
IITM-CS6845: Theory Toolkit February 16, 2012

Lecture 22-23 : PSPACE ⊆ IP

Lecturer: Jayalal Sarma.M.N. Scribe: Sivaramakrishnan.N.R.

Theme: Between P and PSPACE

1 Interactive Protocol for #SAT

In the previous class we looked at Interactive Protocol for Permanent of a Martix. With
that we concluded that P#P ⊆ IP. In this section we will present an Interactive Protocol
for #SAT which can be extended to prove PSPACE ⊆ IP.

1.1 Arithmetization of Boolean Formula

Given a boolean formula φ, we produce an formula φ̃ such that

φ(x1, x2,, xk) is satisfiable⇔ φ̃(x1, x2,, xk) = 1.

The expression φ is said to have been arithmetized .
The Procedure:
Basic Building blocks:

• x̃ ∧ y → xy.

• ¬̃x→ 1− x.

• x̃ ∨ y = x+ y − xy (De Morgan’s law).

Recursive Procedure:

• φ̃1 ∧ φ2 → φ̃1φ̃2.

• ¬̃φ→ 1− φ̃.

• φ̃1 ∨ φ2 → φ̃1 + φ̃2 − φ̃1φ̃2.

22-23-1

Claim 1. The above algorithm yields ,φ(x1, x2,, xk) is satisfiable⇔ φ̃(x1, x2,, xk) =
1.

Claim 2. #φ =
∑

x1∈{0,1}
∑

x2∈{0,1}
∑

xk∈{0,1} φ̃(x1, x2,, xk), where k is the number
of variables in the given boolean expression.

Proof. The proof of the above two claims is left as an exercise for the readers to verify.

The above arithmetization has been performed so that the expression obtained can be
viewed as a polynomial in variables which helps us in designing an Interactive protocol.

1.2 The protocol

Let n be the size of the formula and k be the number of boolean variables. We observe that
the degree d of any variable xi in φ̃ is such that d ≤ n as xi is multiplied atmost n times in
the transformation from φ to φ̃.
Input φ.
′Prover′ : Commits the value of #φ = q.
Now the verifier has to check if the ’Prover’ has indeed given the correct value of q. For
doing that the ’Verifier’ asks for the polynomial

f(x) = φ̃(x1) =
∑

x2∈{0,1}

....
∑

xk∈{0,1}

φ̃(x1, x2,, xk).

The degree d being atmost n, f(x) has atmost n+ 1 coefficients and the ’Prover’ can send
the coefficients. Now the ’Verifier’ can compute f(0) + f(1) and check if it equals q. If
it does not equal q, then the ’Prover’ has cheated and hence the ’Verifier’ rejects. If the
sum equals q, then the ’Prover’ could have been right or could have cheated by sending a
polynomial f1(x). Now the task of the ’Verifier’ is to check if the polynomial f1(x) is indeed
correct. For this the ’Verifier’ chooses r1 ∈R S ⊆ F. Now the ’Verifier’ asks the ’Prover’ to
commit the polynomial

f2(x2) =
∑

x3∈{0,1}

....
∑

xk∈{0,1}

φ̃(r1, x2,, xk).

The Pr[Error at stage 1] ≤ n

|S|
(By Schwartz − Zipple Lemma).

At pth stage, the ’Verifier’ chooses rp ∈R S ⊆ F and asks the ’Prover’ to commit on the
polynomial

fp+1(xp+1) =
∑

xp+1∈{0,1}

....
∑

xk∈{0,1}

φ̃(r1, r2, .., rp, xp+1..., xk).

22-23-2

Therefore

Pr[An Error has occured] = Pr[Error has occured at atleast one stage]

≤ nk

|S|
(Union Bound).

The size of S can be chosen appropriately to bound the error.

2 PH ⊆ IP

In the previous section we saw that P#P ⊆ IP. That implies that PH ⊆ IP. But we try to
see if the protocol used for #SAT works for PH too.

2.1 Arithmetizing Quantifier Expression

Say

Ψ = ∃y1∀y2∀y3∃ykφ(y1,, yk),

then

#Ψ =
∑

y1∈{0,1}

∏
y2∈{0,1}

∏
y3∈{0,1}

....
∑

yk∈{0,1}

φ̃(y1,yk).

Basically all the ∃ is replaced by summations,the ∀ replaced by products and the formula
φ is replaced by φ̃.

2.2 coNP ⊆ IP

The language SAT = {φ | φ is not satisfiable} is complete for the class coNP. It is enough
to prove that SAT ∈ IP. A formula

φis not satisfiable ⇔ ∀y1∀y2 ...∀ykφ(y1,, yk) is false.

By arithmetizing φ we get

∀y1∀y2 ...∀ykφ(y1,, yk) is false⇔
∏

y1 ∈ {0, 1}
∏

y2 ∈ {0, 1}.......
∏

yk ∈ {0, 1}φ̃(y1,, yk) = 0.

