formula ψφ,y (say ψ) such that,

φ ∈ SAT⇒ Pr(ψ ∈ USAT ) ≥ 1

8n
φ 6∈ SAT⇒ Pr(ψ′ 6∈ ⊕SAT] = 1

Clearly, ψ ∈ USAT ⇒ ψ ∈ ⊕ SAT. In the other case since ψ /∈ SAT, it is also case that
ψ /∈ ⊕SAT. Thus as a corollary to the lemma, we get:

Corollary 2. There exists a randomized polynomial time algorithm that takes input φ and
produces a formula ψ such that,

φ ∈ SAT⇒ Pr(ψ ∈ ⊕SAT) ≥ 1

8n
φ 6∈ SAT⇒ Pr(ψ 6∈ ⊕SAT] = 1
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Proof. We present a high-level idea first. Given φ, a natural approach to produce a formula
with unique satisfying assignment is to add another conjunction to produce ψ = φ ∧ (ω)
such that ω filters out the satisfying assignments using the clause ω such that only one of
them will satisfy the resulting formula. Clearly, if φ is not satisfiable, then by construction,
ψ is also not satisfiable, no matter what ω is. Consider the case when φ is satisfiable. Thus,
we want ω to state a property which only one of the satisfying assignments have.

We use hashing to achieve this. That is, we will make ω state that h(x) = 0k where 0k is in
range of the hash family and x is an assignment. The probability that there is a collision
at 0k for two xs that satisfy φ (that is, probability that two assignments that satisfy φ
also satisfies ω) can be controlled by choosing a nice hash family. Thus our filter, with
high probability, filters out a unique satisfying assignment for ψ from the set of satisfying
assignments of φ.

Usually, we design hash families with a size parameter k; the size up to which we want to
guarantee collision-free property. But here we do not know the size of the subset (the set of
satisfying assignments) a priori for which we are trying to achieve unique mapping(collision-
free). The smaller the subset the smaller the range (of the hash functions) that we can
work with. Let us say we choose randomly the number k such that the number of satisfying
assignments is between 2k and 2k+1 and then decide hash function for all subsets of that
size. Since the number of satisfying assignments could be any number from 0 to 2n, we have
already lost out a bit on the probability but by a factor of at most 1

n .

Now we will formally address this intuition. Let T ⊆ {0, 1}n be the set of satisfying
assignments of φ. Select k ∈ {0, 1, ..., n − 1} such that 2k ≤ |T | ≤ 2k+1. Let Hn,k be a
collection of functions h : {0, 1}n 7→ {0, 1}k. Hn,k is said to be pairwise independent if for
every x,x′ ∈ {0, 1}n with x 6= x′ and for every y,y′ ∈ {0, 1}k,

Pr
h∈RHn,k

[h(x) = y ∧ h(x′) = y′] =
1

2k
.

1

2k
= 2−2k

Construct a family of pairwise independent hash functions Hn,k+2. Hence,

Pr
h∈H,x∈T [h(x) = 0k+2] =

1

2k+2

We calculate the probability of existence of a hash function h ∈ H such that h maps exactly
one satisfying assignment x ∈ T to 0k+2. This parameter is given by,

Pr
h∈H [|{x | x ∈ T, h(x) = 0k+2}| = 1]

Once we have an h satisfying the above condition, the number of satisfying assignments
for φ will be exactly 1. That is, in the described transformation, if ω is h(x) = 0k+2, the
number of satisfying assignments for ψ will be exactly 1, if it is satisfiable. Note that we can
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consider the computation sequence of the hash function h on a turing machine and convert
that to a SAT formula using Cook-Levin reduction. We claim that,

Pr
h∈H

[|{x | x ∈ T, h(x) = 0k+2}| = 1] ≥ 1

8

Consider,

Pr
h∈H

[∃x ∈ T, h(x) = 0k+2 ∧ ∀
x′∈T,x′ 6=x

h(x′) 6= 0k+2]

