
IITM-CS6840: Advanced Complexity Theory Feb 21, 2012

Lecture No. 27 : Inapproximability

Lecturer: Jayalal Sarma M N Scribe: Balagopal

Theme: Inapproximability
Lecture Plan:Inapproximability of Independent set Problem. GAPCSP to GAPIS, PCP
for LIN, Attempts, Proof in the long-code form. Need of linearity testing.

Our aim is to show the inapproximability of MAXINDSET. For this purpose, we introduce
the problem GAPINDSET(s, c). An instance of GAPINDSET(s, c) is a graph G which is
guaranteed to either have an independent set of size at least cn or to have no independent
set of size sn (i.e., all independent sets are of size less than sn). Note that 0 ≤ s < c ≤ 1
for otherwise the problem is same as the INDSET problem.

Let us define the notion of an approximation algorithm for MAXINDSET. An ε-
approximation A for MAXINDSET is an algorithm that takes a graph G as input and yields
an independent set of size at least εk where k is the size of the maximum independent set
in G.

Now we connect the existence of good approximation algorithms for MAXINDSET to al-
gorithms solving GAPINDSET. Note that if A is an ε-approximation for MAXINDSET,
then A can be used to solve GAPINDSET(s, c) where s < εc. For example, let us take
ε = 1/2. Suppose A is a 1/2-approximation for MAXINDSET. Then we can use A to solve
GAPINDSET(c/2, c). We run A on the input graph G and output “yes” iff A outputs an
independent set of size greater than (c/2)n. If G had an independent set of size at least
cn, then A is guaranteed to output an independent set of size at least (c/2)n. Otherwise,
by the promise, the largest independent set in G has size less than (c/2)n and A outputs
an independent set of size less than (c/2)n. This shows that if a 1/2-approximation to
MAXINDSET exists, then GAPINDSET(c/2, c) can be solved in polynomial time. In other-
words, by showing that GAPINDSET(s, c), where s/c < ε, is NP-complete, we may conclude
that an ε-approximation to MAXINDSET does not exist unless P = NP.

1 qGAPCSP ≤pm GAPINDSET(m,m/2)

We now present a reduction from qGAPCSP to GAPINDSET(m,m/2). Here q stands for
the number of variables in each constraint of CSP. The parameter m is the number of
constraints. The promise in qGAPCSP problem is that either all constraints can be satisfied
or less than 1/2 the fraction of the constraints can be satisfied (This is where the m/2
comes from in GAPINDSET(m,m/2)). The following algorithm constructs a graph from an

No. 27-1



instance of qGAPCSP.

1. Create m clusters of vertices, one for each constraint.

2. The vertices in cluster i are in one-to-one correspondence with

.. satisfying assignments for ψi. That is, for each (global) assignment

.. that satisfies ψi, we add a vertex to cluster i that corresponds to the

.. restriction of the global assignment satisfying ψi.

3. All vertices within a cluster are connected. Two vertices

.. u and v in different clusters are connected iff they are not

.. contradictory. That is, there does not exist any xi such

.. that xi = 1 in u and xi = 0 in v or viceversa.

The running time of the algorithm is polynomial since each cluster contains at most 2q

vertices and there are only a linear number of clusters.

We now prove the correctness of the reduction. Suppose ψ is a yes instance. Then we claim
there is an independent set of size m. Let x be the (global) assignment that satisfies ψ.
Then, x satisfies each ψi. Choose the vertex corresponding to x from the ith cluster for
each i. Since the assignment from each cluster is the same, there is no edge between any
of the vertices. Now suppose ψ was a no instance. We claim that no independent set of
size m/2 exists in G. Suppose we were able to select m/2 vertices. Then, by construction
each vertex would be from a different cluster. We are also guaranteed that they are not
contradictory. So there exists a way to extend the partial assignment to yield a global
assignment satisfying m/2 constraints which violates our assumption that ψ is a no instance
of the promise problem.

The above result combined with hardness of qGAPCSP shows the inapproximability of
MAXINDSET.

2 Towards the PCP theorem

As a first step towards proving the PCP theorem NP ⊆ PCP(O(log n), O(1)) we prove
the result LIN ∈ PCP(O(log n), O(1)) where LIN is the language of all linear system of
equations solvable over F2. Assume that the proof Π is the satisfying assigment. Then
it seems impossible to verify with high probability the correctness by looking at only a
constant number of bits. We get around this problem by demanding a different sort of

No. 27-2



proof from the prover 1. Note that the system could be written as Ax = b where A ∈ Fm×n
2 ,

x, b ∈ Fn×1
2 . Suppose the system is solvable, then for any r ∈ Fm×1

2 , we have rTAx = rT b.
If we let rTA = a, we may rewrite this as a.x = rT b. Note that the right hand side could
be computed without looking at the proof. We now describe the structure of the proof Π.
The proof Π ∈ F2m

2 where the ith bit of Π is the value of rTAx for the ith r. If the system
is satisfiable, an honest prover could compute a.x for each choice of a with the satisfying
assignment x. In the next lecture, we will see that if the system is unsatisfiable, then verifier
has a strategy to reject with high probability.

1The proof in long-code form is simply the Hadamard encoding of the satisfying assignment

No. 27-3