In the above expression the degree of each variable in atmost nk. The Interactive Protocol
for #SAT can be used here and the

Pr[Error] ≤ nk2

|S|
.

The size of S can be chosen appropriately to bound the error. Hence coNP ⊆ IP.

22-23-3

2.3 PH ⊆ IP

We have the following characterisation for PH, For a L ∈ PH,

x ∈ L⇔ ∃y1∀y2Qkyk(φ(y1,, yk))⇔
∑

y1∈{0,1}

∏
y2∈{0,1}

....φ̃(y1,, yk) 6= 0. (1)

Let l be the size of φ. Hence the degree of a variable in φ̃ is atmost l and in the whole
expression is atmost 2k/2l where k is the number of variables. The protocol given for SAT
works and the

Pr[Error] ≤ 2k/2lk

|S|
.

It can be seen that the probalility is bound by a quantity which is exponentiol in k, but
k being a constant, S can be chosen appropriately so the probalility of error is not high.
Hence PH ⊆ IP.

3 PSPACE ⊆ IP

3.1 A characterization for PSPACE (Quantifier Boolean Formula)

Lemma 3. For a language L ∈ PSPACE ∃B ∈ P such that

x ∈ L⇔ ∃y1∀y2∃yk−1
∀yk(x, y1, y2,, yk) ∈ B

where k = p(n) for a polynomial p.

Proof. Let L ∈ PSPACE and p(n) be the space used by the machine where p is a polynomial.
Consider the configuration graph of the machine whose number of vertices equals 2p(n) and
the graph is known implicitly to us. We define the predicates using the configuration graph.
Let α be the initial configuration and β be the final configuration. Now define the predicate
reach(α, β, t) which is true if there is a path of length 2t from α to β. So we have,

x ∈ L⇔ reach(α, β, t).

reach(α, β, t) ≡ ∃γ(reach(α, γ, t− 1) ∧ reach(γ, β, t− 1))

≡ ∃γ∀b((reach(δ, δ′, t− 1)) ∧ (b = 0⇒ (δ = α ∧ δ′ = γ)) ∧ (b = 1⇒ (δ = γ ∧ δ′ = β)))

Now we recursively expand reach(δ, δ′, t−1) and by pushing all the expressions to the right
yields

x ∈ L⇔ ∃y1∀y2∃yk−1
∀ykφ(y1, y2,, yk) is satisfiable.

where k = t = p(n). Hence the theorem

22-23-4

Arithmetizing φ to φ̃ yields

x ∈ L⇔
∑

y1∈{0,1}

∏
y2∈{0,1}

....φ̃(y1,, yk) 6= 0.

3.2 Shamir’s Interactive Protocol for PSPACE

The degree of a variable in the polynomial is atmost 2
p(n)
2 l where is l is the degree of a

variable in φ̃. The protocol used for #SAT yields a

Pr[Error] ≤ 2
p(n)
2 l

|S|
.

For Pr[Error] ≤ 1
2 the size of S has to be exponential which is not desired. The source of

the degree blow up is due to k
2 products in the formula. Now we show a method to modify

the formula in such a way that, for any variable there is atmost one ∀ quantifier between its
apprarance and quantification. This will ensure that the degree of each variable is atmost
2l where l is the size of the formula.
Now given a formula

∃y1∀y2∃yk−1
∀ykφ(y1, y2,, yk) ≡ ∃y1∀y2∃y′1(y1 = y′1)......∃yk−1

∀ykφ(y′1, y2,, yk)

The above modification to the formula makes sure that the degree of y1 is atmost 2l. But
the new introduced variable y′1 has a high degree. We do this repeatedly until the degree
of all the original variable and the newly introduced variables is atmost 2l. By the above
procedure we introduce atmost k

2 new variables for each original variable. The formula is

still in polynomial in length. Now arithmetizing the new formula to obtain φ̃ which can be
used in the protocol.
Now we hit a snag if we use the protocol used for #SAT. The reason being the value of the
expression can be as large as 22

l
. Now the ’Prover’ cannot send the value of the expression

as its size is exponential. In order to overcome the problem we look at q mod n where q is
the value of the expression and n = 22

l
.

By the The Chinese Remainder Theorem, n can be expressed as n =
∏k
i=1 pi where

p′is are prime or relatively prime and

x ≡ 0 mod n⇔ ((x ≡ 0 mod p1)...(x ≡ 0 mod pk)).

In order to verify q 6= 0, it is sufficient to obtain a prime factor p of n from the ’Prover’ for
which q mod p 6= 0. Now it is enough for the ’Verifier’ to check for the primality of p and
the computations of the polynomials being done modulo p. The ’Prover’ is asked to commit
the value of the p at the start. Hence the new protocol works with Pr[Error] ≤ 2kl

|S| which
can be bounded by a desired value by appropriately choosing S.

22-23-5