= Pr
h

[ ∀
x′∈T,x′ 6=x

h(x′) 6= 0k+2 | h(x) = 0k+2]. Pr
h

[h(x) = 0k+2]

= (1− Pr
h

[ ∃
x′∈T,x′ 6=x

h(x′) = 0k+2|h(x) = 0k+2]). Pr
h

[h(x) = 0k+2]

= (1−
∑

x′∈T
x′ 6=x

Pr
h

[h(x′) = 0k+2 | h(x) = 0k+2]). Pr
h

[h(x) = 0k+2]

Let us calculate the first part of the expression, (1−
∑

x′∈T
x′ 6=x

Pr
h

[h(x′) = 0k+2 | h(x) = 0k+2]).

Since h is sampled from a family of pairwise independent hash functions, h satisfies the
condition of simple uniform hashing. That is, the events h(x) = 0k+2 and h(x′) = 0k+2 are
independent. Therefore,

∑
x′∈T
x′ 6=x

Pr
h

[h(x′) = 0k+2 | h(x) = 0k+2]) =
∑

x′∈T
x′ 6=x

1

2k+2
= |T − {x}|. 1

2k+2

We bound the expression from above by bounding |T − {x}| from above. That is,

∑
x′∈T
x′ 6=x

Pr
h

[h(x′) = 0k+2 | h(x) = 0k+2]) ≤ (2k+1 − 1)
1

2k+2

Hence,

(1−
∑

x′∈T
x′ 6=x

Pr
h

[h(x′) = 0k+2 | h(x) = 0k+2]) ≥ 1− (2k+1 − 1)
1

2k+2

= 1− 1

2
[
(2k+1 − 1)

2k+2
]

≥ 1

2

Therefore,

(1−
∑

x′∈T
x′ 6=x

Pr
h

[h(x′) = 0k+2|h(x) = 0k+2]). Pr
h

[h(x) = 0k+2] ≥ 1

2
· 1

2k+2
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Thus,

|T |.(1−
∑

x′∈T
x′ 6=x

Pr
h

[h(x′) = 0k+2 | h(x) = 0k+2]). Pr
h

[h(x) = 0k+2] ≥ |T |.1
2

1

2k+2

By bounding |T | from below, the probability that there is a x ∈ T which uniquely gets
mapped to 0k+2 is given by,

|T |.(1−
∑

x′∈T
x′ 6=x

Pr
h

[h(x′) = 0k+2 | h(x) = 0k+2]). Pr
h

[h(x) = 0k+2] ≥ 1

2k
1

2

1

2k+2
≥ 1

8

Considering the fact that k ∈ {0, 1, ..., n − 1} satisfies 2k ≤ |T | ≤ 2k+1 with probability 1
n

we get,

φ ∈ SAT⇒Pr
x

[ψφ,x ∈ USAT ] ≥ 1

8n

φ 6∈ SAT⇒Pr
x

[ψφ,x 6∈ SAT ] = 1

Now we make comments about amplification of success probability. Since the algorithm
is one-sided error, an approach will be to simply repeat the experiment some ` times, and
take the ∨ of the results. This however, causes loss of uniqueness of the assignment since
different h may make different xs to go to 0k. However, we can still preserve the parity with
high probability that that results in the following amplification result which we state as a
Lemma.

Lemma 3. There exists a randomized polynomial time algorithm that takes input φ and
produces a formula ψ′ such that,

φ ∈ SAT⇒ Pr(ψ′ ∈ ⊕SAT) ≥ 1− 1

2q(n)

φ 6∈ SAT⇒ Pr(ψ′ 6∈ ⊕SAT] = 1

The OR amplification says, that we report that φ ∈ ⊕SAT if and only if at least one of the
trials produces a formula in ⊕SAT. But then, can we produce a single formula ψ′ such that
if φ is in SAT, then ψ′ is in ⊕SAT with high probability. We will address such a reduction
in the next lecture.

Note that it is an open problem to boost the probability of 1
8n in the Valiant-Vazirani

reduction to USAT.
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