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Lecture 37 : Uniformity of Circuits

Lecturer: Jayalal Sarma M.N. Scribe: Princy Lunawat

Lecture Plan: In this lecture, we complete the proof of P\poly = PSIZE. We talk
about a special class of polynomial sized circuit families called P-Uniform circuits and
characterize the languages associated with these circuit families. We finally prove that the
class of such languages is actually P.

Proof of PSIZE = P\poly

Recall the definition of PSIZE and P\poly from the previous lectures.

Definition 1.
PSIZE = ∪

k≥0
SIZE(nk)

It is the class of all those languages that can be computed by a family of polynomial sized
circuits.

Definition 2. A language L is in P\poly if there exists a polynomial sized advice string
h : N→ {0, 1}∗ , there exists a language B ∈ P such that,

x ∈ L ⇐⇒ (x, h(|x|)) ∈ B

In the last lecture we saw the forward containment, that is, PSIZE ⊆ P\poly. The idea was
to provide as an advice string, for a given in put x, the circuit C|x|. The resultant machine
takes the input x and the advice C|x| and checks whether the circuit evaluates to true on in
put x. Observe that this computation is essentially a Circuit Value Problem instance which
is in P. We now prove the reverse containment , that is P\poly ⊆ PSIZE.
Given a language L ∈ P\poly, and an input string x, the computation is deterministic when
we have the associated advice h(|x|). Also, the no. of configurations in the computation is
is polynomial in size since the length of h is polynomial in |x|. Each bit of a configuration
in the deterministic computation is uniquely determined by exactly 3 bits of the previous
configuration. Hence, for each bit i of a configuration j, we find a circuit that takes the
three bits determining bit i from the configuration j − 1 . Of course, the size of this circuit
is constant. We repeat this for each bit in each configuration of the run. Observe that
this circuit depends only on the length of x and not the input x itself. We are essentially
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hardwiring h(|x|) into this circuit to obtain C|x|. Hence, we get a family of polynomially
sized circuits computing L.

One subtlety that needs to be taken care of is the input to the circuit. The input will be
the start configuration of the machine B along with the advice h. Depending upon the
advice for a particular string length, a different circuit is formed. This leads to what is
referred to as non-uniformity in circuits. Circuits of a family deciding the same language
may differ in size and depth depending on the advice. Since, the family in infinite, it is not
possible to describe these non-uniform ciruits in polynomial time or space.

1 Uniform Circuits

To address this issue,let us find the source of the non-uniformity in our previous construc-
tion.Given an input x, we do the following:

1. Obtain the description of C|x| using the initial configuration, the input length and the
advice h(|x|).

2. Run the circuit on x.

Non- uniformity in the circuits is induces due to step 1, since the advice varies with the
string length. We look at a specific class of circuits where this is eliminated.

1.1 P-Uniform Circuits

Consider the class Pof languages that can be decided in polynomial time. We know that P ⊆
P\poly. The natural question is to ask for an advice string an input x for a language L ∈ P .
by definition of P\poly, observe that once an advice is given, the remaining computation
needs to be done in polynomial time. Since, L itself can be decided in polynomial time, we
donot require an advice. In other words, any trivial advice works for deciding all inputs
x. Hence, in the above step 1, the circuit Cncan be described depending only on the input
length n. Such a family of circuits is said to be P − Uniform.

Definition 3. A circuit family Cn, n ≥ 0 is said to be P − Uniform if there exists a
polynomial time determinitic turing machine which on in put 1n outputs the description of
Cn.

Claim 4. The languages computed by P − Uniform circuit families can be decided in P.
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Proof. Let us denote the class of languages decided by P−Uniform circuits by UPSIZE. By
our earlier discussion, we know that any language in P( without advice) can be computed by
a P−Uniform circuit family. Hence P ⊆ UPSIZE. We now have to prove that UPSIZE ⊆ P.
Consider a language L ∈ UPSIZE. Let M be the polynomial time TM that outputs the
description of Cn on input n. We construct a new machine N to decide L as follows:
N on input x,

1. Run M on |x| to obtain C|x|.

2. Check if (C|x|, x) ∈ CVP. If yes, accept x, else reject.

Machine M runs in polynomial time in step 1 and the checking in step 2 takes polynomial
time since CVP ∈ P(Circuit Value Problem). Hence, L(N) ∈ P . Also, since N accepts only
those strings for which the corresponding circuit of the circuit family of L outputs 1. Hence
L(N) = L. Hence UPSIZE ⊆ P.

Now that we know that UPSIZE = P, the natural question to ask if NP = UPSIZE. That
is, if there exists a P − Uniform circuit deciding SAT. Aiming to prove this is intuitively
more tough that proving if there is any polynomial sized circuit at all deciding SAT. This
goes well with our turing machine world where proving that SAT ∈ P\poly is intuitively an
easier task than proving if SAT ∈ P, since we know that P ⊆ P\poly.
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